电白观珠出口至沙琅一级公路(第二期)工程环境影响 报告表

(生态影响类)

建设单位(盖章): 茂名市电白区交通运输局

评价单位(盖章): 湛江市深蓝环保工程有限公司

编制日期: 2023 年 6 月

中华人民共和国生态环境部制

目录

一、建设项目基本情况	1
二、建设内容	7
三、生态环境现状、保护目标及评价标准	30
生态环境保护目标	50
四、生态环境影响分析	61
五、主要生态环境保护措施	74
六、生态环境保护措施监督检查清单	87
七、结论	
附图 1 项目地理位置图	90
附图 2 项目地理位置图	
附图 3 项目各路段设计平面图	92
附图 4 项目平面交叉布置图	103
附件 5 临时弃土场平面布置图	
附件 6 本项目与基本农田位置关系示意图	110
附件 1 委托书	
附件2 建设单位承诺书	
附件 3 营业执照	
附件 4 可行性研究报告的批复	124
附件 5: 关于电白观珠出口至沙琅一级公路(第二期)用地预审意见	127
附件 6: 关于《关于申请审核观珠出口至沙琅一级公路(第二期)改建工程	
管线设置桥梁方案的函》的复函	134
附件 7: 监测报告	
观珠出口至沙琅一级公路(第二期)改建工程声环境影响专项评价报告	166

一、建设项目基本情况

建设项目名		t with the pt with the					
称	观珠出口至沙琅一级公路(第二期)改建工程 ————————————————————————————————————						
项目代码	2208-440904-04-01-571125						
建设单位联 系人	***** 强	联系方式	13***** 96				
建设地点	广东省茂名市电白区观珠镇、沙琅镇(起点位于观珠出口至沙琅一级公路(第一期)终点,终点连接国道 325)						
地理坐标	起点坐标: E111°10′59.5043″, 终点坐标: E111°11′42.7349″,						
建设项目行业类别	"五十二、交通运输业、管道运输业"中"130等级(不含维护;不含生命救援、应急保通工程以及国防交通保障项目;不含改扩建四级公路)公路,的"其他(配套设施除外;不涉及环境敏感区的三级、四级公路除外)"	用地(用海)面积 (m²)/长度(km)					
建设性质	□新建(迁建) �改建 □扩建 □技术改造	建设项目 申报情形	☑首次申报项目 □不予批准后再次申报项目 □超五年重新审核项目 □重大变动重新报批项目				
项目审批(核 准/备案)部 门(选填)	/	项目审批(核准/ 备案)文号(选填)	/				
总投资(万 元)	33000	环保投资(万元)	330				
环保投资占 比(%)	1%	施工工期	24 个月				
是否开工建 设							
专项评价设 置情况	本项目属于交通运输业,且涉及居住区、学校等环境敏感点,城市道路(不含维护,不含支路、人行天桥、人行地道):全部需要设置噪声专项评价。						
规划情况		无					
规划环境影 响	无						

评价情况	
规划及规划 环境影响评 价符合性分 析	无
	1、产业政策相符性分析
	根据国家发展和改革委员会第29号令发布的《产业结果调整指导目录(2019
	年本)》,本项目属于其中"第一类鼓励类"中 "二十二、城镇基础设施"的
	"城市公共交通建设",符合国家产业政策。
	2、与《广东省人民政府关于印发广东省"三线一单"生态环境分区管控方
	案的通知(粤府〔2020〕71 号)》的符合性分析
	根据《广东省"三线一单"生态环境分区管控方案》,项目属于沿海经济带
	一东西两翼地区的范围。项目所在地为广东省重点管控单元。
	重点管控单元:以推动产业转型升级、强化污染减排、提升资源利用效率为
	重点,加快解决资源环境负荷大、局部区域生态环境质量差、生态环境风险高等
	问题。
	——水环境质量超标类重点管控单元。加强山水林田湖草系统治理,开展江
其他符合性 分析	河、湖泊、水库、湿地保护与修复,提升流域生态环境承载力。严格控制耗水量
)	大、污染物排放强度高的行业发展,新建、改建、扩建项目实施重点水污染物减
	量替代。以城镇生活污染为主的单元,加快推进城镇生活污水有效收集处理,重
	点完善污水处理设施配套管网建设,加快实施雨污分流改造,推动提升污水处理
	设施进水水量和浓度,充分发挥污水处理设施治污效能。以农业污染为主的单元,
	大力推进畜禽养殖生态化转型及水产养殖业绿色发展,实施种植业"肥药双控"
	加强畜禽养殖废弃物资源化利用,加快规模化畜禽养殖场粪便污水贮存、处理与
	利用配套设施建设,强化水产养殖尾水治理。
	——大气环境受体敏感类重点管控单元。严格限制新建钢铁、燃煤燃油火电、
	石化、储油库等项目,产生和排放有毒有害大气污染物项目,以及使用溶剂型油
	墨、涂料、清洗剂、胶黏剂等高挥发性有机物原辅材料的项目;鼓励现有该类项
	目逐步搬迁退出。
	本项目位于重点管控单元区域内。本项目属于道路建设项目,施工期采取相

应的污染防治措施,随着施工期的结束,施工期对环境的影响即消失;运营期主要污染物为道路交通噪声、汽车尾气和路面径流等,营运期采取隔声窗、路面径流收集等相应污染防治措施后,各类污染物的排放会得到最大程度的控制,本项目的建设对周边环境影响不大。总体符合《广东省"三线一单"生态环境分区管控方案》要求。

3、与《茂名市"三线一单"生态环境分区管控方案》茂府规〔2021〕6号 相符性分析:

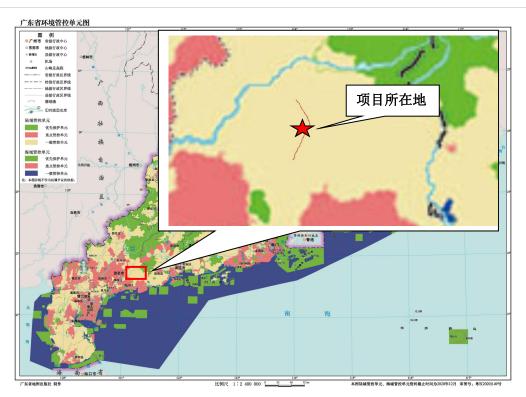

据《茂名市"三线一单"生态环境分区管控方案》(茂府规〔2021〕6号〕,全市共划定环境管控单元78个,其中陆域环境管控单元47个,海域环境管控单元31个。本项目属于ZH44090430001-电白区中北部片区一般管控单元内,为重点管控单元,与该区域管控要求符合性分析如下表:

表 1.3-1 本项目与《茂名市"三线一单"生态环境分区管控方案》茂府规〔2021〕6 号的相符性分析

	有性		
类别	文件要求	本项目情况	是否符合
环境管控单元准入清单	1.区域布局管控 1-1、【产业/鼓励引导类】开展标准化生产创建活动,打造一批果菜茶标准园、畜禽标准化示范场、水产健康养殖示范场等标准化示范点,建设各类标准化生产基地。 1-2、【生态/禁止类】生态保护红线内,自然保护地核心保护区原则上禁止人为活动,其他区域严格禁止开发性、生产性建设活动,在符合现行法律法规前提下,除国家重大战略项目外,仅允许对生态功能不造成破坏的有限人为活动。 1-3、【生态/综合类】一般生态空间内,可开展生态保护红线内允许的活动;在不影响主导生态功能的前提下,还可开展国家和省规定不纳入环评管理的项目建设,以及生态旅游、畜禽养殖、基础设施建设、村庄建设等人为活动。 1-4、【大气/禁止类】大气环境优先保护区内,禁止新建、扩建大气污染物排放工业项目。 1-5、【大气/限制类】大气环境布局敏感重点管控区范围内严格限制新建使用高挥发性有机物原辅材料项目,大力推进低 VOCs 含量原辅材料替代,全面加强无组织排放控制,实施 VOCs 重点企业分级管控,限制建设新建、扩建氮氧化物、烟(粉)尘排放较高的建设项目。 1-6、【土壤/禁止类】建设用地污染风险重点管控区内禁止在居民区和学校、医院、疗养院、养老院等单位周边新建、改建、扩建可能造成土壤污染的建设项目。 1-7、【矿产/限制类】矿产资源开采敏感区范围内仅允许因国家重大能源资源安全需要开展的战略性能源资源勘查,公	项目位90430001-电区(并44090430001-电区),并是一个时间,并是一个时间,并是一个时间,并是一个时间,可以是一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个一个	符合

益性自然资源调查和地质勘查。 1-8、 【岸线/综合类】 江河湖库岸线重点管控区内严格水域 岸线用途管制,土地开发利用应按照有关法律法规和技术标 准要求,留足河道、湖泊的管理和保护范围,非法挤占的应 限期退出。		
2、能源资源利用 2-1、【能源/禁止类】高污染燃料禁燃区内,禁止销售、燃用高污染燃料,禁止新建、扩建燃用高污染燃料的设施,禁止非专用锅炉或未配置高效除尘设施的专用锅炉燃用生物质成型燃料。 2-2、【能源/限制类】高污染燃料禁燃区内,禁燃区内已建成的不符合国家、省要求的各类高污染燃料燃烧设施,要在国家、省要求的期限内拆除或改造使用清洁能源。 2-3、【能源/综合类】科学实施能源消费总量和强度"双控",新建高能耗项目单位产品(产值)能耗达到国内先进水平,减少煤炭使用量。 2-4、【水资源/综合类】推进农业节水,提高农业用水效率。 2-5、【土地资源/限制类】土地资源优先保护区内,落实单位土地面积投资强度、土地利用强度等建设用地控制性指标要求,提高土地利用效率	本项目为道路建 设项目,不属于 工业项目,不设 置锅炉,不使用 燃料	符合
3、污染物排放管控 3-1、【水/限制类】单元内马踏镇、观珠镇、黄岭镇、林头镇、罗坑镇、麻岗镇、那霍镇、望夫镇、沙琅镇、霞洞镇、坡心镇等生活水质净化站及后续新建、改建和扩建城镇污水处理设施出水执行《城镇污水处理厂污染物排放标准》(GB18918-2002)一级A标准及广东省地方标准《水污染物排放限值》(DB44/26-2001)的较严值。 3-2、【水/综合类】单元内全面推进乡镇污水管网的建设,因地制宜实施农村生活废污水综合整治,实施乡镇(街道)污水处理设施全覆盖。到 2025 年,完成那霍镇、观珠镇、沙琅镇、霞洞镇、望夫镇、麻岗镇、马踏镇、坡心镇等配套管网的建设。 3-3、【固废/鼓励引导类】推进区域生活垃圾处理设施建设,到 2025 年,区域生活垃圾无害化处理率达 90%以上。3-4、【固废/综合类】持续推进农膜回收行动,以标准地膜应用、专业化回收、资源化利用为重点,健全回收网络体系,加快可降解农膜应用示范,着力解决农田"白色污染"问题。3-5、【其它/综合类】在种植业面源污染突出区域,实施化肥农药减量增效行动,优化生产布局,推进"源头减量-循环利用-过程拦截-末端治理"工程,深入实施秸秆综合利用行动。	本项目为道路建 设项目,不属于 工业项目	符合
4、环境风险防控 4-1、【水/综合类】加强河角水库饮用水水源保护区、 儒洞河水源保护区、霞洞镇水源保护区、羊角镇水源保护区、 袂花镇饮用水水源保护区环境风险防控。 4-2、【其他/综合类】监控评估农产品种植区及水产品集中 养殖区风险,实施环境激素类化学品淘汰、限制、替代等措 施。	本项目所在地不 属于饮用水水源 保护区	符合

因此,项目符合《茂名市"三线一单"生态环境分区管控方案》(茂府规〔2021〕 6号)的要求。

4、与《广东省生态环境保护 "十四五"》规划的相符性分析

根据《广东省生态环境保护 "十四五"》规划相关要求:强化面源污染防控。加强道路扬尘污染控制,确保散体物料运输车辆100%实现全封闭运输。全面推行绿色施工,将施工工地扬尘治理与施工企业资质评价、信用评价等挂钩,建立完善施工扬尘污染防治长效机制和污染天气扬尘污染应对工作机制。实施建筑工地扬尘精细化管理,严格落实建筑工地扬尘视频监控和在线监控要求。加强堆场和裸露土地扬尘污染控制,对煤堆、料堆、灰堆、产品堆场以及混凝土(沥青)搅拌、配送站等扬尘源进行清单化管理并定期更新。加强农业秸秆综合利用,加大露天焚烧清扫废物、秸秆、园林废物等执法力度,全面加强露天烧烤和燃放烟花爆竹的管控。

本项目施工过程严格制定具体的施工扬尘污染防治实施方案,建立扬尘污染防治工作台账,落实扬尘污染防治措施,加强道路扬尘的污染控制。因此本项目符合广东省生态环境保护 "十四五"规划。

5、与《茂名市生态环境保护"十四五"》规划的相符性分析

根据《茂名市生态环境保护"十四五"》规划相关要求:推进源头替代工程严格落实国家产品VOCs含量限值标准要求,除现阶段确无法实施替代的工序外,禁止新建生产和使用高VOCs含量原辅材料项目。现有生产项目鼓励优先使用低VOCs含量原辅料,流通消费环节推广使用低VOCs含量原辅料。严格执行涂料、油墨、胶粘剂、清洗剂等产品质量标准VOCs含量限值。推动生产、使用低(无)VOCs含量的涂料、油墨、胶粘剂和清洗剂。鼓励建设低VOCs替代示范项目,通过明确企业数量和原辅材料替代比例,推进企业实施低挥发性有机物原辅材料替代。在技术成熟的木质家具生产、车辆生产、工业防护、船舶制造以及地坪、道路交通标志、防水防火等领域,全面推进使用水性、粉末、UV固化、高固体分等低VOCs含量涂料。推广使用水性、辐射固化替代溶剂型油墨;推广使用水基、本体型胶粘剂替代溶剂型胶粘剂等。

一、加强扬尘污染控制住建、城管、交通、交投等单位要督促各类在建工地切实担负起施工主体责任,防控各类施工扬尘。全面推行绿色施工,施工工地扬尘治理与施工企业资质评价、信用评价等挂钩,建立完善施工扬尘污染防治长效机制和污染天气扬尘污染应对工作机制。实施建设工地扬尘精细化管理,严格落实建筑工地扬尘视频监控和在线监控要求。加强堆场和裸露土地扬尘污染控制,对煤堆、料堆、灰堆、产品堆场以及混凝土(沥青)搅拌、配送站等扬尘源进行清单化管理并定期更新。加强道路扬尘污染控制,确保散体物料运输车辆100%实现全封闭运输。

本项目在交通标志的设置中使用低VOCs含量涂料,施工过程严格制定具体的施工扬尘污染防治实施方案,建立扬尘污染防治工作台账,落实扬尘污染防治措施,加强道路扬尘的污染控制。因此本项目符合茂名市生态环境保护"十四五"规划。

二、建设内容

地理 位置

位于广东省茂名市电白区观珠镇和沙琅镇(起点位于观珠出口至沙琅一级公路(一期)终点,终点连接国道 325),具体路线见附图 1、附图 2。

一、主要建设情况

工程规模:

本项目位于观珠至沙琅一级公路(一期)终点,终点接规划远期 G325 国道。路线呈南北走向,全线采用双向 4 车道一级公路标准建设,路线全长 7.121km,占地面积约 300390m²,设计速度 80km/h,路基宽 24.5m,桩号: K0+000~K7+121.077,其中受下穿深茂铁路影响,K0+000~K0+792.464 段采用分离式路基,设计速度 60km/h,左幅老路利用,右幅采用新建形式,路基宽度为 12.5 米。

本项目主线沿 S281 省道进行铺设,S281 即原国道 G325,该公路东部起于广州,西部终点位于广西省南宁市。观珠镇至沙琅段为双向 2 车道,道路等级为二级公路,路基宽度为 9 米,沥青路面。其中本项目主线桩号 K0+000~K0+500 段路面良好,拟原路面利用;项目 K0+500~K1+220 段为原省道 281 线路,由于无法满足本项目道路等级标准,拟挖除新建。此外,项目剩余部分 K1+220~K7+121.077 均为新建,具体见图 2-1 所示

项组成 及規模

图 2-1 项目新建改建路段位置图

根据生态环境部《关于统筹做好疫情防控和经济社会发展生态环保工作的指导意见》(环综合〔2020〕13 号)中的"环境影响评价审批正面清单"明确,适用于告知承诺制的文件共涉及《建设项目环境影响评价分类管理名录》中 17 大类 44 小类行业,包括工程建设、社会事业与服务业、制造业、畜牧业、交通运输业等多个领域。省政府出台的《广东省人民政府办公厅印发关于深化我省环境影响评价制度改革指导意见的通知》(粤办函〔2020〕44 号)提出,对位于已开展区域规划环评的专业园区内的建设项目或符合 5 类情形且应编制环境影响报告表的建设项目,试行环评审批告知承诺制。

本项目属于《建设项目环境影响评价分类管理名录》(2021 年版)中"五十二、交通运输业、管道运输业"中"130 等级(不含维护;不含生命救援、应急保通工程以及国防交通保障项目;不含改扩建四级公路)公路,的"其他(配套设施除外;不涉及环境敏感区的三级、四级公路除外)"类别,符合环评审批告知承诺制要求。

二、工程内容

建设内容:

本项目主线沿S281省道进行铺设,S281即原国道 G325,该公路东部起于广州,

西部终点位于广西省南宁市。观珠镇至沙琅段为双向 2 车道,道路等级为二级公路,路基宽度为9米,沥青路面。其中本项目主线桩号 K0+000~K0+500 段路面良好,拟原路面利用;项目K0+500~K1+220 段为原省道281线路,由于无法满足本项目道路等级标准,拟挖除后新建。此外,项目剩余部分K1+220~K7+121.077均为新建。

项目主要建设内容包括路基工程、路面工程、道路附属工程、交通工程及沿线设施、照明工程、排水工程、绿化工程、桥涵工程、交叉工程等。具体见表2-1:

	大学·1 足以内骨 见仪						
序号	项目名称	面积/数量	单位				
11, 4	观珠出口至沙朗一级公路						
1	临时工程	4862	m				
2	路基工程	7121	m				
3	场地清理	7100	m				
4	挖土方(运距 10km)	447300	m^3				
5	填土方(运距 10km)	330150	m ³				
6	特殊路基处理	2485	m				
7	排水工程(盖板沟)	6958	m				
8	路基防护与加固工程	6887	m				
9	路基其它工程	7121	m				
10	路面工程	7121	m				
11	路面基层	175370	m ²				
12	路面面层	4200	m				
13	行车道 (沥青)	106500	m ²				
14	硬路肩 (沥青)	35500	m ²				
15	土路肩	10650	m ²				
16	路沿石(花岗岩)	28400	m				
17	中央分隔带	7121	m				
18	中桥工程	30/20	m				
19	碎落坡工程	45440	m ²				
20	交叉工程	6	处				
21	交通工程	7121	m				
22	供电工程	7121	m				
23	5G 路灯	236	盏				

表2-1 建设内容一览表

工程投资:项目总投资 33000 万元,其中环保投资 330 万元,投资占比 1%。

建设工期:项目计划于 2023 年 6 月开工建设,前期只是对地面进行平整及规划, 计划 2025 年 6 月完工,总工期 24 个月。

指标名称	単位	技术指标
1日1小石1小	<u></u> 半江	主线
公路等级	级	一级公路
设计速度	km/h	80/60
行车道数	道	双向 4 车道
行车道宽度	m	3.75

表 2-2 工程主要技术指标一览表

路基宽度		m	24.5/12.5		
桥梁	宽度	m	24		
圆曲线晶	 	m	290		
不设超高平的	出线最小半径	m	2500		
竖曲线最小半径	凹型	m	7200 (60km/h) /9000(80km/h)		
	凸型	m	8000 (60km/h) /12000(80km/h)		
最大纵坡		%	2.5		
桥涵设计荷载		/	公路一Ⅰ级		
设计洪水频率		/	桥涵 1/100、路基 1/100		
路面结构类型		/	水泥混凝土路面		
长度		长度		km	7.121

道路方案设计

1、路基工程

(1) 路基标准横断面

本项目采用一级公路标准建设,设计速度 80km/h,双向 4 车道。

本项目 K0+792.464~K7+153.706 段路基均采用整体式断面,断面宽度 24.5m,断面几何尺寸布置为: 0.75 米 (土路肩) +2.75 米 (硬路肩) +2×3.75 米 (行车道) +0.5 米 (路缘带) +2.0 米 (中央分隔带) +0.5 米 (路缘带) +2×3.75 米 (行车道) +2.75 米 (硬路肩) +0.75 米 (土路肩)。

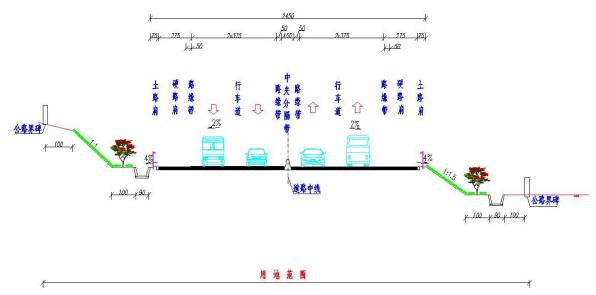


图 2-1 24.5m 路基标准横断面图

K0+000-K0+792.464 左幅老路利用,老路路面宽度 9.5 米,右幅断面宽度 12.5m,断面几何尺寸布置为: 0.75 米(土路肩)+0.75 米(硬路肩)+2×3.75 米(行车道)

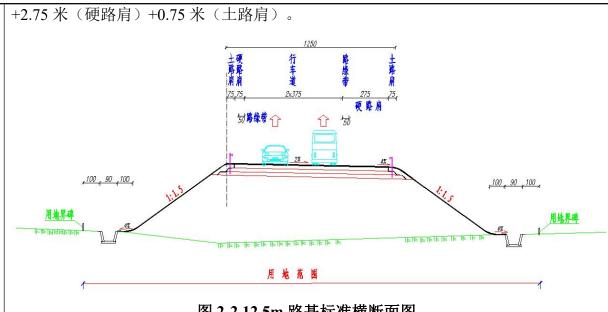


图 2-2 12.5m 路基标准横断面图

(2) 一般路基设计

1) 一般填方段路基

- ①本项目填方边坡坡率采用 1:1.5。坡脚设置宽度 1m 的护坡道,护坡道保证向外 4%的横坡,护坡道外侧设置矩形边沟,边沟宽 0.6m(部分路段边沟宽度采用 0.8m), 边沟外 1.0m 为用地界(含路堤边沟侧壁厚度)。
- ②填方路段主要为水田、旱地、池塘以及改河改沟路段,路基填筑前应先对原地 表进行清表处理,水田路段换填厚度 80cm,一般路段清表 30cm,清表后夯实回填, 路基填筑期间考虑地表沉降 10cm,,池塘段基底处理厚度约为 180cm,改河改沟路 段基底处理厚度为 120cm; 清表土不得用于路基填筑, 应结合附近地形进行集中堆放, 以便用于边坡等部位绿化用土或者取土坑的复垦。
 - ③当路基放坡受限时,通过设置护脚、路肩墙、路堤挡土墙等支挡结构收缩边坡。
- ④水田、堰塘地段,应视具体情况采用排水清淤或晾晒压实。当水塘还保留一部 分,则应按浸水路堤的要求修筑。

(3) 一般挖方基路段

本项目中对于高度小于 4m 的路堤边坡和土质路堑边坡,采用喷播植草防护,对 于坡高大于 4m 小于 8m 的边坡, 采用挂三维网植草防护, 对于高度大于 8m 的土质路 堑采用人形骨架防护,骨架内铺草皮或喷播草籽。

(4) 路基压实度

- ①地表处理:路基填筑前应进行地表处理,清除表土,引排地下水,地基表层压实度 90%。
- ②填方路段:路基顶面以下 0~80cm≥96%; 80~150cm≥94%; 150cm 以下≥ 93%。
 - ③零填地段:路床范围内压实度不小于96%。
- ④路基填土时应取其最佳含水量±2%压实,当路堤基底为耕地或土质松散时,应 在填筑前清表压实,穿越低洼水稻田及河塘地段应采取排水、清淤、晾晒、换填等措 施进行处理,以使其达到路基填筑标准,局部地下水发育路段,清表后换填 40cm 碎 石,其上按正常路基填筑。
- ⑤涵洞两侧和桥涵台背锥坡的填土与压实应对称均匀或同时分层回填压实,分层 松铺压实厚度不超过 20cm,分层回填压实度均为 96%。

化工 0相至压入机能及从行场及关机					
填料应用部位(路床顶面以下 深度)(m)		填料强度控 制	填料最大粒径要求	压实度%	
		土质路基	(mm)		
	上路床 0~0.30	CBR≥8%	100	96	
1+->+ 14+	下路床 0.30~ 0.80	CBR≥5%	100	96	
填方路基	上路堤 0.80~ 1.50	CBR≥4%	150	94	
	下路堤 1.50 以 下	CBR≥3%	150	93	
零填及挖方路	0~0.30	CBR≥8%	100	96%	
基	0.30~0.80	CBR≥5%	100	96%	

表 2-3 路基压实标准及填料强度要求

(3)特殊路基设计(低路堤、填塘路基、路桥(涵)过渡路基、陡坡路堤等) 本项目占用多为丘陵、荒地以及水塘,本项目的低路堤、填塘路基、路桥(涵) 过渡路基、陡坡路堤等纳入特殊路基设计:

1) 低填浅挖路基设计

对于路堤高度或挖方深度小于路面厚度与路床厚度之和(1.62m)的路基,称为低填浅挖路基。

- ①低填路段,80cm 厚路床采用80cm 碎石作超挖换填处理。
- ②浅挖方路段,80cm 厚路床采用30cm 碎石+50cm 石渣作超挖换填处理。

③土质挖方及全风化岩质挖方段路基,地基天然压实度达不到要求时,应超挖至路面结构层底 80cm,回填 30cm 碎石+50cm 石渣。对于岩体破碎的岩质地基,应处理至路面结构层底面 20cm,采用碎石回填,对于岩体完整的岩质地基,可不必处理。对于高液限土或膨胀土,应超挖至路面结构层底面 80cm,采用 80cm 碎石回填,对于处理的路床,其压实度不小于 96%。

2) 填塘路基设计

在池塘(鱼塘)或常年积水地段施工时,一般先做排水处理,排干塘水,对于地下水位较高,塘底清淤后有渗水的水塘,塘底回填碎石等水稳定性好的材料,之后进行塘底填筑;对于清淤后塘底无积水,无渗水的鱼塘,可在塘底碾压后直接填筑路基。对个别面积大的水塘,在用地范围内修好围堰,围堰一般由填土填筑而成,顶宽 1.0~2.0m,高度以超过常水位 50cm 为宜。对有冲刷的浸水边坡采用 M7.5 浆砌片石护坡防护,边坡防护高度为常水位+50cm。

(三) 桥涵过渡路基设计

为保证压实质量以减少桥台跳车,桥梁及涵洞台背设置过渡段,根据本项目特点、地质条件及取土方案,采用回填石屑进行台背回填填筑。

台背过渡段长度 L (m) =2H+3, H 为路基填土高度。根据《公路路基施工技术规范》规定,桥涵过渡段顺路线方向长度:自台身背面起,顶面长度不小于"2×台高+3m",底面长度不小于 3m。桥涵台背处原地表处理要保证压实度不小于 90%,过渡段范围内路基压实度不小于 96%。过渡段与一般路基挖台阶衔接,台阶宽不小于1.0m,以 4%坡率向一般路基倾斜。

- (四) 陡坡路堤、半填半挖路基设计
- (1) 当地面横坡陡于 1:5 时,应将原地面挖成宽度不小于 2m、内倾横坡为 4%的台阶。
- (2)路基纵向填挖交界(含半填半挖交界)处由于填方会产生沉降,往往导致填挖交界处路基产生开裂,为防止或减缓填挖交界处路基开裂,在填挖交界处路床范围内设置土工格栅。土工格栅分上下两层铺设:下层设置于下路床底面,上层设置于上路床底面。同时,对半填半挖路基地面横坡大于1:2.5的路段,在路堤范围内设置土工格栅增加路堤稳定性。
 - (3) 对于整体式半填半挖路基, 当填方部分不足路基半幅时, 应超挖至路基半

幅宽度。填筑应由最低一层台阶填起,然后逐台向上填筑,分层夯实,所有台阶填完 之后,可按一般填土进行。

- (4)除上述情况外,对于横向半填半挖路基,挖方一侧应超挖 6m 长,对路床深度范围内的土体进行超挖回填碾压,压实度不小于 96%;对于纵向填挖交界处,应向挖方段超挖 10m 长、对路床深度范围内的土体进行超挖回填碾压,压实度不小于 96%。当挖方区为坚硬岩石时,挖方区不超挖。
- (5)纵向填挖交界段,为减少因不均匀沉降引起的路基沉降变形及路面裂缝,填挖交界填方段应设置过渡段,过渡段顶面一般宽 10m,过渡段填料材质与一般填筑段落相同,但要求其压实度不小于 96%。同时过渡段每填高 3m 用液压式压路机补压一次。
- (6) 半填半挖地段, 当地面横坡度高陡(1:1) 时, 从下坡脚水平面或缓倾平面至地面线之间土体全部开挖后, 重新填筑成新的平面, 再在其上填筑路堤

2、路基防护设计

本项目考虑部份路段两侧土地开发利用的滞后可能性,对路基进行防护,路基边坡设计"灵活自然、因地制宜、顺势而为"。挖方边坡的坡脚、坡顶及填方坡脚,采用贴切自然的圆弧过渡;低填路段应尽量将边坡放缓,与原地貌融为一体。

- 一般填方路基:采用生态防护技术全防护,并针对不同的边坡坡率,通过对暴雨量、汇水量、排水方式以及各种植物的防护能力进行测算,确定生态防护临界高度,选用合理的防护措施。一般路段,当坡高小于 4m 时,采用喷播植草防护;当坡高大于 4m 小于 8m 时,采用挂三维网喷播植草防护;当坡高大于 8m 时,采用人字形骨架及骨架内植草防护。
- 一般挖方路基防护: 当挖方高度 H≤6m 的土质路堑边坡,采用喷播植草边坡防护; 当挖方高度 H>6m 的土质及类土质即坡残积层、全风化层路堑边坡,采用三维网植草边坡防护; 当挖方高度 H>6m 的土质及全~强风化岩等易冲刷的路堑边坡,采用人字形骨架植草边坡防护。

桥头路基段防护:桥头 10m 范围采用六角预制块防护,为防止路面汇水对桥头锥坡的冲刷,设计中在桥台锥坡的左侧、中分带衔接处和锥坡的右侧增设路面排水急流

槽。人行踏步采用 8cm 厚 C25 砼预制块铺砌, 预制块之间采用 M10 砂浆勾缝。

水塘防护:沿线水塘、沟渠路段均采用 M7.5 浆砌片石护坡防止冲刷,浸水护坡 应设置至最高水位以上 50cm,基础埋入冲刷线以下 60cm。

挡土墙防护: 当本项目挡墙均采用 C20 片石混凝土现浇, 挡土墙类型为路肩挡墙、路堑挡墙和路堤挡土墙采用仰斜式挡墙。路肩墙采用现浇 C20 砼。墙身应分层设置泄水孔, 泄水孔间距 2m, 上下排交错布置, 孔内预埋φ100mmUPVC 水管并长出墙背15cm, 其端头用土工滤布包裹, 最下面一排泄水孔出口应保证排水顺畅, 不得阻塞。在泄水孔进水口处设置粗颗粒材料(大粒径碎石或卵石)堆囊以利排水。挡土墙应根据地形及地质变化情况设置沉降缝,间距一般为 10-15m; 缝宽为 2cm, 沉降缝内用沥青麻絮沿内、外、顶三边填塞, 深度为 15cm。

3、 路面工程

根据《公路工程技术标准》(JTG B01-2014)、《公路水泥混凝土路面设计规范》(JTG D40-2011)和《公路水泥混凝土路面施工技术细则》(JTG / T F30-2014)等规范的有关规定,本项目路面设计采用双轮组单轴荷载 100kN 作为标准轴载,水泥混凝土路面的设计使用年限为 30 年。

(1) 路面结构型式为:

面层: 28cm C40 水泥砼面层

下封层: 1cm ES-3 改性乳化沥青稀浆封层

透层: PC-2 透层油

基层: 20cm 5%水泥稳定级配碎石

底基层: 18cm 4%水泥稳定级配碎石

垫层: 15cm 级配碎石

总厚度: 82cm

(2) 桥面铺装结构

桥面铺装层采用: 10cm 厚 C40 钢筋砼+防水层+10cm 厚 C40 砼。

4、桥梁、涵洞工程

本项目共设中桥 50m (2座); 涵洞 22道。

(1) 桥梁工程

设计荷载:公路-I级

设计基准期: 100年

设计使用年限:特大、大、中桥 100年,小桥及涵洞 50年,护栏、伸缩缝及支座等附属 15年:

桥涵设计洪水频率:特大桥 1/300,大、中、小桥及涵洞 1/100;

本项目共设置两座中桥,具体情况见下表所示:

			• •				
 名称	桩号	桥长	桥宽	跨径	结构型式	跨越河流	桥墩布设情况
10 70	(m)	$ \begin{array}{c c} & \text{if } $	和例主人	知何至八 <u></u>			
龙记河桥	K2+717	30	24	1-30	简支梁、板	龙记河	共2排桥墩,
龙山刊机	K2⊤/1/	K2+/1/ 30	Z 4	4 1-30	式橡胶支座	龙山刊	无水中墩
							桥梁跨越中石
禾禄岗桥	V6+059	20	24	1-20	简支梁、板	,	化输油管道,
/\^\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	K6+958 20 24	2 4	1-20	式橡胶支座	/	桥梁不涉水,	
							无水中墩

表 2-4 全线桥梁一览表

1) 龙记河桥

A、桥梁总体布置

龙记河桥跨越龙记河桥,桩号为 K2+698.8~K2+735.2,桥长 30m,桥宽 24m。全桥共一联,跨径组合为(1×30)m。桥梁分上下行两幅桥设计,单幅桥宽 12,左右两幅桥间隔 0.5m,桥梁两外侧与道路同宽。桥梁标准横断面布置为: 0.5m(防撞护栏)+10.75m(车行道)+0.5m(防撞护栏)+0.5m(镂空)+0.5m(防撞护栏)+10.75(车行道)+0.5(防撞护栏)=24m。

B、上部结构

上部结构采用 25m 跨装配式预应力混凝土小箱梁,结构简支,桥面连续,桥台处设置伸缩缝。单幅桥横向由 4 片预制小箱梁组成,即 2 片边梁+2 片中梁。边梁预制梁高 1.62m,预制梁宽 2.75m,底宽 1m;中梁预制梁高 1.62m,预制梁宽 2.4m,底宽 1m。小箱梁横向中心间距 264.5cm,横向湿接缝宽 48.8cm。30m 小箱梁按预应力混凝土 A 类构件进行设计,采用预制件,现场吊装施工。

C、下部结构

桥墩采用桩柱式桥墩,横向设 2 根 D1.6m 桩基,桩间距 6.7m。。桥墩盖梁按钢

筋混凝土构件进行设计,采用支架现浇施工。

全桥基础均采用桩基础,按嵌岩桩设计。共4排桥墩共8根墩柱,无水中桥墩。

2) 禾禄岗桥

A、桥梁总体布置

禾禄岗桥跨越输油管线,桩号为 K6+945.5~K6+970.5,桥长 20m,桥宽 24m。全桥共一联,跨径组合为 (1×20) m。桥梁分上下行两幅桥设计,单幅桥宽 12,左右两幅桥间隔 0.5m,桥梁两外侧与道路同宽。桥梁标准横断面布置为: 0.5m (防撞护栏)+10.75m (车行道)+0.5m (防撞护栏)+0.5m (镂空)+0.5m (防撞护栏)+10.75 (车行道)+0.5 (防撞护栏)=24m。

B、上部结构

上部结构采用 20m 跨装配式预应力混凝土小箱梁,结构简支,桥面连续,桥台处设置伸缩缝。单幅桥横向由 4 片预制小箱梁组成,即 2 片边梁+2 片中梁。20m 小箱梁按预应力混凝土 A 类构件进行设计,采用预制件,现场吊装施工。

C、下部结构

桥墩采用桩柱式桥墩,横向设 2 根 D1.4m 桩基,桩间距 6.7m。全桥基础均采用桩基础,按嵌岩桩设计。共 4 排桥墩 8 根墩柱。

(2) 涵洞工程

本项目依据: 汇水面积、流量、沟渠性质及断面尺寸、设计流量及沟渠规划等条件,采用圆管涵、盖板涵两种型式。本项目设置圆管涵 19 处,盖板涵 3 处,涵洞工程数量估算情况见下表:

	• • • • • • • • • • • • • • • • • • • •		
序号	中心桩号	孔数及孔径	涵长
		(孔一跨径)	(m)
涵洞	类型	圆管	拿涵
1	K0+215	1-D1.5	9
2	K0+273	1-D1.5	35
3	K0+880	1-D1.5	29
4	K1+390	1-D1.5	41
5	K1+612	1-D1.5	30
6	K1+952	1-D1.5	30
7	K2+530	1-D1.5	25
8	K3+081	1-D1.5	30
9	K3+751	1-D1.5	27
10	K3+872	1-D1.5	60

表 2-5 涵洞工程数量估算表

11	K4+818	1-D1.5	36
12	K5+050	1-D1.5	60
13	K5+160	1-D1.5	43
14	K5+284	1-D1.5	35
15	K5+482	1-D1.5	35
16	K5+888	1-D1.5	31
17	K6+050	1-D1.5	26
18	K6+315 1-D1.5		30
19	19 K6+635		35
涵洞类型		盖板	え 涵
1	K3+311	1-6x4	33
2	K4+574	1-2X2	40
3	K6+856.5	1-6x4	41

6、路线交叉工程

本项目从南至北分别与电白至观珠一级公路、国道 G325、乡道等外道路形成平面交叉,并在 K0+345 处下穿深茂高铁。

(1) 平面交叉

本项目平面交叉的具体设置情况见下表:

表 2-6 平面交叉设置一览表

序号	桩号	交叉角度(°)	交叉型式	交叉道路	备注
1	K0+000	7	Y 型交叉	S281	二级路
2	K1+286	37	T 型交叉	S281	二级路
3	K2+308	60	十字交叉	乡道	等外路
4	K3+076	70	十字交叉	乡道	等外路
5	K3+839	45	十字交叉	S281	二级路
6	K6+228	40	十字交叉	乡道	等外路
7	K7+121	90	T 型交叉	G325	一级路

注: 所有等级道路平面交叉均采用渠化方式组织交通。

本项目平面交叉示意图见附图 4。

(2) 立体交叉

本项目立体交叉的具体设置情况见下表:

表 2-7 下穿铁路设置一览表

序号	桩号	交叉角度(°)	交叉型式	交叉道路	备注
1	K0+345	90	下穿	深茂高铁	现状铁路桥梁净跨径 30米,与现状路面净空

					5 米
2	K6+958	90	桥梁上跨	茂石化输油管线	输油管线

本项目下穿深茂高铁现状图如下

6、 交通工程及沿线设施

本项目位于城区,路线里程短,不考虑设置管理设施;安全设施包括道路交通标志、标线、护栏、隔离栅、交通信号灯等。

(1) 交通标志

标志的版面设计按照《道路交通标志和标线》(GB5768-2009)的有关规定执行 交通标志应为使用者提供正确及时的信息,通过标志引导使用者顺利抵达目的地。标 志总体布局应均衡,满足驾驶员动态行驶时发现信息,做出判断,采取行动的反应时 间和距离的要求,版面信息力求简单、明确,使用者能够一目了然。

(2) 交通标线

标线类型分为:车行道边缘线、车道分界线、出入口标线、斑马线、导向箭头、 人行横道线、减速让行线。为保证车辆分道行驶、昼夜视线诱导,本项目设置完整的 标线、导向箭头等。

(3) 波形护栏

设置于填方高度大于 3.5m、临塘路段以及两侧,设置路侧 SB 级波形梁钢护栏,护栏板采用 4.0mm 厚波型钢板。

(4) 信号灯控制

本项目主线与 S281 交叉以及与 G325 交叉口处各设置一组信号控制灯。

(5) 其他安全设施

里程牌、百米牌及公路界碑:为了给道路使用者随时提供行驶里程的信息,在公路两侧对称设置里程牌。里程牌采用铝合金板制作,利用电焊钢管支架固定于路侧波形梁护栏立柱上,或者采用膨胀螺栓、钢板、电焊钢管支架等固定于混凝土护栏的背部。百米牌采用冷弯钢板固定于波形梁螺栓上、混凝土护栏顶面上。公路界碑采用钢筋混凝土预制成正方形白色柱体,设置于公路用地两侧边缘,每200m设置一块。

7、 照明工程

本工程于 K0+250~K0+670 段为分离式路基,右幅路基宽度 12.5 米,行车道为 2×3.75 米,于土路肩间隔 35 米布置 10 米单杆单挑臂灯, 挑长 2 米,路灯采用 1×140W 点状 LED 灯; 其余路段均于中央分隔带间隔 35 米布置 10 米单杆双挑臂灯, 路灯采用 2×140W 点状 LED 灯。全线路灯均采用截光型灯具,三相间配电,电压等级为 220V。在平面交叉口处,根据平交情况,在平交口四周或一侧设置 12m 投光灯,投光灯光源为 3×140W 的 LED 灯。

本工程共设置 191 支 10 米双臂挑灯, 24 支 10 米单臂挑灯。6 支 3×140W 的投光灯。

8、 排水工程

(1) 路基、路面排水工程

1) 路基排水工程

本项目路基排水设施材料以 C20 砼为主, 挖方路段边沟用于排泄路面及路堑坡面雨水, 根据排水流量的大小分别采用不同尺寸的边沟。边沟型式采用 C20 现浇砼暗沟, 设置 60×60cm 和 80×60cm 两种断面

- ①正常挖方路段(含超高段内侧)单向排水长度 L≤300m,超高外侧挖方路段单向排水长度 300m<L<400m 时,采用 60×60cm 断面。
- ②正常挖方路段(含超高段内侧)单向排水长度 300m<L<400m,超高路段外侧挖方路段单向排水长度 L>400m 时,采用 80×60cm 断面。

③路堤两侧的排水沟设置于护坡道外侧,排泄路基范围的地表水,与桥涵及排灌系统形成综合排水系统。排水沟采用 C20 现浇砼明沟,设置矩形 60×60 cm、 80×60 cm 两种断面,当排水路径 L \leq 300m 时,采用 60×60 cm 断面;排水路径 300m<L 时,采用 80×60 cm 断面。

边沟下设渗沟 40cm×60cm, 渗沟底部设置纵向硬式透水管(直径 Φ 15cm)。

3) 路面排水工程

本项目路面排水包括:正常路段及超高段内侧路面排水、超高段外侧路面排水以 及路面结构层排水等三部分:

①正常路段及超高段内侧路面排水

填方超高段内侧及非超高段的路表汇水统一采用集中排水形式,即路面水由拦水缘石汇集,经路堤急流排至路基排水沟内。挖方路段由路拱经平缘石漫流排出土路肩外,汇集到边沟后再通过连接边沟和排水沟的急流槽排至排水沟中。对于路肩挡土墙路段,如墙顶设置波形护栏,则采用分散漫流排水方式;如墙顶设置钢筋混凝土护栏,则通过在护栏上每隔 5m 设置一个泄水槽将路面汇水排除。

②超高路段路面排水

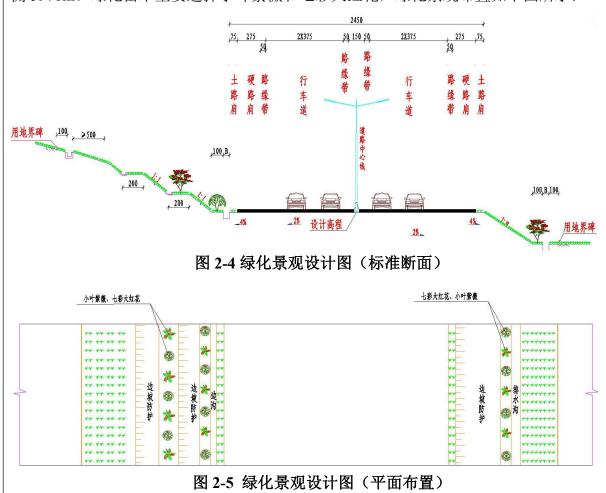
一般超高段外侧:路面水流入至中分带处路面边缘处的纵向矩形沟(带盖板),通过集水井及横向 315PVC 管将路面水排至排水沟中。集水井采用 C25 钢筋砼现浇、纵向暗沟采用 C25 砼现浇、盖板采用 C30 钢筋砼预制。

③路面结构层排水

为排除通过路面接缝、裂缝或空隙、路肩或路基渗入并滞留在路面结构内的自由 水,设置路面盲沟排水系统。水泥稳定基层上铺设沥青表处封层,在土路肩内设置纵 向碎石盲沟,汇聚路面结构层内的下渗水,并通过横向排水管及时将水引出。

④桥梁结构层排水

项目沿线不涉及水源保护区,龙记河桥跨越龙记河,龙记河为 II 类水。根据《关于加强公路规划和建设环境影响评价工作的通知》(环发[2007]184号文)有关规定: "公路建设应特别重视对饮用水水源地的保护,路线设计时,应尽量绕避饮用水水源保护区。为防范危险化学品运输带来的环境风险,对跨越饮用水水源二级保护区、准保护区和二类以上水体的桥梁,在确保安全和技术可行的前提下,应在桥梁上设置桥面径流水收集系统,并在桥梁两侧设置沉淀池,对发生污染事故后的桥面径流进行处


理,确保饮用水安全"。

本项目桥面水采用集中排水方案,通过纵向 pvc 管,分别向桥梁两端方向排入路基排水沟中,排水沟流入天然河道之前,设置沉淀池。建议在龙记河桥两边各设一个75 m³ 事故应急池。事故状态下通过阀门进行切换,使事故废水留在事故应急池。

本项目为道路项目,项目本身并不产生废水,公路路段路面雨水通过横坡及路堤边坡排至边沟、排水沟,沿线道路排水主要为路面直排。

9、 绿化工程

外勘调查的沿线原生植物,并适当增加了一些未调查到的但适合当地气候生长并且在公路绿化中常用到的树种。同时树种选择以生长快、适应性强、抗污染能力强、病虫害少的乡土阔叶乔木树种为主,引进树种、针叶树种为辅的原则进行总体配置。设计结合当地气候、土壤、地下水位、地形地势等自然环境条件,因地制宜,适地适树,合理选择树种。本项目总绿化长度为12115m,其中:主路左侧6145m、主路右侧5970m。绿化苗木主要选择小叶紫薇和七彩大红花,绿化景观布置如下图所示:

10、土石方工程

根据地形地质特点,为实现绿色公路"零弃方、少借方"的专项行动目标,本项目断面填方共计 14.72 万方,断面挖方共计 53.34 万方,由于本项目挖方数量较大,挖方中产生的开山石渣可用于路基填方,本项目不设置取土场,全线清表换填、填前夯实、清淤换填、水稻田基底换填、超宽碾压等其他土、石方工程量共计约 7.63 万方。挖方 I 类松土及杂项挖除腐殖土、淤泥等设置临时弃土场,后期用于拌合站、预制场、便道等临时用地复垦、边坡及绿化等。

项目挖余土石方向电白站至观珠新建一级公路工程(推荐线)调出土方 23.43 万方后弃方 10.63 万方。全线弃土较多,本项目设置临时弃土场;不设置永久弃土场,用于堆放清表、清淤土方、软弱土等。本项目临时弃土场设置于 K1+730、K3+720、K4+300,临时弃土场平面布置图见附图 5。

11、工程占地

本项目为改建道路项目,项目的范围全线均在道路红线内,道路沿线现状主要为 丘陵及荒地等。项目占用各类型土地情况详见下表。

	位置		观珠镇	沙琅镇
	耕地	水田	21.53	/
	/	旱地	9.19	40.91
农用地	园地	果园、苗木	110.54	63.27
	林地		52.38	38.1
	其他农用地	水塘	7.59	4.26
	住宅用地	农村宅基地	/	/
建设用地	任七用地	建制镇用地	/	/
	交通运输用地	公路用地	/	/
未利用地	未利用地	河流、沟渠	1.31	0.35
	K1+730	林地	14.3	/
临时用地(弃 土场)	K3+720	林地	12.7	/
	K4+300	林地	/	16.8

表 2-8 工程占地类型一览表 (单位: 亩)

本项目推荐线主要占地类型为丘陵及荒地,占地均未涉及基本农田,基本农田与本项目位置关系见附图 6,临时弃土场占用土地类型均为林地,不侵占基本农田。

12、征地与拆迁

本项目为改建项目,局部路段穿过乡村,不可避免要拆迁建筑物。本项目征地按照《茂名市征地管理规定》要求开展,拆迁安置应符合茂名市《城市规划区内房屋拆迁补偿安置实施办法》的规定要求。本项目的征地拆迁情况见下表。项目所在区厂房

及建筑物拆迁不在本工程内,前期由各相关部门统一协调,用地出让时已拆迁完毕,为空地。

根据《观珠出口至沙琅一级公路改建工程施工图纸设计》资料统计,本项目拆迁主要为沿线的房屋、围墙等,总拆迁建筑面积为 11515m², 拆迁建筑物包括框架结构楼房 4724m²、砖混楼房 1342m²、简易房 1173m²、厂房 6879m²、围墙 572m²、水泥地坪 3307 m²、隔离栅栏 364m, 坟墓 15 座。拆迁具体工作由政府部门进行筹备。

其中项目建设过程中敏感点曙光农场三分场以及雪屋拆迁出现二排建筑变为临路首排建筑。曙光农场三分场受影响户数 6 户主要为 1~2 层低矮民房,雪屋受影响户数为 3 户,均为 1 层建筑。

13、交通量预测

(1) 交通量及交通组成

根据现状交通量调查及未来项目区域内机动车可能的发展趋势,并结合对项目区域客货车交通出行分布量的预测分析,项目交通产生量折合标准小客车数据见表 2-9 所示。

特征年	2024	2029	2034	2039	2043
预测交通量	12526	17242	21160	25204	27068
年均增长率	/	6.60%	4.18%	3.56%	1.80%

表 2-10 项目交通产生量 单位: (自然数)辆

结合项目所在地区的社会经济发展规划以及道路建设情况,交通量预测特征年选取运营后第1年、第7年和第15年,即2025年(近期)、2031年(中期)、2039年(远期)。2025年特征年交通量(pcu/d)预测计算如下:

2025年: 17242× (1-6.60%) ⁴=13121

2031年: 17242× (1+6.60%) ²=19593

综上,本项目路段各特征年交通量预测见表 2-11。

表 2-11 本项目特征年总交通量预测一览表(pcu/d)

项目	2025年	2031年	2039年
主线	13121	19593	25204

《电白观珠出口至沙琅一级公路(第二期)(全长 7.121 公里)工程可行性研究报告》(中佑勘察设计有限公司)。特征年车型构成比例见表 2-11 所示。

表 2-12 车型构成比例预测(%)

车型 年份	小客车	大客车	小货车	中货车	大货车	特大货车	集装箱车	合计
2025	23.78	9.49	20.08	28.68	13.98	2.19	1.8	100
2031	28.13	9.24	16.85	26.44	14.46	2.63	2.25	100
2039	30.52	9.15	15.48	24.77	14.75	2.82	2.51	100

根据《公路工程技术标准》(JTGB01-2014),公路交通情况调查机动车车型分类以及折算系数详见表 3.5-4。结合《环境影响评价技术导则 声环境》(HJ2.4-2021)附录 B.2 中车型分类表,见表 3.5-5,形成各特征年车型比如表 3.5-6 所示。

表 3.5-4 公路交通情况调查机动车车型分类表

车型	一级分类	二级分类	额定荷载参数	折算系数
		小客车	额定座位≤7座	1
	客车	中客车	7座<额定座位≤19座	1
		大客车	额定座位>19座	1.5
汽车		小货车	载质量≤2吨	1
八千		中货车	2吨<载质量≤5吨	1.5
	货车	中货车	5吨<载质量≤7吨	1.5
		大货车	7吨<载质量≤20吨	2.5
		汽车列车	载质量>20吨	4

表 3.5-5 《环境影响评价技术导则 声环境》(HJ2.4-2021)车型分类表

车型	汽车代表车型	车辆折算系数	车型划分标准
小	小客车	1.0	座位≤19座的客车和载重量≤2t的货车
中	中型车	1.5	座位>19座的客车和2t<载重量<7t的货车
+	大型车	2.5	7t<载重量≤20t 的货车
	汽车列车	4.0	载重量>20t 的货车

表 3.5-6 各特征年自然车车型比例 (%) 及 pcu 折算系数

路段 名称	年份	小货车	中货车	大货车	特大货 车	集装箱	小客车	大客车	合计
	2025	19.39	27.87	14.28	2.39	1.97	24.76	9.34	100.00
全线	2031	16.85	26.44	14.46	2.63	2.25	28.13	9.24	100.00
	2039	13.85	22.92	15.21	3.10	2.72	33.98	8.22	100.00
折算	系数	1	1.5	2.5	4.0	4.0	1	2.5	/
车	型	小型车	中型车	大型车	大型车	大型车	小型车	中型车	/

3、各种车型的自然数的转换

本项目道路上行驶的各型车的自然交通量(单位:辆/d)按照下列公式计算:

$$N_{d,j} = \frac{n_d}{\sum (\alpha_j \beta_j)} \cdot \beta_j$$

式中: N_{d,j}—第 j 型车的日自然交通量, 辆/d, 根据项目可研, 本项目车型 j=表 2.1-3

(小客车、大客车、小型货车、中货车、大货车、特大货车、集装箱);

nd—路段预测当量小客车交通量, pcu/d, 按照表 3.5-2 取值;

aj—第j型的车辆折算系数,无量纲,根据表 3.5-6 中各车型的车辆折算系

β_i—第 j 型车的自然交通量比例, %, 按照表 3.5-6 取值。

表3.5-7 本项目各车型的日自然交通量 (辆/d)

路段 名称	年份	小货车	中货车	大货车	特大货 车	集装箱	小客车	大客车	合计
	2025	1444	2062	1005	157	129	1710	682	9215
全线	2031	1784	2799	1531	278	238	2978	978	12616
	2039	2094	3350	1995	381	339	4128	1238	15564
折算	草系数	1	1.5	2.5	4	4	1	2.5	/

表 3.5-8 本项目大、中、小型车日自然交通量(辆/d)

项目名称	特征年	小型车	中型车	大型车	合计
	2025年	3154	2745	1292	7190
全线	2031年	4761	3777	2047	10585
	2039年	6222	4588	2716	13525

各预测时期高峰小时的车流量按全日的 1/10 计算,本项目昼间 16 小时与夜间 8 小时车流量比为 9: 1。各型车的昼夜小时交通量(单位:辆/h)按下式计算:

昼间: $N_{h,j(d)}=N_{d,j}\cdot\gamma_d/16$; 夜间: $N_{h,j(n)}=N_{d,j}\cdot(1-\gamma_d)/8$

式中: N_{h,i(d)}——第 j 型车的昼间平均小时自然交通量,辆/h;

N_{h,i(n)}——第 i 型车的夜间平均小时自然交通量,辆/h;

γ₄——昼间 16 小时系数, 取 0.9。

则本项目交通量预测一览表详见表 3.5-9。

数;

表 3.5-9 项目特征年交通量预测结果一览表 单位:辆/h

			昼间			夜间			高峰		
路	段	时段	小型	中型	大型	小型	中型	大型	小型	中型	大型
			车	车	车	车	车	车	车	车	车
	全线	2025年	177	154	73	39	34	16	315	274	129
全:		2031年	268	212	115	60	47	26	476	378	205
		2039年	350	258	153	78	57	34	622	459	272

1、工程布局情况

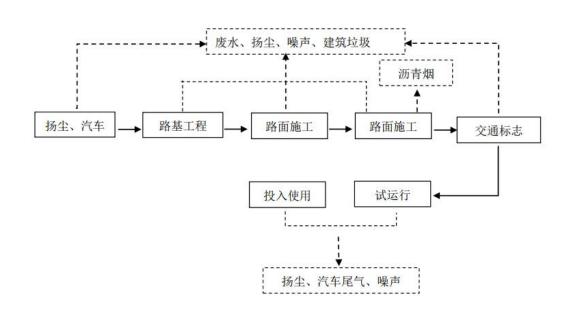
项目位于观珠至沙琅一级公路(一期)终点,终点接规划远期 G325.路线呈南北走向,全线采用双向 4 车道一级公路标准建设,路线全长 7.121km,占地面积约 300390m²,设计速度 80km/h,路基宽 24.5m,桩号: K0+000~K7+121.077,其中受下穿深茂铁路影响,K0+000~K0+792.464 段采用分离式路基,设计速度 60km/h,左幅老路利用,右幅采用新建形式,路基宽度为 12.5 米。

2、施工临时工程布置情况

临时用地由施工便道、项目部、预制场、临时仓库、取(弃)土场组成。

项目部、预制场、临时仓库的选址均根据实际调查情况,综合考虑了沿线道路分布、用电用水、地形、构造物等因素后确定。项目部包含办公室、宿舍区、生活区; 预制场包含混凝土搅拌站、试验区、操作区、浇筑区、养护区、预制构件堆放场区等; 临时仓库包含料场、工程机械停放区等, 占地大小根据标段规模、构造物情况确定。全线预制场、临时仓库和工区的选址均临近地方主要道路, 交通便利, 用水、用电都很方便, 可满足项目部办公、生活、生产的需要。详情见下表:

总 面 现 场 置


表 2-12 临时工程主要工程数量表

	1	ı		1-11-	ı		\				
		项目	规	模		主要工程量					
序 号	桩号		长度 (m)	宽度 (m)	路基填 方量 (m²)	路基挖 方量 (m²)	路面	工程	钢便桥	占地 (亩)	
1		钢便桥	200	4. 5					20/1座	0.13	
2	K2+71	施工便 道	3340	6	8016	8016	20040	3. 34	/	30.06	
3	7	弃渣场 便道	1000	6	2400	2400	6000	1	/	9	
4		驻场便 道	500	4. 5	900	900	2250	0.5	/	3. 37	
5	/	基层拌 合站	/	/	/	/	/	/	/	9	
6		水泥拌 合站	/	/	/	/	/	/	/	4.5	
7		水凝土泥碎合站 建工程 水炭 建一种	/	/	/	/	/	/	/	9	
8		施工驻 地	/	/	/	/	/	/	/	4. 5	

9	K1+73 0	1#弃土 场	/	/	/	/	/	/	/	16. 4
10	K3+72 0	2#弃土 场	/	/	/	/	/	/	/	19.8
11	K4+30 0	3#弃土 场	/	/	/	/	/	/	/	20. 3

1、施工工艺流程

项目为市政道路施工。基本工序为:拆除红线范围内需拆除的建筑,然后平整场地,进行道路挖填,然后对路基进行施工,修建排水工程,然后进行路面结构工程及 其附属设施等工程,最后竣工验收后营运使用。

施工 方案

图2-3 道路建设工程工艺流程图

路面开挖: 新建段对道路红线范围内的土地进行平整,旧路分段除破旧路面沥青混凝土面层。

路基工程: 施工放样→场地清除→临时排水设施→地基处理→填前压实→压实度 监测→路基填料运输→摊铺→碾压→压实度监测→整修。施工前,清除路基范围内的 树木、垃圾等,布设临时排水沟,利用排水沟将路基内的雨水引入路基外沟渠; 对软 基路段进行地基处理; 再进行填前压实并监测压实度; 将路基填料摊铺、压实并监测 压实度; 对路基进行整修。 **涵洞工程:**测量放线→场地布置→基坑开挖→基础处理→现浇台基→台身浇筑→ 吊装盖板(吊装圆管)→出入口浆砌→八字墙施工→涵背回填。

路面施工: 施工放样→混合料运输→混合料摊铺→碾压→压实度监测→整修→养护。沥青混合料采用商品沥青混合料,由卡车运输至施工现场,通过沥青摊铺机摊铺,再采用压路机进行碾压并通过压实度监测,最后进行整修和养护。

交通标志:最后根据设计方案进行道路的交通标志、交通标线、交通信号灯、照的布置。

试营运、投入使用: 道路投入试营运一段时间,通过竣工验收后,可正式投入使用。

从污染物的产生排放和环境保护角度看,与道路建设相关的污染主要包括:

- ①施工期施工机械产生的噪声、扬尘、施工废水、建筑垃圾,与施工期的长短及施工作业面的大小有关,其施工属暂时性影响,影响时间及影响空间范围较小;
- ②营运期机动车尾气排放和交通噪声,其影响程度主要与交通流量、车型分布和车辆行驶状况有关,且影响是永久性的。

2、施工周期

项目计划于 2023 年 6 月开工,前期只是对地面进行平整及规划,计划 2025 年 6 月完工,总工期 24 个月。

其他

无

三、生态环境现状、保护目标及评价标准

1、生态环境现状

项目所在地环境功能属性如下表 3-1 所列:

表 3-1 拟选址所在区域环境功能属性表

序号 功能区划分						
	功能区分类及执行标准					
1 水功能区划 项目附近地表水为龙记河,执行《地表水环境质量 (GB3838-2002)中II类水质标准	遣标准》					
2 大气功能区划 二类区 《环境空气质量标准》(GB3095-2012) 年修改单(生态环境部公告 2018 年第 级标准						
3 声环境功能区划 2 类区 《声环境质量标准》(GB3096-2008)	2 类标准					
5 水库库区 否						
6 永久基本农田 不占用						
7 是否风景保护区 否						
8 是否饮用水源保护区 否						

生态 环境 现状

(1) 沿线环境特征

拟建道路占地类型主要为丘陵和荒地等,路线全长 7121.077 米。路线布设受永久基本农田、深茂高铁、大榕村、茂石化输油管等因素控制。

②植被及物种多样性调查

项目所在区域处于人类活动较频繁地区,区域现状植被主要为小叶榕、大叶榕、垂叶榕、蒲葵、鱼尾葵等城市绿地系统植物以及观珠镇、沙琅镇种植的经济作物沉香、奇楠。未发现有珍稀保护物种。

③野生动物调查

本项目区域为城镇及周边区域,人类活动较频繁,评价区内野生动物的数量及种类不多,均为常见品种,陆生生物主要有:老鼠、蝙蝠、麻雀、燕子、蜈蚣、蜗牛、蜜蜂、蝴蝶、蜘蛛等;水生生物主要包括:鲤鱼、罗非鱼、鲢、鳅、虾、螺等。

根据调查,评价区域内未发现有受国家重点保护的野生动植物。

评价区域范围内无风景名胜区、自然保护区及文化遗产等特殊保护目标,生态环境不属于敏感区。

2、环境空气质量现状

项目所在域属二类环境空气质量功能区,执行《环境空气质量标准》(GB3095-2012)及 2018 年修改单中的二级标准。根据《环境影响评价技术导则大气环境》(HJ2.2-2018)的要求,本评价采用茂名市生态环境局发布的《茂名市环境质量报告书(2021年)》(茂名市 2021年生态环境质量年报简报-茂名市生态环境局网站(maoming. gov. cn))根据《建设项目环境影响报告表编制指南(污染影响类)》的要求,本评价采用茂名市生态环境局发布的《茂名市生态环境质量年报简报(2021年)》(http://sthjj.maoming.gov.cn/sjkf/hjjc/content/post_991409.html): 2021年,茂名市空气质量为优的天数有 225 天,良的天数 136 天,轻度污染天数 4 天,空气质量优良率 98.9%,具体评价浓度如下表。

1	₩ • • • • • • • • • • • • • • • • • • •									
	污染物	年评价指标	现状浓度	标准值	占标率	达标情况				
	PM_{10}	年评价浓度	41ug/m ³	70ug/m ³	58.57%	达标				
	PM _{2.5}	年评价浓度	21ug/m^3	35ug/m^3	60.00%	达标				
	SO_2	年评价浓度	11ug/m^3	60ug/m ³	18.33%	达标				
	NO_2	年评价浓度	14ug/m ³	40ug/m ³	35.00%	达标				
	CO	日均值	日均值 0.9mg/m³		22.50%	达标				
	O_3	8 小时平均值	平均值 125ug/m ³		78.13%	达标				

表 3-2 区域环境质量

根据《环境影响评价技术导则——大气环境》(HJ2.2-2018)"城市环境空气质量达标情况评价指标为 SO_2 、 NO_2 、 PM_{10} 、 $PM_{2.5}$ 、CO 及 O_3 ,六项污染物全部达标即为城市环境空气质量达标。项目所在评价区域为达标区域。六项污染物全部达标即为城市环境空气质量达标,即本项目所在评价区域属于达标区。

3、地表水质量现状

本项目选址途经广东省茂名市观珠镇和沙琅镇,项目距离最近水体为龙记河观珠镇大榕村段(起点为大角垌,终点为下背垌,长度 3.419146km)。根据《广东省地表水环境功能区划》(粤环函【2011】14号),该河段属《地表水环境质量标准》(GB3838-2002)II类水功能区域,水质标准按II类水质标准执行。茂名市电白区交通运输局委托广东利宇检测技术有限公司于 2022 年 12 月 17 日~19 日对龙记河现状监测。地表水监测点位示意图见图 3-1,地表水环境质量现状监测结果统计分析见表3-3(1)、表 3-3(2)、表 3-3(3)。

图 3-1 地表水监测点位示意图

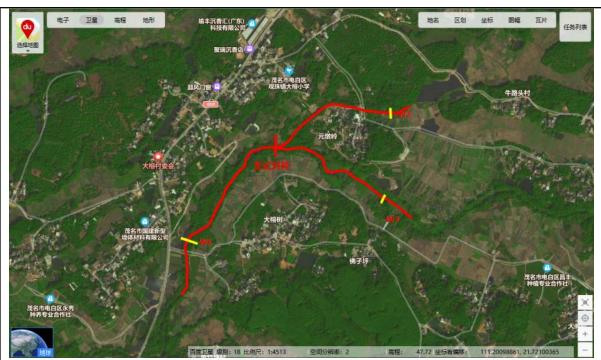


表 3-3(1) 水环境质量现状监测结果

检测点位 W1 龙记河上游 500m							
天气状况	无	 [雨	采样方式	瞬时采样			
检测项目		检测结果		标准限值	单位		
1四次17次日	2022-12-17	2021-12-18	2021-12-19	が正代世	十世		
水温	18.2	17.6	16.2	人为造成的环境水温 变化应限制在: 周平均最大温升≤1, 周平均最大温降≤2	°C		
pH 值	7.5	7.4	7.4	6~9	无量纲		
DO	6.72	6.98	6.62	≥6	mg/L		
CODcr	11	9	12	15	mg/L		
氨氮	0.802	0.824	0.835	0.5	mg/L		
总磷	0.11	0.10	0.11	0.1	mg/L		
高锰酸盐指数	1.82	1.78	1.94	4	mg/L		
BOD ₅	3.9	3.7	3.9	3	mg/L		
阴离子表面活 性剂	0.117	0.11	0.124	0.2	mg/L		
SS	17	15	16	_	mg/L		
粪大肠杆菌	70	70	70	2000	个/L		
石油类	0.07	0.03	0.04	0.05	mg/L		

表 3-3(2) 水环境质量现状监测结果

检测点位	W2 龙记河下游 500m						
天气状况	无	雨	采样方式	瞬时采样			
检测项目		检测结果		标准限值单位			
1位例/贝口	2022-12-17	2021-12-18	2021-12-19	7001年720日	+11/		
水温	17.8	17.9	16.5	人为造成的环境水温 变化应限制在: 周平均最大温升≤1, 周平均最大温降≤2	°C		

pH 值	7.4	7.5	7.6	6~9	无量纲
DO	6.89	6.78	6.72	≥6	mg/L
CODer	12	13	13	15	mg/L
氨氮	0.876	0.849	0.849	0.5	mg/L
总磷	0.10	0.12	0.12	0.1	mg/L
高锰酸盐指数	1.76	1.94	1.94	4	mg/L
BOD ₅	4.0	3.8	3.8	3	mg/L
阴离子表面活 性剂	0.131	0.119	0.119	0.2	mg/L
SS	19	20	20	_	mg/L
粪大肠杆菌	50	50	30	2000	个/L
石油类	0.04	0.03	0.03	0.05	mg/L

表 3-3 (3) 水环境质量现状监测结果

检测点位	W3 龙记河下游 500m						
天气状况	无	雨	采样方式	瞬时采样			
检测项目		检测结果		标准限值	单位		
位 例 切 日	2022-12-17	2021-12-18	2021-12-19	7/11年 [4]	干亚		
水温	18.3	17.4	16.4	人为造成的环境水温 变化应限制在: 周平均最大温升≤1, 周平均最大温降≤2	°C		
pH 值	7.2	7.2	7.3	6~9	无量纲		
DO	5.48	5.45	5.39	≥6	mg/L		
CODcr	12	11	13	15	mg/L		
氨氮	0.851	0.892	0.810	0.5	mg/L		
总磷	0.12	0.11	0.10	0.1	mg/L		
高锰酸盐指数	1.83	1.81	1.98	4	mg/L		
BOD ₅	4.2	4.0	4.0	3	mg/L		
阴离子表面活 性剂	0.102	0.117	0.126	0.2	mg/L		
SS	22	21	23	_	mg/L		
粪大肠杆菌	90	70	90	2000	个/L		
石油类	0.03	0.04	0.04	0.05	mg/L		

根据监测数据,监测点位 W1 的氨氮、总磷与五日生化需氧量; W2 溶解氧、氨氮、总磷、五日生化需氧量; W3 的氨氮、总磷与五日生化需氧量超过《地表水环境质量标准》(GB3838-2002) II 类标准的限值要求,河流受到一定的污染,导致水体污染的主要原因是河流沿线部分居民生活污水不经处理直接汇入龙记河、沿线工业企业在发展迅速的同时,配套环保处理设施未完善。

4、声环境现状

为了解项目沿线声环境质量现状,本评价委托广东利宇检测技术有限公司于2022年12月17~18日对项目沿线敏感点声环境质量现状进行了监测。本项目沿线主要穿越2类声环境功能区,并与部分现状4a类声环境功能区交叉或重叠,评价范围内涉及2、4类声功能区,相应执行《声环境质量标准》(GB3096-2008)2、4a类标准。

本项目属一级公路项目,根据《茂名市声环境功能区划》(茂环[2019]84号), 将道路交通干线边界线外一定距离内的区域划分为4a 类声环境功能区,具体规定如 下:

- ①相邻区域为1类声环境功能区, 距离为50m:
- ②相邻区域为2类声环境功能区,距离为35m;
- ③相邻区域为3类声环境功能区,距离为20m。

当临街建筑高于三层楼房(含三层)时,将临街建筑面向交通干线一侧至交通干线边界线的区域定为4类声环境功能区。

根据《关于公路、铁路(含轻轨)等建设项目环境影响评价中环境噪声有关问题的通知》(环发〔2003〕94号)和《声环境功能划分技术规范》(GB/T15190-2014),若道路两侧临路第一排建筑高于3层(含3层),则临路第一排建筑面向道路一侧执行《声环境质量标准》(GB3096-2008)中的4a 类标准,第一排建筑背向道路一侧及其它区域执行相邻区域标准。

另外,根据《关于公路、铁路(含轻轨)等建设项目环境影响评价中环境噪声有关问题的通知》(环发〔2003〕94号):"评价范围内的学校、医院(疗养院、敬老院)等特殊敏感建筑,其室外昼间按60分贝、夜间按50分贝执行"。声环境质量现状监测结果见表3-3、3-4。

	大 5-5 广 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2								
	 检测点位	 主要声源	检测		检测结果	艮 dB(A)		标准	结果
	Jac 0.31 222 127		时间	Leq	L10	L50	L90	限值	评价
	N1 散户 1 距离 道路最近住宅	环境噪声	昼间	67.3	67.8	63.4	58.7	70	达标
	面向道路一侧 1 层	环境噪声	夜间	52.3	59	54.1	49.6	55	达标
	N1 散户 1 距离 道路最近住宅	环境噪声	昼间	67.2	69.9	65.5	60.8	70	达标
2022、	面向道路一侧 3层	环境噪声	夜间	52.1	55.5	53.1	51	55	达标
12、17	N2 散户 2 距离道路最近	环境噪声	昼间	68.1	70	67.9	63.6	70	达标
	住宅面向道路 一侧 1层	环境噪声	夜间	53.3	60.3	58	53.1	55	达标
	N2 散户 2 距离道路最近	环境噪声	昼间	68.5	68.5	63.9	61	70	达标
	住宅面向道路 一侧 3 层	环境噪声	夜间	53.7	60.7	56.7	52.8	55	达标

表 3-3 声环境质量现状监测结果一览表

N3 散户 3 距离道路最近	环境噪声	昼间	67.4	71.3	68.3	63.5	70	达标
住宅面向道路 一侧 1层	环境噪声	夜间	52.2	56.5	53.8	51.7	55	达标
N3 散户 3 距离道路最近	环境噪声	昼间	67.6	71.8	67.6	63.4	70	达标
住宅面向道路	环境噪声	夜间	52.4	56.8	54.1	49.3	55	达标
N3 散户 3 距离道路最近	环境噪声	昼间	67.3	68.5	63.9	60.6	70	达标
住宅面向道路一侧 5 层	环境噪声	夜间	51.9	55.1	52.8	48	55	达标
N4 婆岭 距离道路最近	环境噪声	昼间	65.4	65.5	63.3	59.2	70	达标
住宅面向道路 一侧 1层	环境噪声	夜间	51.8	57.4	55.1	52	55	达标
N4 婆岭 距离道路最近	环境噪声	昼间	64.9	69.3	65.6	60.7	70	达标
住宅面向道路一侧 3 层	环境噪声	夜间	51.3	53.8	51.7	49.3	55	达标
N4 婆岭 距离道路最近	环境噪声	昼间	64.5	67.9	63.7	60.7	70	达标
住宅面向道路一侧 5 层	环境噪声	夜间	50.5	53.7	50.4	48.2	55	达标
N5 牛仔塘岭 1 距离道路最近	环境噪声	昼间	66.4	70	66.3	61.6	70	达标
住宅面向道路 一侧1层	环境噪声	夜间	50.6	55	52.4	48.7	55	达标
N5 牛仔塘岭 1 距离道路最近	环境噪声	昼间	66.1	70.2	65.6	62.5	70	达标
住宅面向道路 一侧3层	环境噪声	夜间	50.1	53.3	51.2	47	55	达标
N6 陈宅 距离道路最近	环境噪声	昼间	58.6	66.1	63.4	59.8	60	达标
住宅面向道路 一侧1层	环境噪声	夜间	47.4	51.3	48.1	43.7	50	达标
N6 陈宅 距离道路最近	环境噪声	昼间	59.1	65.1	60.4	56.5	60	达标
住宅面向道路一侧3层	环境噪声	夜间	47.1	51.6	47.2	44.4	50	达标
N6 陈宅 距离道路最近	环境噪声	昼间	58.8	64.8	62.2	57.7	60	达标
住宅面向道路 一侧 5 层	环境噪声	夜间	46.5	50.9	47.6	45.2	50	达标
N7 牛仔塘岭 2 距离道路最近	环境噪声	昼间	56.4	62.6	58.7	54.1	60	达标
住宅面向道路 一侧 1 层	环境噪声	夜间	46.2	49.5	46.1	42.1	50	达标

N7 牛仔塘岭 2 距离道路最近	环境噪声	昼间	55.9	56.1	53	50	60	达标
住宅面向道路一侧3层	环境噪声	夜间	46.3	51.9	48.9	44.9	50	达标
N8 散户 4 距离道路最近	环境噪声	昼间	58.6	59.1	55.6	52.4	60	达标
住宅面向道路	环境噪声	夜间	47.2	53.5	50.8	47.8	50	达标
N8 散户 4 距离道路最近	环境噪声	昼间	58.3	59.3	54.9	50.5	60	达标
住宅面向道路 一侧 3 层	环境噪声	夜间	47.1	52.2	49.2	46.3	50	达标
N9 黄岭坳 距离道路最近	环境噪声	昼间	66.8	72. 3	68.5	64. 5	70	达标
住宅面向道路 一侧 1 层	环境噪声	夜间	53. 2	59. 6	56. 9	54.8	55	达标
N9 黄岭坳 距离道路最近	环境噪声	昼间	67. 2	73. 3	70	65	70	达标
住宅面向道路 一侧 3 层	环境噪声	夜间	52.8	59. 4	56. 7	53. 1	55	达标
N10 曙光农场	环境噪声	昼间	68. 4	75	70.4	67.9	70	达标
三分场距离道 路最近住宅面 向道路一侧 1 层	环境噪声	夜间	53	57. 6	54. 9	52. 1	55	达标
N10 曙光农场 三分场村庄最	环境噪声	昼间	67. 9	73. 4	69. 4	65.8	70	达标
高住宅面向道 路一侧1层	环境噪声	夜间	52. 9	58. 4	54.6	51.4	55	达标
N10 曙光农场 三分场村庄最	环境噪声	昼间	67. 4	69.8	67. 2	64. 5	70	达标
高住宅面向道 路一侧3层	环境噪声	夜间	52. 1	57.6	55. 1	52. 2	55	达标
N11 大榕新村 距离道路最近	环境噪声	昼间	57. 6	62.6	58. 5	54.8	60	达标
住宅面向道路 一侧 1 层	环境噪声	夜间	46.8	52.6	48.3	44. 4	50	达标
N11 大榕新村 距离道路最近	环境噪声	昼间	57. 3	62. 3	57. 9	55. 2	60	达标
住宅面向道路 一侧3层	环境噪声	夜间	46. 5	52.8	48.6	44. 9	50	达标
N11 大榕新村 距离道路最近	环境噪声	昼间	57. 1	58. 3	55. 7	53	60	达标
住宅面向道路 一侧 5 层	环境噪声	夜间	46. 1	51.6	48. 9	44. 3	50	达标

N12 黄竹塘村 距离道路最近	环境噪声	昼间	57. 7	62. 9	58. 3	54. 1	60	达标
住宅面向道路 一侧 1 层	环境噪声	夜间	46. 4	51.8	48. 3	43. 7	50	达标
N12 黄竹塘村 距离道路最近	环境噪声	昼间	57. 5	63. 2	58. 3	55. 5	60	达标
住宅面向道路 一侧 3 层	环境噪声	夜间	46. 1	51.9	47. 3	42. 7	50	达标
N12 黄竹塘村 距离道路最近	环境噪声	昼间	56. 6	62. 4	60	55. 7	60	达标
住宅面向道路 一侧 5 层	环境噪声	夜间	45. 7	50. 1	45. 7	42. 7	50	达标
N13 雪屋 距离道路最近	环境噪声	昼间	56. 2	62. 7	59.8	56.8	60	达标
住宅面向道路 一侧 1 层	环境噪声	夜间	45	50. 5	45.6	43. 1	50	达标
N13 雪屋 距离道路最近	环境噪声	昼间	55.8	61.8	57.6	55. 5	60	达标
住宅面向道路 一侧3层	环境噪声	夜间	44. 8	50. 3	47. 9	45. 3	50	达标
N14 大榕 村庄最高住宅	环境噪声	昼间	56. 8	60. 4	58. 4	55. 9	60	达标
面向道路一侧 1 层	环境噪声	夜间	45. 9	50. 4	46. 4	42. 1	50	达标
N14 大榕 村庄最高住宅	环境噪声	昼间	56. 5	60	55. 6	51. 7	60	达标
面向道路一侧 3层	环境噪声	夜间	45.8	49.8	45. 1	41. 7	50	达标
N14 大榕 距离道路最近	环境噪声	昼间	58. 1	63. 2	60. 5	57. 6	60	达标
住宅面向道路 一侧1层	环境噪声	夜间	46. 4	51. 7	48. 3	44. 2	50	达标
N14 大榕 距离道路最近	环境噪声	昼间	57. 9	60. 4	55. 9	51.7	60	达标
住宅面向道路 一侧3层	环境噪声	夜间	46. 5	51. 7	46.8	43	50	达标
N14 大榕 二排住宅面向	环境噪声	昼间	55. 9	59. 6	54. 9	50	60	达标
道路一侧1层	环境噪声	夜间	47. 1	53. 4	50. 7	47.8	50	达标
N14 大榕 二排住宅面向	环境噪声	昼间	55. 7	58. 1	54	51.5	60	达标
道路一侧3层	环境噪声	夜间	46.8	51.4	47. 7	44.8	50	达标

	N14 大榕 二排住宅面向	环境噪声	昼间	55. 2	59	54. 5	50.6	60	达标
	□ 押任七面问 道路一侧 5 层	环境噪声	夜间	46. 6	51. 4	48.8	45. 5	50	达标
	N15 元墩岭 距离道路最近	环境噪声	昼间	56. 7	62. 7	59	56. 2	60	达标
	住宅面向道路 一侧 1 层	环境噪声	夜间	47. 6	51. 7	49. 2	44. 9	50	达标
	N15 元墩岭 距离道路最近	环境噪声	昼间	56. 7	63. 5	58. 7	54. 7	60	达标
	住宅面向道路 一侧 3 层	环境噪声	夜间	47. 4	52. 6	47.8	42.8	50	达标
	N15 元墩岭 村庄最高住宅	环境噪声	昼间	56. 4	60. 5	55. 9	53. 4	60	达标
	面向道路一侧 1层	环境噪声	夜间	47. 4	52. 3	50. 1	46.8	50	达标
	N15 元墩岭 村庄最高住宅	环境噪声	昼间	56. 1	58. 3	53. 7	49. 1	60	达标
	面向道路一侧 3层	环境噪声	夜间	47. 3	54. 5	51.1	48. 1	50	达标
	N16 大榕村 1 距离道路最近	环境噪声	昼间	57. 2	62. 2	58. 4	54	60	达标
	住宅面向道路 一侧 1 层	环境噪声	夜间	47	50.8	46. 2	42.6	50	达标
	N17 大榕小学 学校面向道路	环境噪声	昼间	58. 4	61. 7	58. 4	54.8	60	达标
	一侧1层	环境噪声	夜间	46. 5	50.6	47. 7	43. 4	50	达标
	N17 大榕小学 学校面向道路	环境噪声	昼间	58	61.3	58.8	54.6	60	达标
	一侧3层	环境噪声	夜间	45. 7	50.9	46. 3	42. 7	50	达标
	N18 大榕村 2 村庄最高住宅	环境噪声	昼间	56. 4	60	57.8	53. 3	60	达标
	面向道路一侧 1层	环境噪声	夜间	45. 4	51. 1	48.8	46. 7	50	达标
	N18 大榕村 2 村庄最高住宅	环境噪声	昼间	56. 3	59. 1	55. 4	51.9	60	达标
	面向道路一侧 3层	环境噪声	夜间	45. 2	52. 5	48. 5	45.6	50	达标
	N19 散户 5 住宅面向道路	环境噪声	昼间	69. 1	74	69. 9	65. 9	70	达标

一侧1层	环境噪声	夜间	45. 2	51.1	46. 9	42.9	55	达标
N19 散户 5 住宅面向道路	环境噪声	昼间	69. 3	71.9	67.2	64.9	70	达标
一侧3层	环境噪声	夜间	44. 9	50. 9	46. 5	42.6	55	达标
N20 散户 6	环境噪声	昼间	68. 6	71. 7	68. 4	64. 7	70	达标
住宅面向道路 一侧1层	环境噪声	夜间	44. 4	49.5	47. 4	42.8	55	达标
N20 散户 6 住宅面向道路	环境噪声	昼间	69	74. 5	70. 2	66. 1	70	达标
一侧3层	环境噪声	夜间	44. 3	48.6	43.9	39.5	55	达标
N20 散户 6 住宅面向道路	环境噪声	昼间	68. 4	71	68. 5	65.6	70	达标
任七田円坦路 一侧 5 层	环境噪声	夜间	44. 1	49.5	46.8	42.4	55	达标
N21 炸岭 住宅面向道路	环境噪声	昼间	68. 3	73. 7	68. 7	64.9	70	达标
一侧1层	环境噪声	夜间	45. 6	51.6	49. 1	46	55	达标
N21 炸岭 住宅面向道路	环境噪声	昼间	68. 2	70	66. 3	61.4	70	达标
一侧3层	环境噪声	夜间	45. 5	50. 7	46. 1	42	55	达标
N22 散户 7 住宅面向道路	环境噪声	昼间	68. 6	74. 5	71.6	67. 1	70	达标
一侧1层	环境噪声	夜间	46. 4	52. 7	49.9	46. 2	55	达标
N22 散户 7 住宅面向道路	环境噪声	昼间	68. 2	73.6	71.2	66. 7	70	达标
一侧3层	环境噪声	夜间	46. 3	51.7	48.6	45	55	达标
N23 风炉岭 住宅面向道路	环境噪声	昼间	68	73. 3	71. 1	67.2	70	达标
一侧1层	环境噪声	夜间	46. 8	53. 1	50.8	47.2	55	达标
N23 风炉岭 住宅面向道路	环境噪声	昼间	67. 9	70. 9	68.8	64.6	70	达标
一侧3层	环境噪声	夜间	46.6	53	48.3	46	55	达标

N24 散户 8 住宅面向道路										
一侧 1 层 环境噪声 夜间 47.3 53.1 50.8 47.8 55 达标 N24 形户 8 住宅面向道路 环境噪声 夜间 47.3 53.7 49.2 45.2 55 达标 N25 配户 9 住宅面向道路 一侧 1 层 环境噪声 夜间 47.3 52.9 48.5 44.7 50 达标 N25 散户 9 住宅面向道路 一侧 1 层 平域噪声 夜间 47.4 50.4 46.3 42.5 50 达标 N26 水鸡岭 距离道路最近 住宅面向道路 一侧 1 层 平域噪声 夜间 47.1 51.3 49.2 44.7 50 达标 N26 水鸡岭 距离道路最近 住宅面向道路 一侧 1 层 平域噪声 夜间 47.1 51.3 49.2 44.7 50 达标 N26 水鸡岭 环境噪声 夜间 47.1 51.3 49.2 44.7 50 达标 N26 水鸡岭 村庄最高住宅面向道路 一侧 3 层 平域噪声 夜间 46.4 51.7 49 45.4 50 达标 环境噪声 夜间 46.4 51.2 46.6 44 50 达标 N26 水鸡岭 环境噪声 昼间 56.5 61.6 56.8 51.9 60 达标 下境噪声 夜间 46.4 51.2 46.6 44 50 达标 N26 水鸡岭 环境噪声 昼间 56.1 59.5 56.3 53.3 60 达标 下境端声 夜间 46.1 52.6 47.7 43.2 50 达标 N26 水鸡岭 环境噪声 昼间 56.1 59.5 56.3 53.3 60 达标 N26 水鸡岭 环境噪声 昼间 56.1 59.5 56.3 53.3 60 达标 N26 水鸡岭 环境噪声 昼间 56.1 59.5 56.3 53.3 60 达标 N26 水鸡岭 下境噪声 昼间 56.1 59.5 56.3 53.3 60 达标 N26 水鸡岭 下境噪声 昼间 57.9 62.8 59.4 56.4 60 达标 下境噪声 夜间 45.2 48.9 44.1 40.5 50 达标 下境噪声 夜间 57.9 62.8 59.4 56.4 60 达标 下境噪声 夜间 57.9 62.8 59.4 56.4 60 达标 下境噪声 夜间 45.1 50.6 46 42.8 50 达标 下境噪声 夜间 57.2 61.8 56.8 52.9 60 达标 50 50 50 50 50 50 50 5			环境噪声	昼间	67. 4	70. 7	67. 2	64. 2	70	达标
住宅面向道路			环境噪声	夜间	47. 3	53. 1	50.8	47.8	55	达标
一侧 3 层 环境噪声 夜间 47 53.7 49.2 45.2 55 达标 N25 散户 9 住宅面向道路 一侧 1 层 环境噪声 夜间 47.3 52.9 48.5 44.7 50 达标 N26 水鸡岭 距离道路最近 住宅面向道路 一侧 1 层 环境噪声 夜间 47.4 50.4 46.3 42.5 50 达标 N26 水鸡岭 距离道路最近 住宅面向道路 一侧 1 层 环境噪声 夜间 47.1 51.3 49.2 44.7 50 达标 N26 水鸡岭 距离道路最近 住宅面向道路 一侧 3 层 环境噪声 夜间 47.1 51.3 49.2 44.7 50 达标 N26 水鸡岭 下境噪声 夜间 47.1 51.3 49.2 44.7 50 达标 N26 水鸡岭 下境噪声 夜间 47.1 51.7 49 45.4 50 达标 N26 水鸡岭 下境噪声 夜间 47 51.7 49 45.4 50 达标 N26 水鸡岭 村庄最高住宅 面向道路 例 1 层 环境噪声 夜间 46.4 51.2 46.6 44 50 达标 N26 水鸡岭 村庄最高住宅 面向道路 例 3 层 环境噪声 夜间 46.1 52.6 47.7 43.2 50 达标 N27 禾禄南目 环境噪声 夜间 45.2 48.9 44.1 40.5 50 达标 N27 禾禄南目 环境噪声 夜间 45.2 48.9 44.1 40.5 50 达标 环境噪声 夜间 45.2 48.9 44.1 40.5 50 达标 环境噪声 夜间 45.1 50.6 46 42.8 50 达标 下线噪声 夜间 45.1 50.6 46 42.8 50 达标 下线噪声 夜间 45.1 50.6 46 42.8 50 达标 下线噪声 夜间 45.1 50.6 46 42.8 50 达标 15.2 15.			环境噪声	昼间	67. 2	70. 9	65. 9	63. 6	70	达标
住宅面向道路 一側1层 环境噪声 夜间 47.3 52.9 48.5 44.7 50 达标 N25 散户9 住宅面向道路 环境噪声 夜间 47.4 50.4 46.3 42.5 50 达标 N26 水鸡岭 距离道路最近 环境噪声 夜间 47.1 51.3 49.2 44.7 50 达标 N26 水鸡岭 距离道路最近 环境噪声 夜间 47.1 51.3 49.2 44.7 50 达标 N26 水鸡岭 距离道路最近 环境噪声 夜间 47.1 51.3 49.2 44.7 50 达标 N26 水鸡岭 下境噪声 夜间 47 51.7 49 45.4 50 达标 N26 水鸡岭 村庄最高住中側 1层 环境噪声 夜间 46.4 51.2 46.6 44 50 达标 N26 水鸡岭 大坡噪声 夜间 46.4 51.2 46.6 44 50 达标 N26 水鸡岭 环境噪声 夜间 46.1 52.6 47.7 43.2 50 达标 N27 禾禄岗1 野鸡道路最近 环境噪声 夜间 45.1 52.6 47.7 43.2 50 达标 N27 禾禄岗1 环境噪声 夜间 45.2 48.9 44.1 40.5 50 达标 N27 禾禄岗1 环境噪声 昼间 57.9 62.8 59.4 56.4 60 达标 N27 禾禄岗1 环境噪声 昼间 57.9 62.8 59.4 56.4 60 达标 N27 禾禄岗1 环境噪声 昼间 57.9 62.8 59.4 56.4 60 达标 N27 禾禄岗1 环境噪声 昼间 57.9 62.8 59.4 56.4 60 达标 N27 禾禄岗1 环境噪声 昼间 57.9 62.8 59.4 56.4 60 达标 N27 禾禄岗1 环境噪声 昼间 57.9 62.8 59.4 56.4 60 达标 N27 禾禄岗1 环境噪声 昼间 57.2 61.8 56.8 52.9 60 达标 N27 禾禄岗1 环境噪声 昼间 57.2 61.8 56.8 52.9 60 达标			环境噪声	夜间	47	53. 7	49. 2	45. 2	55	达标
一侧1			环境噪声	昼间	57. 5	61	59. 2	54. 5	60	达标
住宅面向道路			环境噪声	夜间	47. 3	52. 9	48. 5	44. 7	50	达标
一侧 3 层 环境噪声 夜间 47.4 50.4 46.3 42.5 50 达标 N26 水鸡岭 距离道路最近 住宅面向道路 小境噪声 夜间 47.1 51.3 49.2 44.7 50 达标 N26 水鸡岭 距离道路最近 住宅面向道路 小塚噪声 夜间 47.1 51.3 49.2 44.7 50 达标 N26 水鸡岭 距离道路最近 住宅面向道路 小侧 3 层			环境噪声	昼间	57. 3	60	55. 1	52. 2	60	达标
田离道路最近 住宅面向道路			环境噪声	夜间	47. 4	50. 4	46. 3	42. 5	50	达标
N26 水鸡岭 环境噪声 夜间 47.1 51.3 49.2 44.7 50 达标 N26 水鸡岭 西南道路 环境噪声 夜间 47 51.7 49 45.4 50 达标 N26 水鸡岭 村庄最高住宅 面向道路 环境噪声 夜间 46.4 51.2 46.6 44 50 达标 N26 水鸡岭 村庄最高住宅 面向道路 环境噪声 夜间 46.4 51.2 46.6 44 50 达标 N26 水鸡岭 村庄最高住宅 西南道路 环境噪声 夜间 46.1 52.6 47.7 43.2 50 达标 N27 禾禄岗		距离道路最近	环境噪声	昼间	57	60. 4	56. 3	52. 5	60	达标
距离道路最近 住宅面向道路 一側 3 层			环境噪声	夜间	47. 1	51.3	49. 2	44. 7	50	达标
N26 水鸡岭村庄最高住宅面向道路一侧 1层 环境噪声 夜间 47 51.7 49 45.4 50 达标 50 达标 50 56.8 51.9 60 达标 50 56.1 50 56.8 51.9 60 达标 50 56.1 50 达标 50 56.1 50 56.8 51.9 60 达标 50 56.1 50 56.1 50 达标 50 56.1 50 5			环境噪声	昼间	56. 7	60.7	57. 1	52. 3	60	达标
村庄最高住宅面向道路一侧 1 层 环境噪声 夜间 46.4 51.2 46.6 44 50 达标 N26 水鸡岭村庄最高住宅面向道路一侧 3 层 环境噪声 夜间 46.1 52.6 47.7 43.2 50 达标 N27 禾禄岗 1 距离道路最近住宅面向道路 一侧 1 层 环境噪声 夜间 45.2 48.9 44.1 40.5 50 达标 N27 禾禄岗 1 村庄最高住宅面向道路 一侧 1 层 环境噪声 夜间 45.2 48.9 44.1 40.5 50 达标 N27 禾禄岗 1 村庄最高住宅面向道路 环境噪声 夜间 45.2 48.9 44.1 40.5 50 达标 N27 禾禄岗 1 村庄最高住宅面向道路 不境噪声 昼间 57.9 62.8 59.4 56.4 60 达标 环境噪声 夜间 45.1 50.6 46 42.8 50 达标 N27 禾禄岗 1 村庄最高住宅面向道路 不境噪声 夜间 45.1 50.6 46 42.8 50 达标 N27 禾禄岗 1 村庄最高住宅面向道路 不境噪声 夜间 57.2 61.8 56.8 52.9 60 达标			环境噪声	夜间	47	51. 7	49	45. 4	50	达标
1 层 环境噪声 夜间 46. 4 51. 2 46. 6 44 50 达标 N26 水鸡岭 村庄最高住宅 面向道路一侧 3 层 环境噪声 夜间 46. 1 52. 6 47. 7 43. 2 50 达标 N27 禾禄岗 1 西离道路最近住宅面向道路 一侧 1 层 环境噪声 夜间 45. 2 48. 9 44. 1 40. 5 50 达标 N27 禾禄岗 1 村庄最高住宅面向道路 环境噪声 昼间 57. 9 62. 8 59. 4 56. 4 60 达标 N27 禾禄岗 1 村庄最高住宅面向道路 环境噪声 夜间 45. 1 50. 6 46 42. 8 50 达标 N27 禾禄岗 1 村庄最高住宅面向道路 环境噪声 夜间 45. 1 50. 6 46 42. 8 50 达标 N27 禾禄岗 1 村庄最高住宅面向道路一侧 环境噪声 昼间 57. 2 61. 8 56. 8 52. 9 60 达标 下境噪声 西向道路一侧 下境噪声 昼间 57. 2 61. 8 56. 8 52. 9 60 达标			环境噪声	昼间	56. 5	61.6	56.8	51.9	60	达标
村庄最高住宅 面向道路一侧 3 层 环境噪声 夜间 46.1 52.6 47.7 43.2 50 达标 N27 禾禄岗 1 距离道路最近 住宅面向道路 一侧 1 层 环境噪声 昼间 58.1 63.7 60 56.1 60 达标 N27 禾禄岗 1 村庄最高住宅 面向道路一侧 1 层 环境噪声 昼间 45.2 48.9 44.1 40.5 50 达标 N27 禾禄岗 1 村庄最高住宅 面向道路一侧 1 层 环境噪声 昼间 57.9 62.8 59.4 56.4 60 达标 N27 禾禄岗 1 村庄最高住宅 面向道路一侧 环境噪声 昼间 57.2 61.8 56.8 52.9 60 达标			环境噪声	夜间	46. 4	51. 2	46.6	44	50	达标
3			环境噪声	昼间	56. 1	59. 5	56. 3	53. 3	60	达标
距离道路最近住宅面向道路一侧 1层 环境噪声 夜间 45.2 48.9 44.1 40.5 50 达标 N27 禾禄岗 1村庄最高住宅面向道路一侧 1层 环境噪声 夜间 45.1 50.6 46 42.8 50 达标 N27 禾禄岗 1村层最高住宅面向道路一侧 1层 环境噪声 夜间 45.1 50.6 46 42.8 50 达标 N27 禾禄岗 1村庄最高住宅面向道路一侧 1层 环境噪声 昼间 57.2 61.8 56.8 52.9 60 达标			环境噪声	夜间	46. 1	52. 6	47. 7	43. 2	50	达标
一侧 1 层 环境噪声 夜间 45. 2 48. 9 44. 1 40. 5 50 达标 N27 禾禄岗 1 村庄最高住宅面向道路一侧 1 层 环境噪声 昼间 57. 9 62. 8 59. 4 56. 4 60 达标 N27 禾禄岗 1 村庄最高住宅面向道路一侧 环境噪声 昼间 57. 2 61. 8 56. 8 52. 9 60 达标			环境噪声	昼间	58. 1	63. 7	60	56. 1	60	达标
村庄最高住宅 面向道路一侧 1 层 环境噪声 昼间 57.9 62.8 59.4 56.4 60 达标 N27 禾禄岗1 村庄最高住宅 面向道路一侧 环境噪声 昼间 57.2 61.8 56.8 52.9 60 达标			环境噪声	夜间	45. 2	48. 9	44. 1	40.5	50	达标
1 层 环境噪声 夜间 45.1 50.6 46 42.8 50 达标 N27 禾禄岗 1 村庄最高住宅 面向道路一侧 环境噪声 昼间 57.2 61.8 56.8 52.9 60 达标		村庄最高住宅	环境噪声	昼间	57. 9	62.8	59. 4	56. 4	60	达标
村庄最高住宅			环境噪声	夜间	45. 1	50.6	46	42.8	50	达标
		村庄最高住宅	环境噪声	昼间	57. 2	61.8	56. 8	52. 9	60	达标
			环境噪声	夜间	44. 7	50.3	45. 7	42.8	50	达标

	N27 禾禄岗 1 村庄最高住宅	环境噪声	昼间	56. 5	61	56.8	53. 5	60	达标
	面向道路一侧 5 层	环境噪声	夜间	44. 4	49	46. 1	42. 2	50	达标
	N28 禾禄岗 2 距离道路最近	环境噪声	昼间	57. 6	62. 2	58	54. 9	60	达标
	住宅面向道路 一侧 1 层	环境噪声	夜间	44. 6	51.3	48.8	45. 3	50	达标
	N28 禾禄岗 2 距离道路最近	环境噪声	昼间	57. 7	63. 9	61.7	58. 3	60	达标
	住宅面向道路 一侧 3 层	环境噪声	夜间	44. 3	50	46. 1	42.8	50	达标
	N28 禾禄岗 2 距离道路最近	环境噪声	昼间	57. 4	60. 2	55. 7	51.8	60	达标
	住宅面向道路 一侧 5 层	环境噪声	夜间	43. 9	48. 4	43. 7	41.5	50	达标
	N29 垂直衰减 断面 1#空旷地	环境噪声	昼间	66. 4	70. 4	66. 6	62	/	/
	段(道路中心 线 20m 处空地 监测)	环境噪声	夜间	52. 7	59. 2	57	52	/	/
	N29 垂直衰减 断面 1#空旷地	环境噪声	昼间	63. 8	66. 3	63	58.8	/	/
	段(道路中心 线 40m 处空地 监测)	环境噪声	夜间	50.8	57. 5	53. 2	50. 7	/	/
	N29 垂直衰减 断面 1#空旷地	环境噪声	昼间	61. 2	64. 9	62. 4	58. 2	/	/
	段(道路中心 线 60m 处空地 监测)	环境噪声	夜间	47. 4	52. 7	48. 7	45. 7	/	/
	N29 垂直衰减 断面 1#空旷地	环境噪声	昼间	56. 7	59. 1	56. 1	52.8	/	/
	段(道路中心 线 80m 处空地 监测)	环境噪声	夜间	45. 4	51.3	46. 7	42. 7	/	/
	N29 垂直衰减 断面 1#空旷地	环境噪声	昼间	55. 5	58. 1	54. 2	50. 3	/	/
	段(道路中心 线120m处空地 监测)	环境噪声	夜间	43. 2	49.9	45. 9	41.8	/	/
		表 3-4 〕	声环境质	量现状监	测一览	長			
 检测 日期	检测点位	主要声源	检测 时间	Leq	检测结 L10	R dB (A)	L90	标准	结果 评价
	口期			ьеч	LIU	FOO	L30	限	

				1				/士	ı
	N1 散户 1 距离							值	
	道路最近住宅	环境噪声	昼间	67.1	73. 2	74. 1	66. 7	70	达标
	面向道路一侧 1层	环境噪声	夜间	52. 1	54. 6	55. 3	49. 5	55	达标
	N1 散户 1 距离 道路最近住宅	环境噪声	昼间	68	69. 2	69. 7	60.8	70	达标
	面向道路一侧 3 层	环境噪声	夜间	53. 3	57. 9	55. 3	53. 2	55	达标
	N2 散户 2 距离 道路最近住宅	环境噪声	昼间	65. 8	70. 1	70.7	63. 6	70	达标
	面向道路一侧 1 层	环境噪声	夜间	53. 5	53. 4	57. 1	47. 5	55	达标
	N2 散户 2 距离 道路最近住宅	环境噪声	昼间	66. 1	68.6	68.6	59. 5	70	达标
	面向道路一侧 3层	环境噪声	夜间	54. 2	54. 2	54.3	47. 9	55	达标
	N3 散户 3 距离 道路最近住宅	环境噪声	昼间	67.8	72. 1	72.8	65. 9	70	达标
	面向道路一侧 1 层	环境噪声	夜间	52. 1	55. 7	55	47. 6	55	达标
	N3 散户 3 距离 道路最近住宅	环境噪声	昼间	67	66. 9	67. 6	57. 9	70	达标
2022、	面向道路一侧 3 层	环境噪声	夜间	52.4	54. 5	55.8	48. 2	55	达标
12、18	N3 散户 3 距离	环境噪声	昼间	68.3	70.7	71.1	63. 9	70	达标
	道路最近住宅 面向道路一侧 5层	环境噪声	夜间	53. 3	56. 3	54.6	49	55	达标
	N4 婆岭 距离道路最近	环境噪声	昼间	65.6	70. 9	71.8	63. 4	70	达标
	住宅面向道路 一侧 1 层	环境噪声	夜间	51.5	51.3	56.3	44. 4	55	达标
	N4 婆岭 距离道路最近	环境噪声	昼间	66. 2	71.8	71.9	65. 5	70	达标
	住宅面向道路 一侧 3 层	环境噪声	夜间	52. 3	52. 5	52.3	44. 9	55	达标
	N4 婆岭 距离道路最近	环境噪声	昼间	67. 7	70	70. 1	60.6	70	达标
	住宅面向道路 一侧 5 层	环境噪声	夜间	53. 3	54. 5	52. 5	47. 1	55	达标
	N5 牛仔塘岭 1 距离道路最近	环境噪声	昼间	66. 5	66. 9	66.2	58. 3	70	达标
	住宅面向道路 一侧1层	环境噪声	夜间	52.4	53. 4	53. 3	43. 7	55	达标
	N5 牛仔塘岭 1 距离道路最近	环境噪声	昼间	67. 1	68.8	68	60. 1	70	达标
	住宅面向道路 一侧3层	环境噪声	夜间	52.8	59.8	55. 9	48	55	达标
			42						

下の降宅 野憩噪声 昼间 56.3 58.8 58 51.6 60 达标	 -				_				
	距离道路最近	环境噪声	昼间	56. 3	58.8	58	51.6	60	达标
推高道路最近 外現噪声 控刊 57.4 51.4 50.5 52.4 50 达标 25.6 53.3 46.9 50 达标 25.6 56.8 53.3 46.9 50 达标 25.6 25.8 25.		环境噪声	夜间	46. 5	53. 1	52. 5	44	50	达标
一侧3 层		环境噪声	昼间	57. 4	61. 4	60. 5	52. 4	60	达标
世高道路最近 任宅面向道路 一侧 5 元 8		环境噪声	夜间	47. 2	53.6	53.3	46. 9	50	达标
一侧 5 层 环境噪声 夜间 46.9 54.1 54 45.6 50 达标 NT 午仔塘岭 2 距离道路最近 环境噪声 夜间 45.7 46 45 39.4 50 达标 一侧 1 层 环境噪声 夜间 46.2 48.8 48.6 42 50 达标 上京 上京 上京 上京 上京 上京 上京 上	距离道路最近	环境噪声	昼间	56.8	61.2	60.3	54. 7	60	达标
野高道路最近 住宅面向道路 一侧 1 层 N7 午仔班岭 2 野高道路最近 住宅面向道路 一侧 3 层 N8 散户 4 野高道路最近 住宅面向道路 一側 1 层 N8 散户 4 野高道路最近 住宅面向道路 一側 1 层 N9 黄岭坳 野高道路最近 住宅面向道路 一側 1 层 N9 黄岭坳 野高道路最近 中側 1 层 N9 黄岭坳 野高道路最近 住宅面向道路 一側 3 层 N10 曙光衣场 三分场距离道 路最近住宅面 向道路一侧 1 层 N10 曙光衣场 三分场户高道 路最近住宅面 向道路一侧 52.1 53 58.2 46.1 55 达标 N10 曙光衣场 三分场户市最 高伯住宅面向道路 环境噪声 夜间 52.1 53 58.2 46.1 55 达标 牙境噪声 夜间 52.1 53 58.2 46.1 55 达标 另外形存压最 高伯生面向道 路一侧 1 层 N10 曙光衣场 三分场村庄最 高伯生面向道 路一侧 1 层 N10 曙光衣场 三分场村庄最 高伯生面向道 路一侧 1 层 环境噪声 夜间 52.8 54.3 53.1 45.4 55 达标		环境噪声	夜间	46. 9	54. 1	54	45. 6	50	达标
一侧 1 层 外境噪声 夜间 45.7 46 45 39.4 50 达标 下华 下埠噪声 昼间 57.1 58 57.3 50.5 60 达标 上午 上午 上午 上午 上午 上午 上午 上	距离道路最近	环境噪声	昼间	56. 4	59. 6	58. 7	52. 3	60	达标
距离道路最近 住宅面向道路		环境噪声	夜间	45. 7	46	45	39. 4	50	达标
一侧 3 层	距离道路最近	环境噪声	昼间	57. 1	58	57.3	50. 5	60	达标
下境噪声 毎回 56.7 59.4 60 52.4 60 54.6 60 54.6 60 54.6 60 54.6 60 54.6 60 54.6 60 54.6 60 54.6 60 54.6 60 54.6 60 54.6 60 54.6 60 54.6 50 54.6 60 54.6 60 54.6 50 54.6 60 54.6 54.6 54.6 54.6 54.6 54.6 54.6 54.6		环境噪声	夜间	46. 2	48.8	48.6	42	50	达标
一侧 1 层 环境噪声 夜间 46 46.2 48.8 40.1 50 达标 N8 散户 4 距离道路最近 住宅面向道路 环境噪声 夜间 47.2 52.9 47 44 50 达标 M9 黄岭坳 距离道路最近 在宅面向道路 一侧 1 层 平境噪声 夜间 51.6 58.9 53.5 42.7 55 达标 N9 黄岭坳 距离道路最近 年宅面向道路 一侧 1 层 平境噪声 夜间 51.6 58.9 53.5 42.7 55 达标 N9 黄岭坳 距离道路最近 年宅面向道路 平境噪声 夜间 53.1 57.5 59.4 49.2 55 达标 N10 曙光农场 三分场距离道路 环境噪声 夜间 52.1 53 58.2 46.1 55 达标 N10 曙光农场 三分场村庄最 高住宅面向道路 环境噪声 夜间 52.8 54.3 53.1 45.4 55 达标 N10 曙光农场 三分场村庄最 高住宅面向道路 环境噪声 昼间 67.3 68.2 68.7 63.4 70 达标 下境噪声 夜间 52.8 54.3 53.1 45.4 55 达标 下境噪声 夜间 52.8 54.3 53.1 45.4 55 达标 下境噪声 昼间 67.3 68.2 68.7 63.4 70 达标 56.5 大标 56.7 56.1 55 达标		环境噪声	昼间	56. 7	59. 4	60	52. 4	60	达标
距离道路最近 住宅面向道路 一侧 3 层 N9 黄岭坳 距离道路最近 住宅面向道路 一侧 1 层 N9 黄岭坳 距离道路最近 住宅面向道路 一側 1 层 N9 黄岭坳 距离道路最近 住宅面向道路 一側 3 层 N10 曙光农场 三分场担离道 路最近住宅面向道路 一側 1 层 N10 曙光农场 三分场村庄最 高住宅面向道路 不境噪声 を间 52.1 53 58.2 46.1 55 达标 N10 曙光农场 三分场村庄最 高住宅面向道路 不境噪声 を间 52.1 53 58.2 46.1 55 达标		环境噪声	夜间	46	46. 2	48.8	40. 1	50	达标
距离道路最近 住宅面向道路 一侧 3 层 N9 黄岭坳 距离道路最近 住宅面向道路 一侧 1 层 N9 黄岭坳 距离道路最近 住宅面向道路 一侧 1 层 N9 黄岭坳 距离道路最近 住宅面向道路 一侧 3 层 N10 曙光农场 三分场柜离道 路最近住宅面向道路 所有健宅面向道路 一侧 1 层 N10 曙光农场 三分场柜店最高住宅面向道路 不境噪声 夜间 53.1 57.5 59.4 49.2 55 达标 不均噪声 夜间 53.1 57.5 59.4 49.2 55 达标 N10 曙光农场 三分场村庄最高住宅面向道路 环境噪声 夜间 52.1 53 58.2 46.1 55 达标 区分场村庄最高住宅面向道路 环境噪声 夜间 52.1 53 58.2 46.1 55 达标	N8 散户 4	环境噪声	昼间	57. 4	59.8	60	54. 6	60	达标
上京 上京 上京 上京 上京 上京 上京 上京	住宅面向道路	环境噪声	夜间	47. 2	52. 9	47	44	50	
一侧 1 层 环境噪声 夜间 51.6 58.9 53.5 42.7 55 达标 N9 黄岭坳 距离道路最近住宅面向道路—例 3 层 环境噪声 昼间 66.8 70.7 71.6 61.9 70 达标 N10 曙光农场三分场距离道路最近住宅面向道路—例 1层 环境噪声 昼间 53.1 57.5 59.4 49.2 55 达标 N10 曙光农场三分场村庄最高住宅面向道路—例 1层 环境噪声 夜间 52.1 53 58.2 46.1 55 达标 N10 曙光农场三分场村庄最高住宅面向道路—例 1层 环境噪声 夜间 52.8 54.3 53.1 45.4 55 达标 N10 曙光农场三分场村庄最高住宅面向道路中间上层 环境噪声 昼间 67.3 68.2 68.7 63.4 70 达标 下境噪声 昼间 67.3 68.2 68.7 63.4 70 达标	距离道路最近	环境噪声	昼间	66. 1	72. 7	73.6	66. 5	70	达标
上京道路最近 「中京道路最近 「中京道路最近 「中京道路最近 「中京道路最近 「中京道路最近 「中京道路 「中京道路最近住宅面 「中京道路 「中京道路 「中京道路 「中京道路 「中京道路 「中京道路 「中京道路 「中京道路 「中京道路 「中京道路 「中京道路 「中京道路 「中京道路 「中京道路 「中京道路 「中京道路」」」 「中京道路」」 「中京道路」」 「中京道路」」 「中京道路」」 「中京道路」 「中京道路」」 「中海路」」 「中海路		环境噪声	夜间	51.6	58. 9	53. 5	42. 7	55	达标
一侧 3 层 环境噪声 夜间 53.1 57.5 59.4 49.2 55 达标 N10 曙光农场 环境噪声 昼间 65.7 69.8 70.5 62.8 70 达标 S		环境噪声	昼间	66.8	70. 7	71.6	61.9	70	达标
三分场距离道		环境噪声	夜间	53. 1	57. 5	59.4	49. 2	55	达标
向道路一侧 1 环境噪声 夜间 52.1 53 58.2 46.1 55 达标 层 N10 曙光农场 天境噪声 昼间 66.3 67.4 67.4 62.2 70 达标 三分场村庄最 路一侧 1 层 环境噪声 夜间 52.8 54.3 53.1 45.4 55 达标 下境噪声 昼间 67.3 68.2 68.7 63.4 70 达标 天境噪声 昼间 67.3 68.2 68.7 63.4 70 达标 天境噪声 西住宅面向道 天境噪声 昼间 67.3 68.2 68.7 63.4 70 达标 大块层 大块层	三分场距离道	环境噪声	昼间	65. 7	69.8	70.5	62.8	70	达标
三分场村庄最 高住宅面向道 路一侧 1 层 环境噪声 昼间 66. 3 67. 4 67. 4 62. 2 70 达标 N10 曙光农场 三分场村庄最 高住宅面向道 环境噪声 昼间 62. 2 70 达标	向道路一侧 1	环境噪声	夜间	52. 1	53	58. 2	46. 1	55	达标
路一侧 1 层 环境噪声 夜间 52.8 54.3 53.1 45.4 55 达标 N10 曙光农场 三分场村庄最 高住宅面向道 环境噪声 昼间 67.3 68.2 68.7 63.4 70 达标	三分场村庄最	环境噪声	昼间	66. 3	67. 4	67. 4	62. 2	70	达标
三分场村庄最	路一侧1层	环境噪声	夜间	52.8	54. 3	53. 1	45. 4	55	达标
	三分场村庄最	环境噪声	昼间	67. 3	68. 2	68.7	63. 4	70	达标
		环境噪声	夜间	53. 4	56. 7	54.9	50. 1	55	达标

N11 大榕新村 距离道路最近	环境噪声	昼间	55. 2	58. 4	58. 7	52. 4	60	达标
住宅面向道路 一侧 1 层	环境噪声	夜间	45. 5	46	56.8	38. 6	50	达标
N11 大榕新村 距离道路最近	环境噪声	昼间	56. 2	61.5	62. 1	54. 1	60	达标
住宅面向道路 一侧3层	环境噪声	夜间	45. 9	51.7	46.9	43. 1	50	达标
N11 大榕新村 距离道路最近	环境噪声	昼间	57	57.6	58.3	49	60	达标
住宅面向道路 一侧 5 层	环境噪声	夜间	45. 3	47. 7	51.8	41.5	50	达标
N12 黄竹塘村 距离道路最近	环境噪声	昼间	55. 6	61.2	61.6	51.6	60	达标
住宅面向道路 一侧 1 层	环境噪声	夜间	45. 4	49	48. 1	43. 2	50	达标
N12 黄竹塘村 距离道路最近	环境噪声	昼间	55. 9	59	59. 5	52. 6	60	达标
住宅面向道路 一侧 3 层	环境噪声	夜间	45. 1	49. 3	49.3	43. 5	50	达标
N12 黄竹塘村 距离道路最近	环境噪声	昼间	56. 6	63. 9	64. 1	57	60	达标
住宅面向道路 一侧 5 层	环境噪声	夜间	45. 8	49. 4	50. 1	42. 1	50	达标
N13 雪屋 距离道路最近	环境噪声	昼间	57.2	60.1	60.9	53. 7	60	达标
住宅面向道路 一侧 1 层	环境噪声	夜间	46. 2	46. 4	47. 1	40.6	50	达标
N13 雪屋 距离道路最近	环境噪声	昼间	57. 7	63. 1	63. 2	54. 1	60	达标
住宅面向道路 一侧3层	环境噪声	夜间	46.7	49.9	50.9	43.8	50	达标
N14 大榕 村庄最高住宅	环境噪声	昼间	55. 6	59.8	60.6	51.8	60	达标
面向道路一侧 1层	环境噪声	夜间	45.4	51.4	51.8	44. 1	50	达标
N14 大榕 村庄最高住宅	环境噪声	昼间	56	61.1	60.2	52. 2	60	达标
面向道路一侧 3层	环境噪声	夜间	45	47. 5	47	38. 2	50	达标
N14 大榕 距离道路最近 在宝丽点道路	环境噪声	昼间	58. 2	61.9	61.2	57	60	达标
住宅面向道路 一侧1层	环境噪声	夜间	47. 3	49. 9	49.5	42.9	50	达标
N14 大榕	环境噪声	昼间	57. 7	62.6	61.9	53. 6	60	达标

出版資籍最近 中間 中間 中間 中間 中間 日間 日間 日間	 								
一部	住宅面向道路	环境噪声	夜间	47. 1	47. 3	46.4	39	50	达标
選路一側1 层 环境噪声 夜间 46.4 50.5 49.6 42.7 50 达标 N14 大榕 一排住宅面向 道路一側3 层 环境噪声 昼间 57.3 60.2 59.4 50.4 60 达标 N14 大榕 一排住宅面向 道路		环境噪声	昼间	56. 9	60.4	59. 4	52.8	60	达标
工作住宅面向		环境噪声	夜间	46. 4	50.5	49.6	42. 7	50	达标
道路一侧3		环境噪声	昼间	57. 3	60.2	59. 4	50. 4	60	达标
一排住宅面向 道路一侧 5 层 下境噪声 夜间 45.7 47.1 47.5 40.3 50 达标 下境噪声 昼间 56.5 62.2 62.4 55.6 60 达标 上京 近京 近京 近京 近京 近京 近京 近京		环境噪声	夜间	46. 2	50. 5	49.6	42. 7	50	达标
道路-侧5 环境噪声 夜间 45.7 47.1 47.5 40.3 50 达标 N15 元墩岭 距离道路最近 在宅面向道路 环境噪声 夜间 45.7 47.1 47.5 40.3 50 达标 N15 元墩岭 距离道路最近 环境噪声 夜间 45.7 47.1 47.5 40.3 50 达标 N15 元墩岭 距离道路最近 环境噪声 昼间 57 56.6 57.4 51.1 60 达标 N15 元墩岭 村庄最高住宅面向道路 环境噪声 夜间 46.1 46.5 46.9 38.9 50 达标 N15 元墩岭 村庄最高住宅面向道路 环境噪声 夜间 46.5 52.2 52.6 45.1 50 达标 N15 元墩岭 村庄最高住宅面向道路 环境噪声 夜间 46.5 52.2 52.6 45.1 50 达标 N16 元墩岭 村庄最高住宅面向道路 环境噪声 夜间 46.9 53.4 53.7 46.7 50 达标 下境噪声 夜间 46.9 53.4 53.7 46.7 50 达标 下境噪声 夜间 47.1 49.3 50 42.1 50 达标 下境噪声 夜间 47.1 49.3 50 42.1 50 达标 下境噪声 夜间 47.1 49.3 50 42.1 50 达标 下境噪声 夜间 46.9 53.3 53.9 47.8 50 达标 下境噪声 夜间 45.6 51.6 52.6 44.5 50 达标 下境噪声 夜间 45.6 51.6 52.6 44.5 50 达标 下境噪声 夜间 45.8 45.9 46.8 39.3 50 达标		环境噪声	昼间	56. 3	58. 9	59. 4	53. 2	60	达标
距离道路最近 住宅面向道路 不境噪声 夜间 45.7 47.1 47.5 40.3 50 达标 大塚噪声 夜间 45.7 47.1 47.5 40.3 50 达标 大塚噪声 夜间 46.1 46.5 46.9 38.9 50 达标 大塚噪声 夜间 46.1 46.5 46.9 38.9 50 达标 大塚噪声 夜间 46.5 52.2 52.6 45.1 50 达标 52.2 52.6 46.7 50 达标 52.2 52.6 46.7 50 达标 52.2 52.6 42.1 50 达标 52.2 52.6 42.1 50 达标 52.6 42.1 50 达标 52.6 42.1 50 达标 52.6 44.5 50 达标 52.6 44.5 50 达标 52.6 52.6 44.5 50 达标 52.6		环境噪声	夜间	45. 7	47. 1	47. 5	40. 3	50	达标
一侧 1		环境噪声	昼间	56. 5	62. 2	62.4	55. 6	60	达标
野宮道路最近 住宅面向道路 一側 3 一側 3 一側 3 不境噪声 夜间 46.1 46.5 46.9 38.9 50 达标 万境噪声 夜间 46.1 46.5 46.9 38.9 50 达标 万境噪声 昼间 57.6 62.9 63.8 57.7 60 达标 1 上版 万境噪声 昼间 57.6 62.9 63.8 57.7 60 达标 1 上版 万境噪声 昼间 57.7 63.1 63.8 57.4 60 达标 万境噪声 昼间 57.7 63.1 63.8 57.4 60 达标 57.6 60.7 61.1 52 60 达标 57.6 60.7 61.1 50 达标 57.6 60.7 61.1 50 达标 57.6 60.7		环境噪声	夜间	45. 7	47. 1	47.5	40.3	50	达标
N15 元墩岭 村境噪声 昼间 46.1 46.5 46.9 38.9 50 达标 N15 元墩岭 村庄最高住宅 面向道路一侧 1层		环境噪声	昼间	57	56. 6	57.4	51. 1	60	达标
村庄最高住宅 面向道路一侧 1 层 环境噪声 夜间 46.5 52.2 52.6 45.1 50 达标 N15 元墩岭村庄最高住宅面向道路一侧 3 层 环境噪声 夜间 46.9 53.4 53.7 46.7 50 达标 N16 大榕村1 距离道路最近住宅面向道路—侧 1层 环境噪声 夜间 47.1 49.3 50 42.1 50 达标 N17 大榕小学学校面向道路—例 1层 环境噪声 夜间 46.9 53.3 53.7 46.7 50 达标 N17 大榕小学学校面向道路—例 1层 环境噪声 夜间 46.9 53.3 50 42.1 50 达标 N17 大榕小学学校面向道路—例 3层 环境噪声 夜间 46.9 53.3 53.9 47.8 50 达标 N17 大榕小学学校面向道路—例 3层 环境噪声 夜间 45.6 51.6 52.6 44.5 50 达标 N18 大榕村2村庄最高住宅面向道路—侧 1层 环境噪声 夜间 45.8 45.9 46.8 39.3 50 达标 N18 大榕村2村庄最高住宅面向道路—例 1层 环境噪声 夜间 45.8 45.9 46.8 39.3 50 达标 N18 大榕村2村庄最高住宅 环境噪声 夜间 45.8 45.9 46.8 39.3 50 达标 N18 大榕村2 村庄最高住宅 环境噪声 昼间 57.8 62.7 63.2 55 60 达标		环境噪声	夜间	46. 1	46. 5	46. 9	38.9	50	达标
面向道路一侧 1层		环境噪声	昼间	57.6	62.9	63.8	57. 7	60	达标
村庄最高住宅 面向道路一侧 3 层 环境噪声 夜间 夜间 46.9 53.4 53.7 46.7 50 达标 N16 大榕村1 距离道路最近 住宅面向道路 一侧 1 层 环境噪声 一侧 1 层 昼间 57.6 60.7 61.1 52 60 达标 N17 大榕小学学校面向道路 一侧 1 层 环境噪声 学校面向道路 一侧 3 层 昼间 57 62.7 63.1 54.1 60 达标 N17 大榕小学学校面向道路 一侧 3 层 环境噪声 校面向道路 一侧 3 层 昼间 57.4 57.1 57.8 51.1 60 达标 N18 大榕村2 村庄最高住宅 面向道路一侧 1 层 环境噪声 夜间 昼间 56.8 62.6 63.1 54 60 达标 N18 大榕村2 村庄最高住宅 和上最高住宅 环境噪声 夜间 45.8 45.9 46.8 39.3 50 达标 N18 大榕村2 村庄最高住宅 环境噪声 昼间 57.8 62.7 63.2 55 60 达标	面向道路一侧	环境噪声	夜间	46. 5	52. 2	52.6	45. 1	50	达标
3		环境噪声	昼间	57. 7	63. 1	63.8	57. 4	60	达标
 距离道路最近 住宅面向道路 一側 1层 N17 大榕小学 学校面向道路 一側 1层 N17 大榕小学 学校面向道路 一側 3层 N17 大榕小学 学校面向道路 一側 3层 N18 大榕村 2 村庄最高住宅 面向道路一側 1层 N18 大榕村 2 村庄最高住宅 区域 区域<		环境噪声	夜间	46. 9	53. 4	53. 7	46. 7	50	达标
一侧 1层 环境噪声 夜间 47.1 49.3 50 42.1 50 达标 N17 大榕小学学校面向道路 —侧 1层 环境噪声 昼间 57 62.7 63.1 54.1 60 达标 N17 大榕小学学校面向道路 —侧 3层 环境噪声 昼间 57.4 57.1 57.8 51.1 60 达标 N18 大榕村 2 村庄最高住宅面向道路 —侧 1层 环境噪声 昼间 56.8 62.6 63.1 54 60 达标 N18 大榕村 2 村庄最高住宅面向道路 —侧 1层 环境噪声 夜间 45.8 45.9 46.8 39.3 50 达标 N18 大榕村 2 村庄最高住宅 环境噪声 昼间 57.8 62.7 63.2 55 60 达标		环境噪声	昼间	57. 6	60. 7	61.1	52	60	达标
学校面向道路 一侧 1 层 环境噪声 夜间 46.9 53.3 53.9 47.8 50 达标 N17 大榕小学 学校面向道路 一侧 3 层 环境噪声 昼间 57.4 57.1 57.8 51.1 60 达标 N18 大榕村 2 村庄最高住宅 面向道路一侧 1 层 环境噪声 昼间 56.8 62.6 63.1 54 60 达标 N18 大榕村 2 村庄最高住宅 环境噪声 夜间 45.8 45.9 46.8 39.3 50 达标 N18 大榕村 2 村庄最高住宅 环境噪声 昼间 57.8 62.7 63.2 55 60 达标		环境噪声	夜间	47. 1	49.3	50	42. 1	50	达标
N17 大榕小学 学校面向道路 一侧 3 层 环境噪声 昼间 57. 4 57. 1 57. 8 51. 1 60 达标 N18 大榕村 2 村庄最高住宅 面向道路一侧 1 层 环境噪声 昼间 56. 8 62. 6 63. 1 54 60 达标 N18 大榕村 2 村庄最高住宅 环境噪声 夜间 45. 8 45. 9 46. 8 39. 3 50 达标 N18 大榕村 2 村庄最高住宅 环境噪声 昼间 57. 8 62. 7 63. 2 55 60 达标		环境噪声	昼间	57	62. 7	63. 1	54. 1	60	达标
学校面向道路 一侧 3 层 环境噪声 夜间 45.6 51.6 52.6 44.5 50 达标 N18 大榕村 2 村庄最高住宅 面向道路一侧 1 层 环境噪声 昼间 56.8 62.6 63.1 54 60 达标 N18 大榕村 2 村庄最高住宅 环境噪声 昼间 45.8 45.9 46.8 39.3 50 达标	一侧1层	环境噪声	夜间	46.9	53. 3	53.9	47.8	50	达标
N18 大榕村 2 村庄最高住宅 面向道路一侧 1 层 环境噪声 昼间 56.8 62.6 63.1 54 60 达标 N18 大榕村 2 村庄最高住宅 环境噪声 昼间 45.8 45.9 46.8 39.3 50 达标		环境噪声	昼间	57. 4	57. 1	57.8	51.1	60	达标
村庄最高住宅 面向道路一侧 1 层 环境噪声 昼间 56.8 62.6 63.1 54 60 达标 N18 大榕村 2 村庄最高住宅 环境噪声 昼间 57.8 62.7 63.2 55 60 达标	一侧 3 层	环境噪声	夜间	45.6	51.6	52.6	44.5	50	达标
1 层 外境噪声 夜间 45.8 45.9 46.8 39.3 50 达标 N18 大榕村 2 村庄最高住宅 环境噪声 昼间 57.8 62.7 63.2 55 60 达标	村庄最高住宅	环境噪声	昼间	56.8	62.6	63. 1	54	60	达标
村庄最高住宅 村庄最高住宅 村庄最高住宅 17.8 17.8 17.8 17.8 17.8 17.8 17.8 17.8		环境噪声	夜间	45.8	45. 9	46.8	39. 3	50	达标
面向道路一侧 环境噪声 夜间 46.2 51 51.2 44.3 50 达标	村庄最高住宅	环境噪声	昼间	57.8	62. 7	63. 2	55	60	达标
	面向道路一侧	环境噪声	夜间	46. 2	51	51.2	44.3	50	达标

3 层 N19 散户 5	TT I文 III -		00.1	07.0	07.4	50.0	7.0	>1.1-
N19	环境噪声	昼间	66.1	67. 2	67.4	59. 3	70	达标
一侧1层	环境噪声	夜间	46.5	46. 3	47.2	40.5	55	达标
N19 散户 5 住宅面向道路	环境噪声	昼间	66. 7	73. 3	74. 1	68	70	达标
一侧 3 层	环境噪声	夜间	52. 1	55. 6	55.8	48.6	55	达标
N20 散户 6 住宅面向道路	环境噪声	昼间	66.5	67. 7	68.7	61	70	达标
一侧1层	环境噪声	夜间	52.8	54	54. 3	47.6	55	达标
N20 散户 6 住宅面向道路	环境噪声	昼间	66.8	68. 1	68. 3	60.9	70	达标
一侧3层	环境噪声	夜间	52.4	54.6	54. 7	49.3	55	达标
N20 散户 6	环境噪声	昼间	67.6	73.6	74. 5	65.8	70	达标
住宅面向道路 一侧 5 层	环境噪声	夜间	52.1	57.4	57.9	51.4	55	达标
N21 炸岭	环境噪声	昼间	65.6	66. 9	67.3	60.2	70	达标
住宅面向道路 一侧1层	环境噪声	夜间	53	87	57.2	49.3	55	达标
N21 炸岭	环境噪声	昼间	66.5	72.5	72.7	64.1	70	达标
住宅面向道路 一侧 3 层	环境噪声	夜间	53. 2	56. 4	57	48.9	55	达标
N22 散户 7	环境噪声	昼间	66.1	67. 1	67.9	60.2	70	达标
住宅面向道路 一侧1层	环境噪声	夜间	52	56. 7	57.5	50.1	55	达标
N22 散户 7	环境噪声	昼间	66.6	70.6	71	62.9	70	达标
住宅面向道路 一侧 3 层	环境噪声	夜间	52. 4	52.6	53.4	44	55	达标
N23 风炉岭	环境噪声	昼间	66.7	68. 9	69.4	62	70	达标
住宅面向道路 一侧1层	环境噪声	夜间	53. 1	56. 7	57.3	50.9	55	达标
N23 风炉岭	环境噪声	昼间	67.2	72. 2	73	63.3	70	达标
住宅面向道路 一侧 3 层	环境噪声	夜间	53.4	58.8	54. 2	51.5	55	达标
N24 散户 8	环境噪声	昼间	66	71.1	72. 1	64.1	70	达标
住宅面向道路 一侧 1 层	环境噪声	夜间	52.4	56. 2	50.8	49.1	55	达标
N24 散户 8	环境噪声	昼间	66.4	71.3	71.9	62.5	70	达标
住宅面向道路 一侧 3 层	环境噪声	夜间	52.9	58.6	51.3	49.5	55	达标
N25 散户 9	环境噪声	昼间	55.6	58.6	59. 1	52.6	60	达标
住宅面向道路 一侧 1 层	环境噪声	夜间	45. 1	51.8	51.8	44.4	50	达标
N25 散户 9	环境噪声	昼间	56.2	60.1	60.2	51.2	60	达标
住宅面向道路 一侧 3 层	环境噪声	夜间	44.9	50.7	50.7	45. 1	50	达标
N26 水鸡岭	环境噪声	昼间	55. 7	61.1	62.1	54. 4	60	达标

距离道路最近 住宅面向道路 一侧 1 层	环境噪声	夜间	46.3	52.1	52. 1	44.1	50	达标
N26 水鸡岭	环境噪声	昼间	55. 9	57.9	58.8	52. 1	60	达标
距离道路最近 住宅面向道路 一侧 3 层	环境噪声	夜间	46	51.9	48. 4	44. 1	50	达标
N26 水鸡岭	环境噪声	昼间	55. 5	56. 4	56. 5	50.6	60	达标
村庄最高住宅 面向道路一侧 1 层	环境噪声	夜间	45.6	50.7	47. 5	43	50	达标
N26 水鸡岭	环境噪声	昼间	56	60.1	61.1	53	60	达标
村庄最高住宅 面向道路一侧 3 层	环境噪声	夜间	45. 2	50.5	44. 7	40.4	50	达标
N27 禾禄岗 1 距离道路最近	环境噪声	昼间	55. 7	58. 9	59. 4	49.4	60	达标
住宅面向道路 一侧 1 层	环境噪声	夜间	45. 7	51.6	45.8	43.8	50	达标
N27 禾禄岗 1 村庄最高住宅	环境噪声	昼间	55. 1	57. 9	55. 6	52. 1	60	达标
面向道路一侧 1 层	环境噪声	夜间	45. 3	51	45. 5	43.3	50	达标
N27 禾禄岗 1 村庄最高住宅	环境噪声	昼间	56	58.8	59. 4	53.9	60	达标
面向道路一侧 3 层	环境噪声	夜间	45. 2	50.8	47.6	45	50	达标
N27 禾禄岗 1 村庄最高住宅	环境噪声	昼间	57.1	63	64	55.6	60	达标
面向道路一侧 5 层	环境噪声	夜间	44.8	50.6	45. 2	41.2	50	达标
N28 禾禄岗 2 距离道路最近	环境噪声	昼间	55. 7	61.8	58	53.6	60	达标
住宅面向道路 一侧 1层	环境噪声	夜间	44.9	51.4	47.7	43.4	50	达标
N28 禾禄岗 2 距离道路最近	环境噪声	昼间	56. 2	61. 7	62.7	53.9	60	达标
住宅面向道路 一侧 3 层	环境噪声	夜间	44.6	49.9	47.8	45. 4	50	达标
N28 禾禄岗 2 距离道路最近	环境噪声	昼间	56. 7	62. 9	62. 9	55	60	达标
住宅面向道路 一侧 5 层	环境噪声	夜间	44. 5	49. 3	46. 4	42.6	50	达标
N29 垂直衰减 断面 1#空旷地	环境噪声	昼间	57.6	64	59.6	56. 5	/	/
段(道路中心线 20m 处空地监 测)	环境噪声	夜间	52	54. 2	49.4	44	/	/

N29 垂直衰减 断面 1#空旷地 段(道路中心线	环境噪声	昼间	56. 3	62. 4	60. 1	56. 4	/	/
校(追断中心线 40m 处空地监 测)	环境噪声	夜间	51.6	56. 5	54. 4	50.8	/	/
N29 垂直衰减 断面 1#空旷地 段(道路中心线	环境噪声	昼间	55.8	53.4	57.9	49.8	/	/
60m 处空地监 测)	环境噪声	夜间	51	54. 5	49.8	46. 1	/	/
N29 垂直衰减 断面 1#空旷地 段(道路中心线	环境噪声	昼间	55	59. 7	57	54. 4	/	/
80m 处空地监测)	环境噪声	夜间	50. 1	55. 3	53. 3	50.6	/	/
N29 垂直衰减 断面 1#空旷地	环境噪声	昼间	54. 1	60.4	55. 5	52	/	/
段(道路中心线 120m 处空地监 測)	环境噪声	夜间	49.5	52.4	48. 7	46. 1	/	/

由表 3-3、表 3-4 监测数据可知,项目沿线各个敏感点 2 类以及 4a 类标准值要求。垂向衰减断面噪声 Leq 检测结果可知,垂向衰减断面 20m、40m、60m、80m、120m 处监测断面声环境质量现状均满足《声环境质量标准》(GB3096-2008)4a 及 2 类标准值要求。

5、地下水环境现状

本项目为城市道路建设。根据《环境影响评价技术导则 地下水环境》 (HJ610-20116) 附录 A, 第123 项"公路"和第138 项"城市道路", 项目不设加油站, 故地下水环境影响评价项目类别为IV类。同时根据《环境影响评价技术导则地下水环境》(HJ610-2016), IV类建设项目不开展地下水环境影响评价。

6、土壤环境现状

根据《环境影响评价技术导则 土壤环境(试行)》(HJ964-2018)附录 A—表 A.1 土壤环境影响评价项目类别表,本项目为城市道路建设,属于《环境影响评价技术导则土壤环境(试行)》(HJ964-2018)附录 A 中"其他行业-全部",故土壤环境影响评价项目类别为IV类,可不开展土壤环境现状调查与评价工作。

与项
目有
关的
原有
环境
污染
和生
态破
坏问
题

无

1、大气环境保护目标

保护周边环境空气质量不因本项目建设而受到影响。

2、声环境保护目标

保护拟建项目附近区域的声环境符合功能区的要求,保护本项目四周环境不受本项目施工建设以及运营期引起的噪声影响符合环保要求。

3、水环境保护目标

保护项目所在地周围水体环境质量不因项目施工和运行使周边水体的水质产生明显影响。

生态境 保护目标

4、生态环境保护目标

保护工程沿线生态环境的景观完整性,控制水土流失和生态破坏,保护和恢复植被景观的完整性,确保本项目区域具有良好的生态环境和环境景观。

5、环境保护目标

本评价范围内无重点文物保护点、风景名胜区、水源地和生态敏感点等,详见表 3-5。

表 3-5 本项目主要环境保护目标

			吉环培				敏感点距道路红	用地红		不同功	能区户数	/人口		与项		
	序号	行政区 划	声环境 保护目 标名称	所在 路段	里程范围	路线 形式	线/机动车道边线 /道路中心线(m)	线内户数		·排	=:	排	全部	目的 位置	现状图	与项目位置关系图
			你石你				/坦姆中心线(III)	刻	2 类	4a 类	2 类	4a 类		关系		
	1	观珠段	散户1	主线	K0+055~K0 +065	路基	17.5/25.25/34	1	1	1/4	/	/	1/4	左侧		
生态环境保	2	观珠段	散户 2	主线	K0+118~K0 +140	路基	13.5/21.25/30	/	/	1/4	1	/	1/4	右侧	Total Control of the	
护目标	3	观珠段	散户3	主线	K0+229~K0 +276	路基	13.1/20.85/29.6	/	/	3/16	1	/	3/16	左侧		
	4	观珠段	婆岭	主线	K0+360~K0 +545	路基	12.1/19.85/28.6	/	/	6/32	12/53	/	18/85	左侧		

5	观珠段	牛仔塘 岭 1	主线	K0+548~K0 +605	路基	7.5/15.25/24	/	1/2	6/18	/	/	7/20	左侧	Rif Well
6	观珠段	陈宅	主线	K0+638~K0 +665	路基	28/37.5/44.5	/	1/6	/	/	/	1/6	右侧	子 塘岭 北
7	观珠段	牛仔塘岭 2	主线	K0+806~K0 +829	路基	46/53.75/62.5	/	1/2	/	/	/	1/2	左侧	华侨追悼 2 年任理岭
8	观珠段	散户 4	主线	K0+890~K0 +908	路基	2.5/9.75/18.5	/	/	1/5	/	/	1/5	右侧	37.5 (t)
9	观珠段	黄岭坳	主线	K0+958`K1+ 031	路基	3/4.75/13.5	1	/	3/16	/	/	3/16	左侧	黄岭湖

10	观珠段	曙光农 场三分 场	主线	K1+000~K1 +265	路基	3/4.75/13.5	9	/	6/30	5/22	6/20	17/72	右侧	
11	观珠段	大榕新村	主线	K1+520~K1 +720	路基	96.7/104.45/113.2	/	/	12/56	9/35	/	24/91	左侧	
12	观珠段	黄竹塘 村	主线	K1+810~K1 +940	路基	24.3/32.05/40.8	/	/	/	11/50	/	11/50	右侧	黄物建物
13	观珠段	雪屋	主线	K2+120~K2 +290	路基	76.9/84.65/93.4	1	2/6	1	3/10	/	13/50	右侧	
14	观珠段	大榕	主线	K2+283~K2 +695	路基	12/19.75/28.5	1	1/3	/	3/9	/	28/10	右侧	大格

15	观珠段	元墩岭	主线	K2+821~K2 +893	路基	54.4/62.15/70.9	/	2/6	1	1/3	/	22/96	右侧	元の
16	观珠段	大榕村 1	主线	K0+686~K2 +919	路基	151.8/19.55/168.3	/	1/4	/	2/7	/	41/16	左侧	(明古台) 大椒(削) 2
17	观珠段	大榕小 学	主线	K2+960~K3 +017	路基	116/123.75/132.5	/	1/4	/	1	/	1/180	右侧	大格小学 (放序®)
18	观珠段	大榕村 2	主线	K3+056~K3 +290	路基	7.5/15.25/24	/	1/3	/	1/5	/	21/90	左侧	the state of the s
19	观珠段	散户 5	主线	K2+931~K2 +963	路基	12.5/20.25/29	/	3/7	/	/	/	3/7	左侧	

20	观珠段	散户 6	主线	K3+432~K3 +539	路基	106.8/114.55/123.	/	/	3/10	/	1/2	4/12	左侧	ttricie /
21	观珠段	炸岭	主线	K3+586~K3 +665	路基	191.5/199.25/208	/	3/8	/	1/2	/	7/20	右侧	木节岭 (作 岭
22	观珠段	散户 7	主线	K3+821~K3 +841	路基	41.3/49.05/57.8	/	/	2/6	/	/	2/7	左侧	
23	观珠段	风炉岭	主线	K3+829~K3 +840	路基	105.5/113.25/122	/	1	/	1/1	/	4/6	右侧	

24	观珠段	散户8	主线	K3+913~K3 +018	路基	35/42.75/51.5	/	/	5/17	/	/	5/17	右侧	
25	沙琅段	散户9	主线	K4+995~K5 +006	路基	155/162.75/171.5	/	1/3	/	1/3	/	3/10	右侧	是Inf (F)
26	沙琅段	水鸡岭	主线	K5+980~K6 +310	路基	39.5/47.25/56	2	1/3	/	1/2	/	27/10	右侧	第80年 第18年 22下期龄
27	沙琅段	禾禄岗 1	主线	K7+000~K7 +113	路基	17.1/24.85/33.6	3	5/12	/	3/10	/	19/66	右侧	沙琅银 禾禄尚1

28 沙琅段 禾禄岗 主线	K6+940~K6 +950 路基 107	7.5/115.05/123. _/	1/4	/ /	1/4	右侧	森穰岗2
			,	,			

1、环境质量标准

1) 环境空气

本项目所在地区属于二类环境空气质量功能区,大气环境质量标准执行《环境空气质量标准》(GB3095-2012)及其 2018 年修改单(生态环境部公告 2018 年 第 29 号)中二级标准;详见表 3-6。

表 3-6 环境空气质量标准

污染物	取值时间	标准浓度	单位	标准来源		
		二级				
	年平均	40				
二氧化氮 NO ₂	24 小时平均	80				
	1 小时平均	200				
	年平均	60				
二氧化硫 SO ₂	24 小时平均	150				
	1 小时平均	500				
颗粒物 PM10 (粒径	年平均	70	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	《环境空气质量标		
≤10μm)	24 小时平均	150	ug/m³	准》(GB3095-2012)		
颗粒物 PM _{2.5} (粒径	年平均	35		及其2018年修改单		
≤2.5μm)	24 小时平均	75		(生态环境部公告 2018年第29号)中		
臭氧(O ₃)	日最大8小时 平均值	160		二级标准		
	1 小时平均值	200				
TCD	年平均	200				
TSP	24 小时平均	300				
一気化型 CO	24 小时平均	4				
一氧化碳 CO	1 小时平均	10	mg/m³			

评价 标准

2) 地表水环境

龙记河执行《地表水环境质量标准》(GB3838-2002)中的 II 类标准。

表 3-7 地表水环境质量标准 (mg/L)

	表 5-7 地名外科·克茨里彻底(mg/L)						
序号	项目	单位	Ⅱ类标准				
1	水温	°C	人为造成的环境水温变化应限值在: 周平均最大温升≤1;周平均最大温降 ≤2				
_		 					
2	pН	无量纲	6-9				
3	溶解氧	mg/L	≥6				
4	COD_{cr}	mg/L	15				
5	BOD ₅	mg/L	3				
6	氨氮	mg/L	0.5				
8	总磷	mg/L	0.1				

9	石油类	mg/L	0.05
10	LAS	mg/L	0.2

3) 声环境现状

根据《茂名市声环境功能区划》(茂环[2019]84号)的要求,结合本项目的实际情况,确定本项目道路工程沿线声环境功能区划如下:

项目选址区域属于声环境质量 2、4 类区, 见图 2.4-5。

根据《茂名市声环境功能区划》(茂环[2019]84号),将道路交通干线边界线外一定距离内的区域划分为 4a 类声环境功能区,具体规定如下:

- ①相邻区域为1类声环境功能区,距离为50m;
- ②相邻区域为2类声环境功能区,距离为35m;
- ③相邻区域为3类声环境功能区,距离为20m。

当临街建筑高于三层楼房(含三层)时,将临街建筑面向交通干线一侧至交通干线边界线的区域定为4类声环境功能区。

表 3-8 声环境质量标准

类别	昼间(dB)	夜间(dB)
4a 类	70	55
2 类	60	50

2、污染物排放标准

一、大气污染物

(1) 施工期

扬尘、机械尾气和路面沥青摊铺执行广东省《大气污染物排放限值》(DB44/27-2001)第二时段限值,见表 3-9。

表 3-9 本项目大气污染物排放限值

标准	污染物	无组织排放监控浓度限值		
7小1出	行朱彻	监控点	浓度(mg/m³)	
	颗粒物		1.0	
	NO_X		0.12	
	CO		8.0	
// 十年运动 // 加井 计 // 四	HC	周界外 浓度最 高点	4.0	
《大气污染物排放限 值》(GB44/27-2001) 第二时段标准	沥青烟		生产设备不得有 明显无组织排放 存在	
	苯并[a]芘		无组织排放,周 界外浓度最高点 ≤0.008ug/m³	

沿线池塘清淤过程中会产生恶臭,恶臭浓度排放执行《恶臭污染

物排放标准》(GB14554-93)表 1 恶臭污染物中厂界标准值二级新扩建标准。

表 3-10《恶臭污染物排放标准》

<u> </u>	
污染物	恶臭污染物厂界标准值中新扩改建二级标准
恶臭浓度	20 (无量纲)

(2) 运营期

营运期机动车尾气排放执行《轻型汽车污染物排放限值及测量方法(中国第六阶段)》(GB18352.6-2016)相应标准限值、《重型柴油车污染物排放限值及测量方法(中国第六阶段)》(GB17691-2018)中第六阶段排放标准,道路扬尘执行广东省地方标准《大气污染物排放限值》(DB44/27-2001)第二时段无组织排放监控浓度限值。具体限值见下表

表 3-11 第VI阶段的轻型汽车污染物排放限值(GB18352.6-2016)

1X J-1	农3-11 分1的权的在至7(十万米初部从帐值(GD10332.0-2010)						
			限值				
类别	级别	基准质量 km	CO/(ma/lsm)	NO_X			
			CO/(mg/km)	(mg/km)			
第一类车	_	全部	500	35			
	I	RM≤1305	500	35			
第二类车	II	1305≤RM≤1760	630	45			
	III	1760 <rm< td=""><td>740</td><td>55</td></rm<>	740	55			
单位	g/km×辆						

表 3-12 第VI阶段重型车污染物排放限值(GB17691-2018)

* * * * * * * * * * * * * * * * * * * *		— (
阶段	CO[g/(Kw · h)]	$NOx[g/(Kw \cdot h)]$
VI	6	0.69

二、噪声

施工期: 施工期施工场界噪声执行《建筑施工场界环境噪声排放标准限值》(GB12523-2011), 见表 3-13。

表 3-13 建筑施工场界环境噪声排放标准限值 单位: Leq:dB(A)

昼间	夜间
70	55

运营期: 本项目建成后,沿线声环境功能区划如下:

道路边界 35m 范围内划分为 4 类声环境功能区。边界 35m 范围外划分为 2 类声环境功能区。道路边界 35m 范围内, 当临街建筑(临路

第一排建筑)高于三层楼房(含三层)时,将临街建筑(临路第一排建筑)面向交通干线一侧至交通干线边界线的区域定为 4 类声环境功能区(即昼间≤70dB(A)、夜间≤55dB(A));背向道路一侧区域定为 2 类声环境功能区(即昼间≤60dB(A)、夜间≤50dB(A))。

三、固废

固体废物排放执行《中华人民共和国固体废物污染环境防治法》、《广东省固体废物污染环境防治条例》、《城市建筑垃圾管理规定》、《一般工业固体废物贮存和填埋污染控制标准》(GB18599-2020)中的有关规定。

其他

项目为市政道路及配套工程,为非生产性项目,不作总量控制指标建议。

四、生态环境影响分析

1、施工期大气环境影响分析

施工过程中大气污染的主要来源有:清理鱼塘淤泥的臭气、拌合站扬尘、施工扬尘、铺路产生的沥青烟及施工机械等车辆尾气。

(1) 清理鱼塘淤泥的臭气

本项目在施工期要对沿线鱼塘施工前,需要先进行排水,后清除塘底表层淤泥并晒干才能进行下一步施工。塘底表层淤泥主要成分为泥沙及少量的枯草、树叶,枯草、树叶在腐化过程中会恶臭气体,该部分气体会随着塘底表层淤泥翻动在大气中自由扩散,对周围环境的影响会随着清淤施工的结束而结束,对周围大气环境影响较小。

(2) 拌合站扬尘

拌和站搅拌机整体封装为搅拌楼内,落实废气经脉冲布袋除尘器处理后高空排放,堆料区建议设置在封闭房内,另外堆料区风力起尘及汽车动力起尘通过设置喷淋装置进行定时喷淋洒水除尘。由于施工期时间相对较短,其产生的影响属于临时性影响。

(3) 施工扬尘的影响分析

在对环境空气的影响中,运输材料的车辆引起的扬尘影响最大。据有关文献 资料和经验介绍,在施工过程中,车辆行驶产生的扬尘占总扬尘的 60%以上。车 辆行驶产生的扬尘,在完全干燥情况下,可按下列经验公式计算:

$$Q = 0.123 (V/5)(W/6.8)^{0.85} (P/0.5)^{0.75}$$

式中, Q: 汽车行驶的扬尘, kg/km·辆;

V: 汽车速度, km/h;

W: 汽车载重量, t

P: 道路表面粉尘量, kg/m²。

下表为一辆 10t 卡车,通过一段长度为 1km 的路面时,不同路面清洁程度,不同行驶速度情况下的扬尘量。由此可见,在同样路面清洁程度条件下,车速越快,扬尘量越大; 而在同样车速情况下,路面越脏,则扬尘量越大。因此限制车辆行驶速度及保持路面的清洁是减少汽车扬尘的最有效手段。

表4-1 在不同车速和地面清洁程度的汽车扬尘一览表(单位: kg/辆·km)

粉尘量	0.1	0.2	0.3	0.4	0.5	1.0
车速	(kg/m^2)	kg/m ²)	(kg/m ²)	(kg/m ²)	(kg/m ²)	(kg/m^2)
5 (km/h)	0.0511	0.0859	0.1164	0.1444	0.1707	0.2871
10 (km/h)	0.1021	0.1717	0.2328	0.2888	0.3414	0.5742
15 (km/h)	0.1532	0.2576	0.3491	0.4332	0.5121	0.8613
25 (km/h)	0.2553	0.4293	0.5819	0.7220	0.8536	1.4355

如果施工阶段对汽车行驶路面勤洒水(每天 4~5 次),可以使空气中粉尘量减少 70%左右,可以收到很好的降尘效果。洒水的试验资料如下表。当施工场地洒水频率为4~5次/天,扬尘造成的 TSP 污染距离可缩小到 20~50m 范围内。

表4-2 施工阶段使用洒水车降尘试验结果一览表

距道路红距离(m)		5	20	50	100
TSP 浓度	不洒水	10.14	2.810	1.15	0.86
(mg/m^3)	洒水	2.01	1.40	0.68	0.60

根据上表估算结果,施工场地定时洒水降尘,可有效降低对周边环境的影响。本项目敏感点距离施工边界较近,最近距离约 2.5m,可见洒水后也不能满足广东省《大气污染物排放限值》(DB44/27-2001)中第二时段无组织排放监控浓度限值 1.0mg/m³。建设单位应加强管理,尽量降低施工期的扬尘影响,该影响将随着施工期的结束而结束。

(4) 施工机械废气的影响分析

道路施工机械主要有载重车、压路机、起重机、柴油动力机械等燃油机械,它们排放的污染物主要有 CO、NO₂、THC。由于施工机械多为大型机械,单车排放系数较大,但施工机械数量少且较分散,污染程度相对较轻,产生的污染会随施工期结束而结束。

(5) 铺路产生的沥青烟的影响分析

路面施工中沥青铺摊过程中产生的沥青烟将对环境空气产生一定程度的不利 影响。据研究结果表明,沥青加热至 180℃以上时会产生大量沥青烟。

本项目施工沥青混凝土为外购的拌和商品沥青混凝土,不设沥青拌合站,没有熬制过程。施工过程中对成品沥青混凝土采用密封罐车运输,尽量使用密封性能好的设备进行沥青的铺设,铺设沥青混凝土时最好有良好的大气扩散条件,沥青混凝土铺设时间最好在有二级以上的风力条件下进行,以避免局部沥青烟浓度过高。

采取以上措施后,施工时产生的很少量的沥青烟气对周围环境影响较小。

2、施工期水环境影响分析

施工废水及暴雨地表径流:施工废水包括路基开挖产生的泥浆水、车辆及机械设备冲洗废水以及施工机械设备表面的润滑油、施工机械设备跑、冒、滴、漏的燃料的油污水和建筑施工过程中产生的废弃的油污水等。暴雨地表径流冲刷浮土、建筑砂石、垃圾等,不但会夹带大量泥沙,而且会携带水泥、油类等各种污染物

1) 生活污水

本项目不设施工营地,施工人员租用项目沿线附近的现有村屋,生活污水依 托现有村屋的生活污水系统进行处理,不会对纳污水体产生明显影响。

2) 施工废水

施工期废水包括施工废水、施工人员生活污水以及拌和站废水。

项目部生活污水经一体化污水处理设备处理后,回用于场地冲厕、绿化,不外排。施工过程中产生的泥浆废水在泥浆池内循环利用,无法回用的泥浆废水经沉淀池沉淀后上清液用于绿化或者路面洒水降尘,沉渣则在沉淀池内就地固化,不外排。械设备冲洗废水、施工场地含油污水,采取沉淀隔油池处理后的水可以用于洒水降尘,不外排。拌合站搅拌机、运输车辆冲洗废水等废水。废水中的主要污染物为 SS,经三级沉淀池处理后回用,不外排。在项目施工期间,通过采取以上各种防治措施,能够有效的降低施工区对沿线水体产生的污染,使得对水环境影响降至最低。

3) 暴雨地表径流

项目属亚热带季风气候,降雨量充沛,特别是夏季暴雨易对施工场地的浮土造成的冲刷,造成含有大量悬浮物的地表径流水污染周围环境,严重时可导致堵塞市政排水系统,根据电白区其它市政道路建设的实际经验表明,施工单位在施工期间加强施工期的环境管理,在施工场地挖雨水排水明渠,明渠两端设置沉沙池,经沉淀后排入就近雨水渠,同时安装固定泥土过滤网,并定期清理沉砂池污泥,则本项目施工期的地表径流水不会对受纳水体产生明显的影响。

4)沿线鱼塘清淤填埋产生的废水

本项目在施工期要对沿线鱼塘施工前,需要先进行排水,抽出的水会进入周围的林地自然蒸发,对项目沿线的水环境影响不大。

5)桥梁施工过程产生的悬浮物

本项目共设置两座中桥,其中龙记河桥(桩号 K2+717,全长 30m),跨越水体为龙记河,地表水质量标准为 II 类,不设置水中桥墩;禾禄岗桥(桩号 K6+958,全长 20m)跨越管线为茂石化输油管线,不跨越地表水体。

桥梁桩基的水域施工一般采取围堰法,桩基施工过程在围堰内完成,对水体的扰动一般发生在安装和拆除围堰的过程。施工产生的 SS 控制在围堰内,不会随水流溢出围堰外。参考《茂名市北组团主干路网新建工程(一期)一省道 S280 线改建工程(东环大道)(一期)》,批复文号: 茂环(茂南)审〔2022〕10 号,围堰的 SS 释放量为 0.9~1.75kg/s,主要影响发生在钢围堰沉水着床阶段,局部 SS 的浓度达到 2000mg/L。

3、施工期声环境影响分析

本项目施工将会对周围环境产生比较明显的影响,项目建设期间,施工单位 应严格执 行国家和地方法律法规对噪声污染防治的要求,通过隔声降噪措施减少 施工噪声对敏感点的影响。

施工期声环境影响详细分析详见噪声专项评价。

4、施工期固体废物影响分析

1) 土石方平衡

根据可研项目预计土石方开挖总量 53.34 万 m³,填方总量 14.64 万 m³,弃方总量 20.92 万 m³,调出土石方共计 13.84 万 m³,本项目挖余土石方向电白站至观珠新建一级公路工程调出土方 23.43 万方后弃方 10.63 万方。

2) 生活垃圾

生活垃圾的主要成分有塑料饭盒和塑料袋、碎玻璃、废金属、果皮核屑等。 生活垃圾产生量按 1.0kg/人·天算,本项目施工人员为 50 人,施工期为 24 个月, 每月施工时间按 24 天计,生活垃圾产生量为 50kg/d,2.88t/施工期,生活垃圾收 集后由环卫部门处理清运。

3) 建筑垃圾

施工期建筑垃圾主要包括多余泥土、混凝土、残砖断瓦、破残的瓷片、玻璃、钢筋头、金属碎片、抛弃在现场的破损工具、零件、容器甚至报废的机械等,道路工程每建设1m将产5kg左右的废弃物。项目道路全长约7.121km,估算整个工程

建筑垃圾产生量约35.61t,尽量在施工过程成分地回收利用,不利用时进行收集 并在固定地点集中暂存,交由有处理资质单位处理。

5、对生态环境的影响分析

1) 占地

本项目拟建路线全长 7.121km, 其中旧路改建长度为 1.2km, 新建路段长度为 5.921km。全程永久性占地使原有土地利用功能永远丧失, 路基建设对生态环境影响直接表现为侵占植被生存空间, 在路基堆筑同时不仅破坏沿线脆弱植被, 而且可能会引起水土流失, 间接影响周围生态环境, 本项目建设过程中不占用基本农田。

2) 临时占地的影响

本项目无永久占地,临时占地主要有临时弃土场、施工便道、施工营地等。施工临时占地将对植被产生直接的破坏作用,导致区域植物数量和生物量的相对减少。使群落的生物多样性降低。但是临时占地影响是短期且可恢复的,一旦工程施工结束,采取必要的恢复措施,临时占地内的植被可逐步恢复。此外,项目工程沿线属于亚热带季风气候,季风性湿润气候特征明显,降水丰沛,水热条件好,有利于临时占地的植被恢复。

3) 水土流失

施工过程中对占地进行开挖,存在少数裸露土壤,经平整后,不会加剧扰动面的土壤侵蚀。施工活动可能引起局部的水土流失:一是因项目建设需开挖、扰动、破坏地表等造成局部土流失量,即直接流失量;二是因基础开挖产生的堆碴造成的水土流失,即间接水土流失量;但因项目沿线道路未开通及狭小乡路,项目施工安排尽量避开雨期,即使局部发生的水土流失也将是比较轻微的。

6、环境风险分析

本项目在施工期间风险事故主要是水上桥梁施工过程中施工机械、车辆因意 外事故产生油品泄漏,进入水体,造成水体污染;涉输油管段施工不当造成的油 品泄漏,进入土壤、水体,造成污染。

(1) 风险因子识别

①、茂石化输油管线与本项目交叉处为本项目的新建部分,施工过程中的路基桥墩开挖施工、施工设备振动及碾压等均可能对交叉的管线产生的影响,导致

输油管线内容物泄露,污染周围土壤、大气:

表 4-3 施工期对交叉并行管道风险因素识别

风险因子	对管道的影响	影响因素	影响程度
路基桥墩开挖施工、 施工设备振动	支撑土壤坍塌	设备载荷、管道抗力	较大
施工机械碾压	管道变形	设备质量及载重	较小

②水上桥梁施工过程中施工机械、车辆因意外事故产生油品泄漏,泄露的油品进入水体造成水体污染。

(2) 风险防范措施

①、施工期水上施工油类泄漏事故影响分析及防范措施

本项目水上施工过程,需要动用施工器械,期间还有不少运输车辆来往。倘若施工器械(包括水上施工)或车辆发生故障,或车辆发生事故,可能会产生燃油或润滑油、泥浆等其他原料泄漏,并进入水体。一般情况下,器械或车辆发生故障渗漏的燃油或润滑油量会相对较少;如果车辆发生事故,较严重的情况下可能会导致油箱或运输的泥浆罐破裂,产生较大的油类物质或泥浆泄漏量,对水体水质产生污染影响。

因此,需要从工程、管理等多方面落实预防手段来降低该类事故的发生率,加强对施工机械的管理和维护,确保施工机械不漏油。

②、施工期废水事故性排放影响分析及防范措施

施工废水主要来源于各施工现场施工机械设备清洗等操作的废水。这些废水主要含有泥沙及少量的油污,一般呈弱碱性。正常情况下,施工产生的废水通过临时排水系统,收集进入生产废水处理设施进行处理后,回用作为工程洒水、混凝土养护水。施工现场产生的施工废水量并不大,但如果是收集设施或处理设施发生故障,将有可能导致施工废水泄漏。本项目施工场地设置水体 1km 范围外,且不在其集雨范围,废水收集、处理设施均应设在现场地势较低处,所以泄漏后的废水进入水源保护区及敏感水体的可能性不大,其水量也相对较少。

③、涉输油管线段施工环境风险及防范措施

观珠出口至沙琅一级公路(第二期)与珠三角成品油管道(桩号MYJ041+500m) 存在一处交叉,该输油管属国家石油天然气管网集团有限公司华南分公司,埋深 1.6m 伴行 12 芯通信光纤,为保证安全并考虑输油管维护的需求,本项目设 1-20m PC 预制组合箱梁桥跨越该输油管。

施工期主要风险表现在,施工过程地表土体位移和沉降,对管道周边的土体产生扰动使得土体本身的强度发生变化,导致地面沉降,管道受到破坏,或者施工过程中直接对管道造成破坏,从而发生泄露,污染土壤,甚至波及附近水体。

根据《交通运输部 国家能源局 国家安全监管总局关于规范公路桥梁与石油天然气管道交叉工程管理的通知》(交公路发〔2015〕36 号):"建或改建公路与既有油气管道交叉时,应选择在管道埋地敷设地段,采用涵洞方式跨越管道通过;受地理条件影响或客观条件限制时,可采用桥梁方式跨越管道通过。采用涵洞跨越既有管道时,交叉角度不应小于 30°;采用桥梁跨越既有管道时,交叉角度不应小于 15°"。本项目与原油管线交角约为 76°,符合要求。

为了保证施工安全,施工单位必须严格落实安全措施,严禁破坏输油管道, 具体如下:

- ①必须采取人工开挖的方式将管道和光缆探明后方可施工,另外对于管道专项保护开挖全过程严禁机械开挖,需进行人工开挖;
- ②对于该项目建设的需求,有工程车辆需要通过跨越管道的,需修建临时便 道,便道方式采取贝雷梁方式跨越,以减少重型车辆对管道的直接碾压影响;桥 梁桩基础需控制在管道 5 米范围外。
 - ③严禁使用机械开挖,防止机械施工时意外破坏管道和光缆。
 - ④施工中,严禁机械和硬物敲击、碰撞管道。
- ⑤严禁在管道中心线 5 米范围内搭建工棚、堆放大宗物资、堆放弃渣等占压物。
 - ⑥严禁重型机械、车辆在管道上方碾压。
 - ⑦禁止在管道 200 米范围内进行爆破作业。
- ⑧管道 10 米范围内不允许动火,如需在 10 米范围内动火,必须办理动火作业票。
- ⑨施工过程中一旦出现管道异常情况,必须立即停工、应急处置并通知管道 管理单位。

建设单位以及施工单位严格落实管道施工方案,加强施工人员的安全意识,管道受到破坏发生泄露的事故可以避免。

运期态境响 析

1、大气污染源

本项目道路建成通车后,汽车尾气成为影响沿线环境空气质量的主要污染物。污染物排放量的大小与交通量的大小密切相关,同时又取决于车辆类型和运行车辆车况。机动车尾气排放的主要污染物为NO₂、颗粒物等。此外,车辆行驶产生的道路扬尘也会影响环境空气质量。随着交通量的不断增长,在源强不会的条件下,其污染物排放量也将逐步增加,对道路沿线两侧的局部空气环境污染呈增加趋势。

项目建成投入使用后,汽车尾气为主要污染源。汽车尾气中的主要成分为CO、NO_x和碳氢化合物。CO是汽油燃烧的产物;NO_x是汽油爆裂时,进入空气中氮与氧化合而成的产物;碳氢化合物是汽油不完全燃烧的产物。汽车尾气中污染物排放的多少与汽车行驶状况有很大的关系。汽车尾气中碳氢化合物浓度在空档时最高,CO浓度在空档和低速行驶时最高,NO_x浓度则在高速行驶时最高。

汽车尾气污染物主要来自曲轴箱漏气、燃油系统挥发和排气筒的排放,主要污染物为CO、 NO_2 等。车辆排放污染物线源源强计算采用如下方法。

$$Q_j = \sum_{i=1}^{n} \frac{A_i E_{ij}}{3600}$$

式中: Q_i 一j 类气态污染物排放源强度, $mg/s \cdot m$;

 A_j —i 型车预测年的小时交通量,辆/h;

 E_{ij} 一运行工况下 i 型车 j 类排放物在预测年的单车排放因子,mg/(辆 $\bullet m)$ 。

根据《轻型汽车污染物排放限值及测量方法(中国第六阶段)》(GB18352.6-2016)和《重型柴油污染物排放限值及测量方法(中国第六阶段)》(GB17691-2018)的相关规定,2021年7月1日起所有车辆执行6a阶段标准,2023年7月1日起所有车辆执行6b阶段标准。因此本项目近期(2025年)、中远期(2031

年)、远期(2039 年)轻型汽车尾气污染物的排放因子采用《轻型汽车污染物排放限值及测量方法(中国第六阶段)》6b 阶段限值要求,重型汽车尾气污染物的排放因子采用《重型柴油污染物排放限值及测量方法(中国第六阶段)》(GB17691-2018)中 6b 阶段限值要求。

表 4-4 《轻型汽车污染物排放限值及测量方法(中国第六阶段)表 3》

No. Hul	/ 27 Ed	测试质量(TM)	限值		
—————————————————————————————————————	类别 级别 kg kg		CO/ (mg/km)	NOx/ (mg/km)	
第一类车		全部	500	35	
	I	RM≤1305	500	35	
第二类车	II	1305 <rm≤1760< td=""><td>630</td><td>45</td></rm≤1760<>	630	45	
	III	1760 <rm< td=""><td>740</td><td>50</td></rm<>	740	50	

表 4-5 《重型柴油污染物排放限值及测量方法(中国第六阶段)表 3》

实施阶段	限	限值	
7,451717X	CO/(mg/kW·h)	NO _X /(mg/kW·h)	
VI	1500	400	

综合以上参考数据,本项目运营期汽车尾气污染物排放系数汇总如下表。

表 4-6 运营期汽车尾气污染物排放系数汇总表(单位: g/km·辆)

	VI(b)阶段标准(平均)	
车型	CO	NO _X
小型车	0.5	0.035
中型车	0.63	0.045
大型车	1.5	0.40

根据上表数据及本项目可研提供的预测交通量,计算运营期大气污染物排放源强

项目交通量见下表。

表 4-7 本项目昼夜交通量(pcu/d)

年份	2025 年	2031 年	2039年	
交通量(折合标准小客车/辆)	13121	19593	25204	

昼夜间车流量构成比例为9:1,昼间按16小时、夜间按8小时计。

表 4-8 本项目交通量预测结果

序号	年份	日交通量 (pcu/d)	车型	日交通量 (辆/d)	昼间(辆 /h)	夜间(辆 /h)
1	2025	13121	小	3154	177	39

				中	2745	154	34			
				大	1292	73	16			
				小	4761	268	60			
2	2 2031	2031	19593	19593	19593	19593	中	3777	212	47
				大	2047	115	26			
				小	6222	350	78			
3	3	2039	25204	中	4588	258	57			
				大	2716	153	34			

根据预测交通量和对应的机动车尾气污染物排放因子,估算出营运期该项目的主要大气污染物排放量及源强,合并以上计算结果,可以给出营运期该项目的主要汽车尾气污染物的最终排放量及相应源强。项目在 2025 年、2031 年和 2039年的车辆尾气源强见 4-9。

表 4-9 运营期大气污染物排放源强(VI(b)阶段标准)(单位: mg/m·s)

序号	污染因子	2025年	2031年	2039年
1	CO	0.0085	0.0127	0.0164
2	NO_X	0.0012	0.0019	0.0025

2、水环境污染源

本项目建成通车后,污水主要为路面雨水径流。由于大气降尘、飘尘、气溶胶、路面腐蚀、轮胎与路面磨损、车辆外排泄物及人类活动残留物,通过降水将其大部分经由排水系统进入受纳水体,将会对水体水质产生一些影响。降雨冲刷路面产生的路面径流污水量计算采用下列公式:

$$Q = q \cdot F \cdot \psi$$

式中: Q---雨水径流量(升/秒);

q—暴雨强度(升/秒·公顷);

F—汇水面积(公顷);

Ψ—径流系数(加权平均值),结合项目路面情况,采用水泥混凝土路面,依据《公路排水设计规范》(JTG/T D33-2012),本项目径流系数选取0.90。

其中暴雨强度q采用暴雨强度公式(重现期采用5年):

$$q = \frac{167 \times 33.429}{(t + 27.707)^{0.617}}$$

式中: t 为降雨历时(分钟),取 15 分钟。

本项目路面面积 30039m²,路面径流系数 C=0.90,经计算,q=550.61L/s,本

项目路面雨水径流量共为 14885.80L/s,则 1 小时路面雨水径流量为 59543.2m³/h。

国内外研究表明,路面雨水中污染物浓度与路面行驶的机动车流量、类型、降水强度、周期、道路性质及机动车燃料性质等多项因素有关,一般较难估算。根据国家环保总局华南环科所对《广东省潮州市潮州大桥工程环境影响报告书》路面径流污染情况所做的实测数据估算本项目污染物排放量。

路面1小时内污染物浓度平均值与本项目路面雨水量的相乘可近似作为该项目路面雨水污染物排放物,具体见下表。

污染物	径流开始后时间(min)			平均值 本项目排放量		
	5~20	20~40	40~60	1 % 压	(t/h)	
COD_{Cr}	87~55	55~20	22~4.0	45.5	2.71	
总磷	0.99~0.81	0.81~0.70	0.70~0.63	0.81	0.048	
石油类	22.30~19.74	19.74~3.12	3.12~0.21	11.25	0.067	
SS	231.4~158.5	158.5~90.4	90.4~18.7	100	5.95	

表 4-10 道路路面雨水中污染物浓度值一览表(mg/L)

3、噪声污染源分析

在道路上行驶的机动车辆噪声源为非稳态源。本项目建成投入营运后,车辆的发动机、冷却系统、传动系统等部件均会产生噪声,另外,行驶过程中引起的气流湍动、排气系统、轮胎与路面的摩擦也会产生噪声,路面平整度等原因也会影响整车噪声。

(1) 道路两侧水平方向噪声贡献值超标情况

道路两侧水平方向噪声贡献值预测结果显示,路面上行驶机动车产生的噪声在道路两侧的噪声预测值随距离的增加而逐渐衰减变小,并且随着车流量的增加预测噪声值也将随着增加。本项目道路机动车道边线两侧纵深 30m 内的区域,水平方向远期昼间噪声预测值最大为 69.25dB(A),可达到 4a 类标准;远期夜间噪声预测值最大为 58.44dB(A),超出 4a 类标准 4.44dB(A)。项目道路机动车道边线两侧纵深 35m 外的区域,水平方向远期昼间噪声预测值最大为 63.3dB(A),超出 2 类标准 3.3dB(A);远期夜间噪声预测值最大为 53.96dB(A),超出 2 类标准 3.96dB(A)。

(2) 敏感点超标情况

根据监测报告所示,本项目沿线声环境保护目标均未出现现状噪声超标情况,项目所在地声环境质量现状良好。

运营期声环境影响分析详见"声环境影响专项评价报告"。

4、固体废物

本项目建成通车后,路面固体废物为一般城市垃圾,可交由环卫部门进行卫 生填埋处置,经妥善处置后,将不会对周边环境产生污染影响。

5、环境风险

本项目为道路项目,项目本身不储存或使用《建设项目环境风险评价技术导则》(HJ169-2018)附录中列明的危险物质。根据本项目的使用性质,项目建成使用后作为运输活动的载体,其本身不会对环境产生明显的风险影响,其主要风险来源于行驶在道路上的车辆发生事故后可能对人群及周围环境产生的影响,重点是危险品运输车辆发生事故后,危险品泄漏污染环境空气、水体及对人群健康产生的危害。

根据调查,公路运输危险品主要有汽油、化工原料、烟花爆竹、农药等,其中油罐车辆约占危险品运输车辆的一半。公路运输危险品种类多样,危险品本身危险属性各异,因交通事故的严重程度造成的环境风险程度也相差较大,主要风险事故可归为以下几类:

- (1) 在跨越或邻近敏感水体路段,因碰撞、翻车等交通事故造成车辆所载货物破损、倾覆或整车进入水体,车载液态或固态危险品泄漏进入水体,对水体和水体利用者产生风险事故;
- (2)运载危险品车辆因碰撞、翻车等交通事故造成车载危险品泄漏或挥发, 产生有毒有害气体,对周围居民等群体产生危害;
- (3)当车载易燃易爆危险品时,因碰撞、翻车等交通事故造成危险品不稳定 而发生燃烧或爆炸事故时,爆炸或燃烧会对桥梁、居民等造成危害,以及间接导 致化学品泄漏进入水体。

6、生态环境

项目运营后产生的汽车尾气、人为干扰会对动植物个体生长都会产生一定的影响。道路运营会增加区域隔离度,对生物个体活动范围造成一定的影响。本项目现状开发强度已较大,项目建成投入使用后会加强道路两旁的绿化及美化工作,道路沿线区域的生态景观会向好的方向发展,本项目的建设不会给沿线生态环境带来明显负面影响。

选
址
选
线
环
境
合
理
性
分

本项目不在生态保护红线、生态环境空间管控区、大气环境空间管控区、水环境空间管控的要求,选址符合《广东省人民政府关于印发广东省"三线一单"生态环境分区管控方案的通知》与《茂名市环境保护"十四五"规划》相关要求。

施期态境护施工生环保措施

五、主要生态环境保护措施

1、大气环境保护措施

施工期运输车辆、施工作业等产生的扬尘,路面摊铺沥青产生的沥青烟气等会对周围产生一定影响。

建议建设单位应采取以下控制扬尘、沥青烟的措施:

- ①开挖过程中,应洒水使作业面保持一定的湿度,防止粉尘飞扬。
- ②建筑材料运输车应按规定配置防洒装备,装载不宜过满,保证运输过程中不散落;规划好运输车辆的运行路线与时间,尽量避免在交通集中区和居民住宅等敏感区行驶。
- ③运输车辆加蓬盖,且离开装卸场前先将车辆冲洗干净,减少车轮、底盘等携带泥土散落路面。
 - ④对运输过程中落在路面上的泥土要及时清扫,以减少运行过程中的扬尘。
 - ⑤施工结束时,应及时对施工占用场地进行清理,恢复地面道路及植被。
- ⑥在具有良好的大气扩散条件时进行沥青摊铺,沥青混凝土铺设应选在有二级以上的风力条件下进行,以避免局部过高的沥青烟浓度。尤其是对于离路近的敏感点仍然需要加强监测,以防止出现沥青烟中毒事件。

通过采取以上措施,项目施工期废气对周围敏感点和大气环境影响较小。

2、水环境保护措施

1) 生活污水

本项目设置项目部,项目部产生的废水主要是人员的盥洗废水,主要的污染物为: COD_{cr}、BOD₅、SS、NH₃-N、LAS,该部分废水经三级化粪池沉淀后,定时清掏用作项目部周围绿化灌溉使用,不外排。项目部内不设厨房,施工人员用餐依托项目周围饭店。

2) 地表径流水

本项目施工主要在春季、夏季,电白区观珠镇、沙琅镇属亚热带季风气候,降雨量充沛,特别是夏季暴雨易对施工场地的浮土造成冲刷,造成含有大量悬浮物的地表径流水污染周围环境,严重时可导致堵塞市政排水系统。但是根据

其他市政道路建设的实际经验表明,只要本项目施工单位加强施工期的环境管理,合理安排施工时间和施工组织,在暴雨、大雨期间暂停施工,并在施工场地建设临时的雨水管网排放,可以避免雨水横流现象。

3) 施工废水

基坑开挖过程中,雨水、渗水等汇集的基坑水,主要污染物为 SS, 经水泵 抽排至沉淀池沉淀后回用于施工区域内洒水降尘,对周围环境影响较小。基坑 废水 SS 排放浓度一般在 2000mg/L 左右。基坑废水经沉淀池预处理后回用于场 地洒水抑尘,沉淀污泥用于后期绿化培土。

施工机械清洗废水主要为施工过程中使用的挖土机、推土机、压路机、运输车辆等大型机械设备的清洗水,此类废水中主要含有 COD、SS、石油类,废水经隔油沉淀处理后回用于场地洒水抑尘不外排,本工程施工废水不会对附近水体造成明显影响。

本项目设置预制场和拌合场,这部分废水的主要污染物为 SS,经过场地预设的沉淀池沉淀后回用于场地洒水抑尘,不外排。对周围环境不会造成显著影响。

3、声环境保护措施

道路施工产生的噪声影响是不可避免的,只要有建设工地就会有施工噪声,防止噪声污染以减小其对周围环境的影响是必要的。为了确保项目施工过程中噪声能够稳定达标排放,项目施工应严格执行《建筑施工场界环境噪声排放标准》(GB12523-2011)相关规定。建议采取如下措施来进一步减轻噪声对周边敏感点的影响:

- ①建设单位应对施工场地进行合理规划,统一布局,制定合理的施工计划, 尽可能避免大量高噪声设备同时施工。
- ②合理安排施工时间,禁止高噪声设备在休息时间(中午 12 时至 14 时, 夜间 22 时至 次日上午 7 时)作业。如因连续作业确需在夜间施工的,应在开 工前报当地相关部门批准,并公告附近居民,以便取得谅解,并尽可能集中时 间缩短施工期。
- ③靠近敏感点施工段,必须使用低噪声施工工艺、施工机械和其他辅助施工设备,禁止使用国家明令淘汰的产生噪声污染的落后施工工艺和施工机械设

- 备,从根本上降低源强。经调查分析,选低噪型运载车在行驶过程中的噪声声级比同类水平其它车辆降低 10~15dB(A),不同型号摊铺机噪声声级可相差5dB(A)。同时要加强检查、维护和保养机械设备,保持润滑,紧固各部件,减少运行震动噪声。整体设备应安放稳固,并与地面保持良好接触,有条件的应使用减振机座,更好地降低噪声影响。
- ④减少施工交通噪声。由于施工期间交通运输对环境影响较大,应尽量减少夜间运输量,避免不必要的环境影响,同时限制大型载重车的车速,在进入施工路段时应限速,对运输车辆定期维修、养护,减少或杜绝鸣笛,合理安排运输路线。
- ⑤在敏感路段施工时设置不低于 2.5m 高的隔声屏障,以减少施工对周边居民日常生活的影响,还可以降低施工粉尘对周边环境的影响。
- ⑥建设单位应责成施工单位在施工现场标明粘贴通告和投诉电话,建设单位在接到报案后应及时与当地环保部门取得联系,以便及时处理各种环境纠纷。

经上述措施进行处理后,项目施工噪声通过距离衰减,这种暂时性的噪声 对周围声环境敏感点的影响在可接受范围内。

4、固体废物污染防治措施

为减少弃土在堆放和运输过程中对环境的影响,必须采取如下措施:

- ①施工单位应当及时清理运走、处置建筑施工过程中产生的垃圾;应对生活垃圾堆放点应进行定期的清洁消毒,杀灭害虫,以免散发恶臭,滋生蚊蝇,防止污染环境。
- ②车辆运输散体材料和废弃物时,必须密闭、包扎、覆盖,不得沿途漏撒; 运载土方的车辆必须在规定的时间内,按指定路段行驶。
- ③收集、贮存、运输、处置固体废物的单位和个人,必须采取防扬散、防流失、防渗漏或者其它防止污染环境的措施。建设过程中应加强管理,文明施工,使建设期间对周围环境的影响减少到较低限度,做到发展与保护环境相协调。

5、 水土流失环境影响污染防治措施

防治水土流失,须在建设的全过程中,各种措施合理配套,才能发挥最佳效益。水土保持措施包括技术措施和工程措施:

- ①落实水土保持"三同时"制度,执行"预防为主,保护优先,全面规划,综合治理,因地制宜,突出重点,科学管理,注重效益"的方针,施工前期应重点做好排水,拦挡等临时措施。
- ②落实施工期的水土流失临时防护措施,避免在暴雨和强降雨条件下进行 土建施工作业;施工后期及时跟进水土流失永久防治措施,以免造成水土的大 量流失。
 - ③施工前应先修建截水沟再进行路基施工,尽可能降低坡面径流冲刷程度。
- ④路基边坡成形后,应及时布设边坡防护及路面绿化措施,以免地表裸露时间过长,造成较大的水土流失。
- ⑤对于建设工程物料临时堆放场,应采取篷布遮盖,以防止风、雨及地表 径流等带来的水土流失,施工场地及材料堆放场在施工完毕后应及时进行土地 整治,恢复原有状态。通过采取以上防护措施,可将施工期水土流失影响降至 最低。

6、生态环境影响分析和污染防治措施

施工过程中现有生态景观环境会发生改变,为妥善保护好沿线生态景观环境,建设单位应注意如下几点:

- (1) 道路占地对植被的影响防治措施
- ①施工期道路建设尽量在红线范围进行,堆土、堆料不要侵入附近的空地、 路面及城市用地等,以维护城市生态景观环境。
- ②在满足工程施工要求的前提下,尽量节省占用土地,合理安排施工进度,工程结束后及时清理施工现场。
- ③对于不可避免的道路两侧开挖工程,要明确并严格控制开挖界限,不得任意扩大开挖范围,避免造成对周边生态环境的影响。
 - (2) 和施工活动对植被的影响防治措施
- ①施工过程应注意保护相邻地带的树木绿地等植被。对施工线路上的树木 应尽量减少砍伐,对无法避免砍伐的树木,应在施工结束后进行植树补偿,并 配套完成绿化、树木种植等恢复工作,以保持自然和生态环境免遭破坏。
 - ②在路基铺设过程中严禁再次利用道路两侧的土方作为取土区域。通过采取以上防护措施,可将施工期生态环境影响降至最低。

运期态境护 施营生环保措

7、施工期监测方案

通过有效的环境监测,可及时有效了解项目区域的环境质量状况。根据监测结果可以及时调整环境保护管理计划,给环保措施的实施方案提供依据,本项目施工期环境监测计划见下表。

环境要素	监测点位	监测因子	监测频次
大气环境	施工场界	TSP、NOx、CO、HC、THC、	
7C (217-5%)	苯并[a]芘	施工期间1次
声环境	施工场界	连续等效 A 声级	

表 5-1 施工期环境监测计划

1、大气环境保护措施

道路运营阶段,对空气环境的污染主要来自机动车尾气的影响,为减低汽车尾气对道路沿线大气环境的影响,本环评建议采取以下防治措施:

- (1) 定时洒水降尘,项目运营期主要的扬尘来自路面车辆行驶过程中带起的尘土,洒水降尘可以有效抑制:
- (2) 道路管理职能部门可按照《轻型汽车污染物排放限值及测量方法(中国第六阶段)》(GB18352.6—2016)等标准,禁止超标机动车通行,可有效降低遏制车辆尾气对项目沿线的空气污染;
- (3)建议规划部门合理规划道路两侧土地使用功能,并将新规划的第一排建筑物尽量后退,与道路保持一定的距离,缓解机动车尾气带来的不利环境影响。
- (4)建议在道路两旁绿化带栽种对汽车尾气有较强吸收能力的树种,以充分利用植被对环境空气净化功能。在采取以上措施后,可最大限度地降低道路汽车尾气对沿线大气环境的影响。

2、水环境保护措施

项目投入营运后,本身不产生污水,仅在雨季产生冲刷路面雨水。根据华 南地区路面径流污染情况调查,降雨初期到形成路面径流的 20~30 分钟,雨水径流中的悬浮物和石油类物质浓度较高,30 分钟后其浓度随降雨历时的延长迅速

下降; 120 分钟后路面基本被冲洗干净。作为道路项目,本项目由环卫部门定期进行路面清洁,因此雨水中污染物含量将明显减少,不会对周围地表水产生明显不良影响。为进一步保护项目附近水体,建设单位须落实以下保护措施:路面径流采用市政雨水管网排水,雨水口采用双箅雨水口。车行道路面雨水通过雨水井进入市政管网。通过加强对车辆漏油以及装载易散失物资车辆的管理,加强路面环境卫生清扫,可有效减少污染物产生,从而减少对水环境的影响。所以本项目排放的路面径流对水环境影响不大。

3、声环境保护措施

根据敏感点的室外达标分析和室内达标分析结果,项目建设后敏感点建筑 昼间、夜间室外噪声可达到《声环境质量标准》(GB3096-2008)4a 类标准; 近期昼间室外噪声可达到《声环境质量标准》(GB3096-2008)2 类标准,中期 和远期超标值为 1.46~3.69dB(A),夜间为 0.18~12.68dB(A)。

- (1) 道路两侧土地的合理规划利用和布局根据项目沿线土地利用,合理布局道路两侧。因此本次环评仅针对沿线用地规划提出噪声防护要求:
- ①针对噪声预测值超标量在 1.0dB 及以下的敏感点,考虑到预测可能存在的误差,拟采取绿化及加强交通管理作为主要降噪措施,控制敏感点所在区域声环境质量满足相应声功能区划的要求。同时在营运期对各敏感点进行跟踪监测,视监测结果达标情况考虑是否采取进一步降噪措施(如在征得敏感点居民同意前提下加装隔声窗或其他等效的降噪措施)。
- ②针对噪声预测值超标量在 1.0dB 以上,推荐采取安装通风隔声窗的降噪措施,降低拟建公路交通噪声影响。

(2) 绿化降噪措施

建设单位应在满足道路使用功能的前提下,尽可能增加绿化带的宽度,提高绿化带的植株密度,加强绿化带的降噪效果。由于树木具有声衰减作用,不同品种的植物具有不同的降噪效果,植物的种植结构对降噪作用也有很大的影响。因而,应根据当地的地理气象条件,选择最佳的降噪植物和绿化结构。绿化带除可降低道路交通噪声污染外,还能够净化空气,减轻城市的热岛效应,提高城市生态系统的自净能力,因而这种措施是值得推广的。本项目在机动车道外侧设置绿化带,以改善道路的整体环境,还能减少道路噪声的传播,起到

隔离噪声的作用,还能够净化空气、美化环境。

- (3) 交通管理制度以及路面的保养维护
- ①根据《关于加强环境噪声污染防治工作改善城乡声环境质量的指导意见》(环发【2010】144号),全面落实《地面交通噪声污染防治技术政策》,通过加强道路交通管理,可有效控制交通噪声污染,如加强路面维护,维持路面的平整度。加强上路车辆的管理,推广、安装效率高的汽车消声器,减少刹车,禁止破旧车辆上路,特别是夜间不能超速行驶。建议交通管理部门宜利用交通管理手段,在营地及至公庄路段两侧通过采取限鸣(含禁鸣)、限速等措施,合理控制道路交通参数(车流量、车速、车型等),降低交通噪声。建设单位应根据交通管理部门的要求,在项目施工期严格按要求完善相关交通管理设施建设。
- ②加强道路养护,减少路面破损引起的颠簸噪声,许多城市道路路面破损、 缺少养护,致使车辆行驶时产生颠簸,增加行驶噪声。因此,加强路面养护, 保持良好的路况,能有效减少道路交通噪声。
 - (4) 敏感点跟踪监测措施

对现状声环境敏感目标,建设单位应预留环保资金,并在道路运营中期远期进行跟踪监测,若出现超标应进行技术补救;对于未来规划敏感点(环评在本建设项目之后),敏感点建设单位应落实环保资金,采取必要的隔声措施。

具体分析详见声环境影响专项评价 4.2

4、固体废物保护措施

项目营运期的固体废弃物主要是运输车辆撒落的运载物、发生交通事故的车辆装载的货物与行人垃圾等。由当地环卫部门负责对道路的清洁,同时也对沿线的垃圾进行收集,清扫、集中处理,对周围环境的影响不明显。

3、生态环境保护措施

- (1)加强环保宣传工作,在敏感路段(临近基本农田区、地表水II类水体前)设置环境保护提示标语。
- (2)做好植被恢复以及公路绿化工作,绿化应充分考虑有关行车要求、交通安全、环境状况、自然条件及公路养护等问题。优先考虑乡土树种,在绿地范围内保留原有的景观树,以恢复地方性植被为主,外来适生树种为辅,防止

生物入侵,造成生态风险事故。

(3)按设计要求进一步完善水土保持的各项工程措施、植物措施和土地复垦措施。通过采取上述生态保护措施,本项目建设过程中可最大程度减缓土壤侵蚀水土流失,同时对生态环境的损害可得到较大程度的恢复。

4、环境风险防范措施

(1) 环境风险分析

根据《建设项目环境风险评价技术导则》(HJ169-2018)技术要求,通过风险调查、环境风险潜势初判、风险识别、环境风险分析、环境风险防范措施及应急要求等开展环境风险评价,为工程设计和环境管理提供资料和依据,以达到降低危险,减少危害的目的。

项目属于市政道路工程建设,项目本身不存在《建设项目环境风险评价技术导则》(HJT169-2018)中列明的危险物质,结合本项目的设计以及远期规划,道路的环境风险主要在于可能发生的危险品运输事故风险,本项目设置的禾禄岗桥跨越中石化的输油管线,但输油管线的风险不属于本项目的评价内容。因此,本报告仅对危险品运输风险事故进行分析。

- 一般物品运输过程中发生交通事故时,不会对周围环境造成严重污染。但如果运输石油、化学物品等易燃易爆或有毒物质的车辆发生翻车或爆炸等突发性事故时,其造成的污染有时甚至是灾难性的。这种情况虽然极少发生,却也不能彻底排除。因此,必须具有高度的警觉性来加以预防这种事故的发生。如发生事故现场可能对周围环境造成如下污染:
- ①当车辆发生事故时爆炸燃烧,会给事故现场周围的大气环境造成污染, 亦可能对周围居民人身安全造成危害。
- ②当车辆发生翻车或泄漏时,将对事故周围地表水环境、环境空气及生态环境造成污染。

上述两种情况所产生的环境风险的影响范围与危害程度取决于事故车辆大小、运量、运输物质性质、泄露量及事故发生地点的环境敏感度、扩散性等多种因素。具体情况难以给予准确的预测。但事故污染的后果往往比一般性污染后果严重,应引起高度重视,从各个环节预防这种事故的发生。

(2) 交通事故预防措施

- ①加强管理,严禁各种泄漏及散装载重车辆上路,防止散失货物,污染物排放和发生交通事故;
- ②应严格执行危险品运输的有关规定,办理有关危险品准运证,运输危险品车辆应有明显标志:
- ③运输危险品车辆上路应加强管理,防止事故发生,如发生事故,则立即通知公安、 环保部门,采取应急处理措施,防止污染的扩散。

(3) 营运期风险防范措施

运营期的风险主要是指交通事故和由此而引发的危险品的泄漏等事故。因 此消除和减缓由于危险品泄漏等事故对环境的不利影响,必须采取一定的防范 及应急措施。

- ①为防止和杜绝危险品运输过程中的恶性事故发生,建议联合交通管理部门,限制运输危险品车辆上路:
- ②若无法限行,运输危险品的车辆应严格执行危险品运输的有关规定,并 办理有关运输危险品准运证,运输车辆应有明显标志;
- ③在危险品运输途中,司乘人员应严禁吸烟,停车时不准靠近明火和高温 场所。驾驶员在运输途中必须集中精力,要注意观察路标;
- ④严禁运输化学危险品的车辆停靠在沿线上环境敏感点处,并在该处设置 严禁停车的标志牌,以防撞车事故发生;
- ⑤在运输途中万一发生燃烧、爆炸、污染、中毒等事故时,驾驶员必须根据承运危险货物的性质,按规定要求,采取相应的救急措施,防止事态扩大,并应及时向当地道路运政机关和有关部门(如公安、环保)报告,共同采取措施消除危害;
- ⑥制定一套应急方案,向附近居民宣传应急、急救措施,提高附近居民的反应速度,打电话给 110 或 119 等,降低事故损失程度,确保人身安全。

(4) 水环境风险防范措施

本项目营运期对水环境主要风险因素是运输有毒有害物质——包括化学化工原料及产品、油料的车辆发生翻车、着火、爆炸或泄漏等恶性事故。为防治此类事故的发生,特提出如下防治措施与对策建议,这些措施的总的思路是引出事故时排渠区域路段的路面径流、防范事故车辆翻落到龙记河中。

- I、必须在龙记河桥路段建设环境风险防范措施
- ①建设高强度的防撞栏,在排渠路段建兼合柔性和刚性防撞栏。
- ②将跨越龙记河路段地面径流进行收集、处理。为防止在该路段发生的事故污染附近水体。

为防范危险化学品运输带来的环境风险,本项目对龙记河桥跨越龙记河的路段设置桥面、路面径流收集系统,收集池(事故应急池)的主要功能是一方面收集初期雨水,将其沉淀后排放;另一方面从最不利的风险事故发生角度考虑,满足风险事故发生时及时收集危险品的需要。收集池(事故应急池)容量需容纳桥面的一次最大径流量和消防水量:

A、一次最大径流量的计算

计算公式见:第四章、运营期生态环境影响分析,各参数取值及计算结果 见表 4-6

B、消防用水径流影响分析:

公路上发生重大交通事故造成火灾、溢油等影响,需要进行消防抢险救援。 消防用水留至路面带走路面污染物,污染物溶入水中,随着雨水汇入河流,将 可能引起河道水质的影响。根据水罐消防车载水量大小,可分为小型水罐消防 车、中型水罐消防车、重型水罐消防车三种,其中载水量最大的是重型水罐消 防车,为 18m³。假设在营运期公路上发生交通事故时需要调用消防车进行消防 抢险,选用的消防车类型为重型水罐消防车,发生一次重大交通事故需要 2 台 消防车。因此计算可得一次重大交通事故所需的最大消防用水是 18m³×2=36m³, 一次消防用水可能产生的最大径流为 36m³。

应急池计 应急池设 消防用 序 桥梁名称 计参数 F 算参数 0 Ψ q 묵 水 (m³) (m^3) (m^3) 龙记河桥 0.072 0.9 550.61 35.68 36 75 150

表 5.3-2 应急池计算统计表

综上, 龙记河桥两边各设一个 75 m³ 事故应急池。

C、事故应急池出水去向:路面一般雨水径流通过排水系统汇集后排至周边的排水渠或农业灌溉沟渠,本项目桥面水采用集中排水方案,通过纵向 pvc 管,分别向桥梁两端方向排入路基排水沟中,排水沟流入天然河道之前,设置沉淀池。事故状态下通过阀门进行切换,使事故废水留在事故应急池。收集到的废

水经泵送至清理车外运,并根据废水的性质按照相关规定交由有资质的部门进行处置。池体做好防腐、防渗漏措施,池底定期进行清理。

事故应急池不同工况及运行方式见表 5.3-3。

表 5.3-2 事故应急池不同工况下运行方式

序号	工况 运行方式				
1	晴天,无危险品泄露				
2	晴天,有危险品泄露, 泄漏量<库容	危险品储于池内,待外运处置			
3	有危险品泄露,适逢下 雨满池	危险品经管渠系统随雨水流入池中,此间管理人员接到泄露报警后,立即关闭出水闸门,防止其溢出,并尽快赶至现场,收集污染废水并外运处置。			
4	有危险品泄露,适逢下 雨半池	同工况 3, 若雨量不大, 危险品不会溢出, 外运处置			
5	雨天,无危险品泄露	桥面水分别向桥梁两端方向排入路基排水沟中,经沉 淀池后排放。应急池池空待用			

④在经过龙记河路段处设置"谨慎驾驶"警示牌和"危险品车辆限速"标志牌, 提醒危险品车辆驾驶员注意安全和控制车速。在河流路段范围内,设立"禁止超 车"的标志;

- II、加强运营期交通管理,严禁违章驾驶
- ①设置警告路标,告诫司机谨慎驾驶

根据我国近年来对发生交通事故的原因统计结果,致使车辆发生泄漏、翻车、着火或爆炸事故的主要因素是司机驾驶失误。显然,减少恶性交通事故发生的最有效的方法是减小司机的驾驶失误,因此必须加强道路运营期的司机管理,严禁违章驾驶,并有切实的管理措施。

②制定运营期对该路段交通运输的特殊管理规定制度

营运期间,不允许装载不严的车辆上公路; 定期对路面进行清扫。

Ⅲ、突发性事故的应急措施

道路管理部门应按照本评价报告提出的应急预案,结合项目的实际情况制定切实可行的应急预案,准备相应的物资,把应急措施准备落实到实处。

5、环境监测计划

本项目环境监测计划主要包括环境废气、噪声,环境监测计划见下表5-1。

表 5-1 运营期环境监测计划

监测项	监测地	监测项目	监测频次	地行标准
目	点		血粉沙火	15人11 45八任

噪声	面向道 路的第 一排建 筑	等效连续 A 声级	2次/年,每次监测 分昼间和夜间各一 次	道路两侧边界线外 35±5m 范围 以内区域范围划分为 4a 类声环 境功能区,以及临街建筑高于三 层楼房以上(含三层)面向交通 干线一侧至交通干线边界线的区 域执行《声环境质量标准》 (GB3096-2008)中的 4a 类标 准,其余区域执行 2 类标准
	沿线居 民点	NO ₂	1 次/年,NO ₂ 连续 20 小时采样	采样分析方法依照有关标准进 行。
大气	道路路边	TSP CO NO ₂ PM ₁₀	交通自动连续监测 点	采样分析方法依照有关标准进 行。

项目"三同时"环境保护验收情况见下表:

表 5-2 建设项目"三同时"环境保护验收一览表

	类别		污染源	防治措施	验收要求	
	废气	施工期废气		洒水抑尘、覆盖堆土、使用 商品沥青砼、硬化路面等	达到广东省地方标准《大气污染物排放限值》(DB44/27-2001)第二时段 无组织排放监控浓度限值	
		运营	·期扬尘及汽 车尾气	加强绿化	不会对周围环境产生明显不良影响	
	废水	į	施工废水	沉砂池沉淀后回用	广东省《水污染物排放限值》 (DB44/26-2001)第二时段三级标准	
		运营	期路面径流	加强道路清洁、保证雨污分 流	不会对周围环境产生明显不良影响	
		施工期噪声		使用低噪声设备、合理布置 作业时段、设置施工围挡等	达到《建筑施工场界噪声排放标准》 (GB12523-2011)	
其他	噪声			铺设混凝土、加强绿植、 超 标敏感建筑设置隔音窗	道路两侧边界线外 35±5m 范围以内 区域范围划分为 4a 类声环境功能 区,以及临街建筑高于三层楼房以上 (含三层)面向交通干线一侧至交通 干线边界线的区域执行《声环境质量 标准》(GB3096-2008)中的 4a 类 标准,其余区域执行 2 类标准	
		施工	弃土石方	交由相应单位处理		
		期	生活垃圾	由环卫部门处理		
	固废		建筑垃圾运输车辆撒	交由有处理资质单位处理	不排入外环境	
		177 (古)	落的运载物等	由环卫部门处理		
	生态保护		施工期	合理安排工期,尽量避开雨季施工,修临时工程防护措施,增加植被覆盖等	不会对周围环境产生明显不良影响	
			运营期	加强绿化		

本项目总投资 33000 万, 其中环保投资 330 万, 具体如下表 5-3。

表 5-3 项目环保投资一览表

环保 投资

类别	金额 (万元)
环保投资	150
其中:废水治理环保投资	65
废气治理环保投资	13
噪声治理环保投资	150+30(不可预见投资)
固体废物投资	2
绿化及生态环保投资	30
其他环保投资	10

六、生态环境保护措施监督检查清单

内容	施工期		运营期		
要素	环境保护措施	验收要求	环境保护措施	验收要求	
陆生生态	合理安排工期, 尽量避开雨季施工,修临 时工程防护措施,减少或 避免水土流失;对于不占 用项目道路红线的原有树 木,应避免不必要的砍伐; 对于占用道路红线的原有 树木,应进行生态补偿等	不对周边陆 生生态 环境造成明 显影响	加强绿化	不对周边生态环境 造成明显影响	
水生生态	/	/	/	/	
地表水环境	施工废水经沉砂池沉淀后 回用	对周围地表 水环境无不 良影响	加强道路清洁、 保证雨污分流	对周围地表水环境 无不良影响	
地下水及土 壤环境	/	/	/	/	
声环境	使用低噪声设 备、合理布置作 业时段、设置施 工围挡等	《建筑施工 场界噪声排 放标准》 (GB12523-2 011)	铺设沥青混凝土 吸音路面、加强 绿植、超标敏感 建筑设置隔音窗	道路两侧边界线外35±5m 范围以内区域范围划分为4a类声环境团划能区,以及市场建筑。于三层楼房间至交通干线边界线的区域,是一层的区域,是一个《声环境质量标准》(GB3096-2008)中的4a类标准,其余区域执行2类标准	
振动	/	/	/	/	
大气环境	洒水抑尘、覆盖堆土、使 用商品沥青砼、硬化路面 等	广东省地方 标准《大气污 染物排放限 值》 (DB44/27-2 001)第二时 段无组织排 放监控浓度 限值	加强绿化	不会对周围环境产 生明显不良影响	
固体废物	弃土石方交由相应单位处 理;生活垃圾由环卫部门	不排入外环 境	运输车辆撒落的 运载物等	由环卫部门处理	

	处理;建筑垃圾交由有处 理资质单位处理			
电磁环境	/	/	/	/
环境风险	/	/	严禁运输化学危险品的车辆停靠在沿线上环境敏感点处,并在该处设置严禁停车的标志牌,以防撞车爆炸等事故发生	不对周围的环境产 生明显的不良影响
环境监测	对施工扬尘进行半年一次 的监测	广东省《大气 污染物排加 (DB4427-20 01)第二时段 二级标准及 无组织排限 监控浓度 值	/	人行道植草绿化
	对施工噪声进行一季一次 的监测(具体视施工情况 而变化)	《建筑施工 场界环境噪 声排放标准》 (GB12523-2 011)标准(昼 间≤70dB(A), 夜间 ≤55dB(A))	对营运期噪声 2 次/年,每次监测 分昼间和夜间各 一次	达到《声环境质量 标准》 (GB3096-2008)2 类标准限值要求 (昼间≤60dB(A), 夜间≤50dB(A))
其他	/	/	/	/

七、结论

	本项目必须采纸	内上述有关环位	呆措施和建议	,采取有效的防	治措施,	减少其污	染因素
对环	「境的影响。						
	通过上述分析,	按现有报建工	功能和规模,	项目建设单位在	建设中央	必须认真技	执行"三
同时	」 "的管理规定,	切实落实本环	境影响报告表	長中的环保措施.	尤其要	做好项目	交通噪

声污染防治措施落实,项目需经环境保护设施竣工验收合格后方可正常通车,确保项目

通车不对周围环境产生明显影响。从环境保护的角度而言,本项目是可行的。

观珠出口至沙琅一级公路(第二期)改建工程声环境 影响专项评价报告

建设单位: 茂名市电白区交通运输局 编制单位: 湛江市深蓝环保工程有限公司

编制日期: 2023年6月

目录

1 总	论	•••••	18	81
2 Д	程分析	错误!	未定义书签。	4
3 声	环境质量现状调查与评价	错误!	未定义书签。	9
4 施	工期声环境影响预测与评价	••••••	20	08
5 营	运期声环境影响预测与评价	•••••	2	11
6 营	运期声环境保护措施	•••••	22	28
7 声	环境影响评价结论	•••••	2	32

1. 总论

1.1. 项目由来

城市基础设施是城市正常运行和健康发展的基石,对于改善人居环境、增强 城市综合承载能力、提高城市运行效率、稳步推进新型城镇化、确保 2020 年全 面建成小康社会具有重要作用。

道路建设是社会经济的基础产业,城市基础设施的建设直接服务于经济建设,经济及城市建设的快速发展,愈来愈依赖交通运输的发展。茂名市电白区位于粤西,近年来该区紧紧抓住粤东西北振兴发展战略的历史机遇,以交通基础设施建设、产业园区扩能增效、中心城区扩容提质"三大抓手"为工作重点和强力引擎,城镇建设得到了长足的发展,取得了一定的成绩。

本项目位于电白区观珠镇与沙琅镇,其建成后,将使电白区各个功能区联系成整体,使道路主骨架的路网结构成为主要的经济发展的轴线,对路网结构的完善、拉动区域经济的的发展起到极其重要的作用。本项目的建设将优化茂名电白区的投资环境,完善茂名电白区的各项基础设施,对于加速茂名市电白区的发展具有重要意义,因此项目建设是必要的。

观珠出口至沙琅一级公路(第二期)改建工程起点位于观珠出口至沙琅一级公路(第一期)终点,终点连接国道325,为改建项目。项目主要完善电白区的交通网络、提升公共服务设施。项目设计内容包括路基工程、路面工程、道路附属工程、交通工程及沿线设施、照明工程、排水工程、绿化工程、桥涵工程、交叉工程等。本项目主线沿S281省道进行铺设,S281即原国道G325,该公路东部起于广州,西部终点位于广西省南宁市。观珠镇至沙琅段为双向2车道,道路等级为二级公路,路基宽度为9米,沥青路面。其中本项目主线桩号K0+000~K0+500段路面良好,拟原路面利用;项目K0+500~K1+220段为原省道281线路,由于无法满足本项目道路等级标准,拟挖除新建。此外,项目剩余部分K1+220~K7+121.077均为新建

本项目路线整体呈南北走向,全线采用双向 4 车道一级公路标准建设,路线全长 7.121km,占地面积约 300390m^2 ,设计速度 80km/h,路基宽 24.5m,桩号: $K0+000\sim K7+121.077$,其中受下穿深茂铁路影响, $K0+000\sim K0+792.464$ 段采用

分离式路基,设计速度 60km/h,左幅老路利用,右幅采用新建形式,路基宽度为 12.5 米。

根据《中华人民共和国环境影响评价法》(2018 年修订)和《国务院关于修改〈建设项目环境保护管理条例〉的决定》(中华人民共和国国务院令第 682 号)等法律法规要求,该项目需执行环境影响评价制度。依据《建设项目环境影响评价分类管理名录(2021 年版)》,本项目属于"五十二、交通运输业、管道运输业"中"130 等级(不含维护;不含生命救援、应急保通工程以及国防交通保障项目;不含改扩建四级公路)公路,的"其他(配套设施除外;不涉及环境敏感区的三级、四级公路除外)",按要求需编制环境影响报告表。茂名市电白区交通运输局委托湛江市深蓝环保工程有限公司承担建设项目的环境影响评价工作,以完善项目审批程序。评价单位在接受委托后对现场及周边环境进行了勘查,了解项目建设规划及现状等情况,根据国家和地方对建设项目环境影响评价要求和建设单位提供的有关资料,编制完成本声环境影响专项评价报告,供建设单位上报主管环保部门审查。

1.2. 编制依据

1.2.1. 采用的法律、法规及规范性文件

- 1. 《中华人民共和国环境保护法》(2014 年 4 月 24 日全国人大常务委员会通过了修正案, 2015 年 1 月 1 日起实施);
- 2. 《中华人民共和国环境影响评价法》(2002 年 10 月 28 日中华人民共和国主席令第 77 号发布, 2003 年 9 月 1 日起施行, 2016 年 07 月 02 日修订, 2018 年 12 月 29 日第二次修正):
 - 3. 《中华人民共和国噪声污染防治法》(2022年6月5日实施);
- 4. 中华人民共和国国务院令第 682 号《国务院关于修改〈建设项目环境保护管理条例〉的决定》(2017 年 7 月 16 日);
 - 5. 《建设项目环境影响评价分类管理名录》(2021 年 1 月 1 号);
- 6. 《地面交通噪声污染防治技术政策》(环发(2010)7号 2010年1月1日):
- 7. 《关于加强环境噪声污染防治工作改善城乡环境质量的指导意见》(环发〔2010〕144号):
 - 8. 《关于公路、铁路(含轻轨)等建设项目环境影响评价中环境噪声有关

问题的通知》(2003年5月27日)。

1.2.2. 环境影响评价技术规程规范

- 9. 《广东省环境保护条例》(2019年11月29日修订并施行);
- 10.《广东省环境保护厅关于印发广东省环境保护"十四五"规划的通知》(粤环〔2021〕10号):
- 11.《关于发布广东省生态环境厅审批环境影响报告书(表)的建设项目名录(2021 年本)的通知》(粤环办〔2021〕27 号);
 - 12. 《茂名市环境保护规划(2006~2020)》;
 - 13. 《茂名市土地利用总体规划(2006-2020)年》
 - 14. 《广东省"三线一单"生态环境分区管控方案》(粤府〔2020〕71号);
 - 15. 《茂名市"三线一单"生态环境分区管控方案》(茂府规〔2021〕6号);
 - 16. 《茂名市公路网规划(2012-2030)》。

1.2.3 其他

- 17.《电白观珠至沙琅一级公路(第二期)可行性研究报告》(电发改投审(2022)139号);
 - 18. 环境现状检测报告(报告编号: LY2022110302);
 - 19. 建设单位提供的设计资料等。

1.3. 声环境影响要素识别和评价的筛选

(1) 施工期声环境影响要素识别

建设工程施工过程中的噪声源主要是各种工程施工机械、运输车辆等,其中主要有挖掘机、推土机、装载机、压路机、摊铺机等。产生的噪声声级值一般在75~90dB(A)之间。

(2) 运营期声环境影响要素识别

项目通车营运后的噪声源主要是路面行驶的机动车。路面行驶机动车产生的 噪声主要由发动机噪声、排气噪声、车体振动噪声、传动机械噪声、制动噪声等 声源组成,其中,发动机噪声是主要的噪声源。

(3) 评价因子的筛选

本项目施工期施工机械噪声、声环境现状和预测评价因子为等效连续 A 声级。

1.4. 声环境影响评价等级和评价范围

项目沿线区域有部分散户居民,曙光农场三分场、大榕新村、元墩岭、黄竹塘村、陈宅、大榕树、大榕村、大榕小学、风炉岭、水鸡岭、排仔村等敏感点。 本项目建设前后评价范围内敏感目标噪声级增高量达 5dB(A)以上,

根据《环境影响评价技术导则 声环境》(HJ 2.4-2009)中评价工作等级的划分依据,本项目声环境影响评价等级为一级评价。结合表 5-7 项目道路噪声水平方向贡献值可知,项目道路噪声在道路中心线外两侧 200m 处可达到《声环境质量标准》(GB3096-2008)中的 2 类标准,因而,项目声环境影响评价范围为道路中心线外两侧 200m 区域。

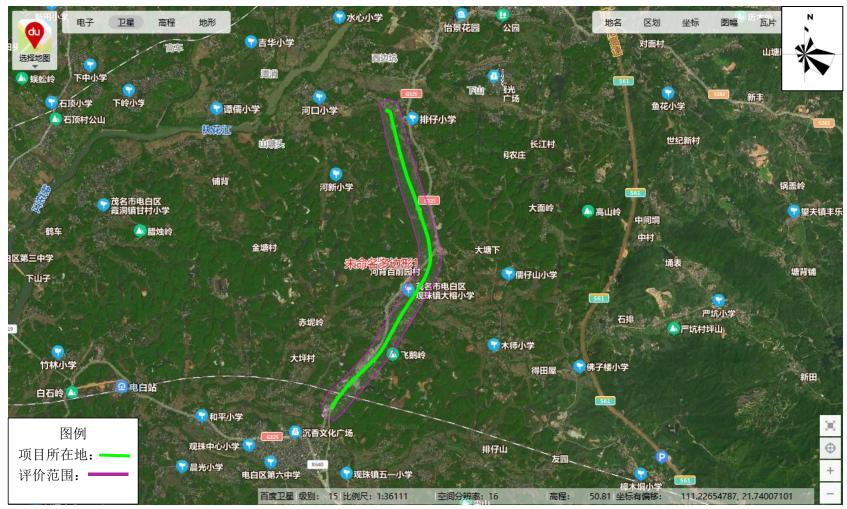


图1.4-1 道路中心线外两侧200m声环境影响评价范围

1.5. 声环境功能区划和执行标准

本项目位于电白区观珠镇和沙琅镇,道路等级为城市主干道。项目沿线声环境影响评价区域有散户居民,曙光农场三分场、大榕新村、元墩岭、黄竹塘村、陈宅、大榕、大榕村、大榕小学、炸岭、风炉岭、水鸡岭、禾禄岗等敏感目标。

交通干线及特定路段临街建筑以低于三层楼房(含开阔地)为主时,道路两侧纵深 35m 范围内为 4a 类声环境功能区,当交通干线及特定路段纵深 35m 范围内以三层楼房以上(含三层)的建筑为主时,第一排建筑面向道路一侧至交通干线及特定路段边界线的范围内受交通噪声直达声影响的区域划为 4a 类声环境功能区,执行《声环境质量标准》(GB3096-2008)4a 类标准;第一排建筑背向道路一侧未受到交通噪声直达声影响的区域执行 2 类声环境功能区要求,执行《声环境质量标准》(GB3096-2008)2 类标准。对于第二排及以后的建筑,若其高于前排建筑或虽低于前排建筑但因楼座错落设置使部分楼体探出前排遮挡并受到道路交通噪声的直达声影响,则高出及探出部分的楼层面向道路一侧范围划为 4a 类声环境功能区,执行《声环境质量标准》(GB3096-2008)4a 类标准,其余路段所在区域属于声环境 2 类区,执行《声环境质量标准》(GB3096-2008)2 类标准

表 1-1 声环境质量标准

类别	昼间(dB)	夜间(dB)
4a 类	70	55
2 类	60	50

1.6. 声环境保护目标

经现场踏勘、调查统计,项目道路沿线声环境影响评价范围内已建有。除在本项目批复前已取得环保部门批复的学校、居民等沿线规划敏感目标,其余沿线规划敏感点若在本项目环境影响评价报 告批复之后开始进行环评、建设,则由规划敏感点的建设单位根据噪声管理要求自行进行隔声窗的安装。项目道路沿线已建或已备案的敏感点具体情况详见表 1-2。

表1-2 项目声环境保护目标一览表

									表l-	2 坝目	1 声	低保护目标	一览表		
	45.Th St	声环境保	じし ナーロカ		VIT 44, da	敏感点距道路红线	# 14 /cr /4		7	「同功能区	户数		上香口品品		
序 号	行政区 划	护目标名	所在路 段	里程范围	路线形 式	/机动车道边线/道	用地红线 内户数		排		.排	全部	与项目的位 置关系	现状图	与本项目位置关系图
		称				路中心线 (m)		2 类	4a 类	2 类	4a 类	工中			
1	观珠段	散户 1	主线	K0+055~K0+ 065	路基	17.5/25.25/34	/	/	1/4	/	/	1/4	左侧		80. ¥ 0
2	观珠段	散户 2	主线	K0+118~K0 +140	路基	13.5/21.25/30	/	/	1/4	/	/	1/4	右侧		
3	观珠段	散户3	主线	K0+229~K0 +276	路基	13.1/20.85/29.6	/	/	3/16	/	/	3/16	左侧		
4	观珠段	婆岭	主线	K0+360~K0 +545	路基	12.1/19.85/28.6	/	/	6/32	12/53	/	18/85	左侧		

5	观珠段	牛仔塘岭1	主线	K0+548~K0 +605	路基	7.5/15.25/24	/	1/2	6/18	/	/	7/20	左侧	
6	观珠段	陈宅	主线	K0+638~K0 +665	路基	28/37.5/44.5	/	1/6	/	/	/	1/6	右侧	了 是 你上
7	观珠段	牛仔塘 岭 2	主线	K0+806~K0 +829	路基	46/53.75/62.5	/	1/2	/	/	/	1/2	左侧	# #T (# P 8
8	观珠段	散户4	主线	K0+890~K0 +908	路基	2.5/9.75/18.5	/	/	1/5	/	1	1/5	右侧	
9	观珠段	黄岭坳	主线	K0+958`K1 +031	路基	3/4.75/13.5	1	/	3/16	/	/	3/16	左侧	

10	观珠段	曙光农 场三分 场	主线	K1+000~K1 +265	路基	3/4.75/13.5	9	/	6/30	5/22	6/20	17/72	右侧	TO CORE OF
11	观珠段	大榕新村	主线	K1+520~K1 +720	路基	96.7/104.45/113.2	/	/	12/56	9/35	/	24/91	左侧	
12	观珠 段	黄竹塘村	主线	K1+810~K1 +940	路基	24.3/32.05/40.8	/	/	/	11/50	/	11/50	右侧	
13	观珠 段	雪屋	主线	K2+120 [~] K2 +290	路基	76.9/84.65/93.4	1	2/6	/	3/10	/	13/50	右侧	

14	观珠段	大榕	主线	K2+283~K2 +695	路基	12/19.75/28.5	1	1/3	/	3/9	1	28/109	右侧		
15	观珠段	元墩岭	主线	K2+821~K2 +893	路基	54.4/62.15/70.9	/	2/6	/	1/3	/	22/96	右侧		
16	观珠段	大榕村 1	主线	K0+686~K2 +919	路基	151.8/19.55/168.3	/	1/4	1	2/7	/	41/165	左侧		1500 × 2013
17	观珠段	大榕小学	主线	K2+960~K3 +017	路基	116/123.75/132.5	/	1/4	1	/	/	1/180	右侧	TH HI THE SEED OF	大都事

18	观珠段	大榕村 2	主线	K3+056~K3 +290	路基	7.5/15.25/24	/	1/3	/	1/5	1	21/90	左侧		
19	观珠段	散户 5	主线	K2+931~K2 +963	路基	12.5/20.25/29	/	3/7	/	/	/	3/7	左侧		
20	观珠段	散户 6	主线	K3+432~K3 +539	路基	106.8/114.55/123.3	/	/	3/10	/	1/2	4/12	左侧		
21	观珠段	炸岭	主线	K3+586~K3 +665	路基	191.5/199.25/208	/	3/8	/	1/2	I	7/20	右侧	*************************************	

22	观珠段	散户 7	主线	K3+821~K3 +841	路基	41.3/49.05/57.8	/	/	2/6	/	/	2/7	左侧		
23	观珠段	风炉岭	主线	K3+829 [~] K3 +840	路基	105.5/113.25/122	/	1	/	1/1	/	4/6	右侧		
24	观珠段	散户 8	主线	K3+913~K3 +018	路基	35/42.75/51.5	/	/	5/17	/	/	5/17	右侧		
25	沙琅段	散户 9	主线	K4+995~K5 +006	路基	155/162.75/171.5	/	1/3	/	1/3	/	3/10	右侧	Ti ett	

26	沙琅段	水鸡岭	主线	K5+980~K6 +310	路基	39.5/47.25/56	2	1/3	1	1/2	/	27/105	右侧	A SAN
27	沙琅段	禾禄岗 1	主线	K7+000~K7 +113	路基	17.1/24.85/33.6	3	5/12	/	3/10	1	19/66	右侧	C C C C
28	沙琅段	禾禄岗 2	主线	K6+940~K6 +950	路基	107.5/115.05/123.8	/	1/4	/	/	/	1/4	右侧	

2. 工程分析

2.1 项目概况

项目名称:电白观珠出口至沙琅一级公路(第二期)工程建设地点:电白区观珠镇、沙琅镇

建设性质: 改建

投资情况:项目总投资 33000 万元,环保投资 330 万元

工程内容:本项目位于观珠至沙琅一级公路(一期)终点,终点接规划远期G325.路线呈南北走向,全线采用双向4车道一级公路标准建设,路线全长7.121km,占地面积约300390m²,设计速度80km/h,路基宽24.5m,桩号:K0+000~K7+121.077,其中受下穿深茂铁路影响,K0+000~K0+792.464段采用分离式路基,设计速度60km/h,左幅老路利用,右幅采用新建形式,路基宽度为12.5米。

本项目主线沿 S281 省道进行铺设,S281 即原国道 G325,该公路东部起于广州,西部终点位于广西省南宁市。观珠镇至沙琅段为双向 2 车道,道路等级为二级公路,路基宽度为 9 米,沥青路面。其中本项目主线桩号 K0+000~K0+500段路面良好,拟原路面利用;项目 K0+500~K1+220 段为原省道 281 线路,由于无法满足本项目道路等级标准,拟挖除新建。此外,项目剩余部分 K1+220~K7+121.077 均为新建。

项目地理位置图详见图 2-1,项目地理位置卫星图详见图 2-2,

图 2-1 项目地理位置图

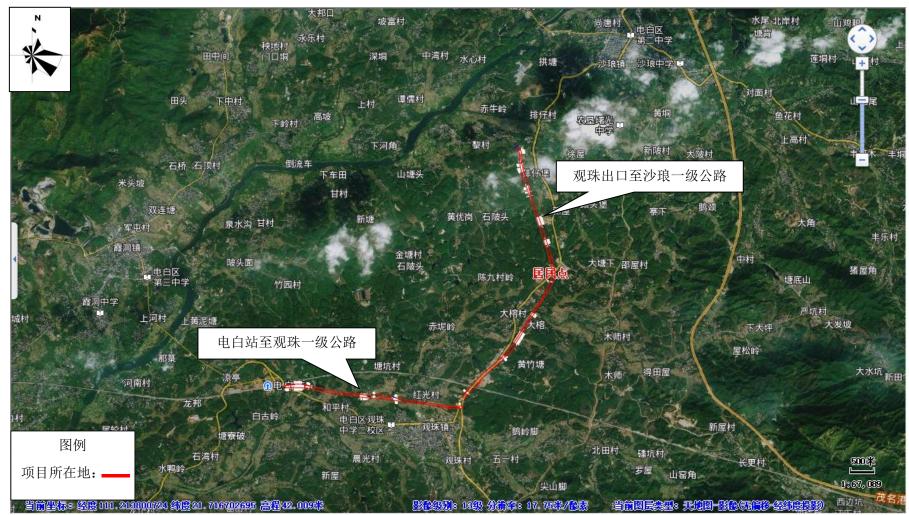


图 2-2 项目地理位置卫星图

图 2-3 项目新建、改建示意图

2.2 项目交通量预测

根据《电白观珠出口至沙琅一级公路(第二期)工程可行性研究报告》,本项目预测特征年为近期 2025 年、中期 2031 年和远期 2039 年。项目交通量预测结果详见表 2-1。

表 2-1 电白观珠出口至沙琅一级公路(第二期)工程交通流量预测结果(pcu/d)

年份	2025年	2031年	2039年
交通量(折合标准小客车/辆)	13121	29593	25204

根据《公路工程技术标准》(JTGB01-2014),公路交通情况调查机动车车型分类以及折算系数详见表 3.5-4。结合《环境影响评价技术导则 声环境》(HJ2.4-2021)附录 B.2 中车型分类表,见表 2-2,形成各特征年车型比如表 2-3 所示。

表 2-2 各汽车代表车型及车辆折算系数

			((
车型	一级分类	二级分类	额定荷载参数	折算系数
		小客车	额定座位≤7座	1
	客车	中客车	7座<额定座位≤19座	1
		大客车	额定座位>19座	1.5
汽车		小货车	载质量≤2吨	1
千万千		中货车	2吨<载质量≤5吨	1.5
	货车	中货车	5吨<载质量≤7吨	1.5
		大货车	7吨<载质量≤20吨	2.5
		汽车列车	载质量>20吨	4

表 2-3《环境影响评价技术导则 声环境》(HJ2.4-2021)车型分类表

汽车代表车型	车辆折算系数	说明
小客车	1	座位≤19座的客车和载重量≤2t的货车
中型车	1.5	座位≥19 的客车和 2t≤载重量≤7t 的货车
大型车	2.5	7t<载重量≤20t 的货车
汽车列车	4	载重量>20t 的货车

结合本项目所在片区的规划,以及可行性研究报告给出的相关车型的特征年预测,本项目各车型比例如下:

表 2-4 各特征年自然车车型比例(%)及 pcu 折算系数

路段 名称	年份	小货车	中货车	大货车	特大货车	集装箱	小客车	大客车	合计
全线	2025	19.39	27.87	14.28	2.39	1.97	24.76	9.34	100.00
	2031	16.85	26.44	14.46	2.63	2.25	28.13	9.24	100.00

		2039	13.85	22.92	15.21	3.10	2.72	33.98	8.22	100.00
	折算	系数	1	1.5	2.5	4.0	4.0	1	2.5	/
Ī	车	.型	小型车	中型车	大型车	大型车	大型车	小型车	中型车	/

本项目拟建道路上行驶的各型车的自然交通量(单位:辆/d)按照下列公式计算:

式中: Nd,j——第 j 型车的日自然交通量,辆/d,根据本项目初步设计报告,本项目车型 j=小客车、中客车、大客车、小货车、中货车、大货车、拖挂车;

nd——路段预测当量小客车交通量, pcu/d;

αj——第 j 型车的车辆折算系数,无量纲,根据《公路工程技术标准 JTGB01-2014》,表 2.2-4 中各车型的车辆折算系数为:小客车 1、中客 1.5、大客车 2.5、小货车 1、中货车 1.5、大货车 1.5、拖挂车 4;

βj——第 j 型车的自然交通量比例,%。

各型车的昼夜小时交通量(单位:辆/h)按下式计算:

昼间:
$$N_{h,j(d)} = N_{d,j} \cdot \gamma_d / 16$$

夜间:
$$N_{h,j(n)} = N_{d,j} \cdot (1 - \gamma_d)/8$$

式中: Nh,i(d)——第 i 型车的昼间平均小时自然交通量,辆/h;

Nh,j(n)——第 j 型车的夜间平均小时自然交通量,辆/h;

γd——昼间 16 小时系数,类比当地同类项目昼间 16 小时系数,本项目取 0.9。 大、中、小型车的分类按《建设项目竣工环境保护验收技术规范公路》 (HJ552-2010) 中的要求划分如下表所示,本项目工程可研报告的预测车型中,小客车、小货车归类为小型车,中客车、中货车归类为中型车,大客车、大货车、拖挂车归类为大型车。

因此计算得到本项目各车型自然车流量预测结果见下表

路段 特大货 年份 小货车 中货车 大货车 集装箱 小客车 大客车 合计 名称 车 1444 1005 157 129 1710 682 9215 2025 2062 1784 2799 978 全线 2031 1531 278 238 2978 12616 2039 2094 3350 1995 339 1238 15564 381 4128 折算系数 2.5 4 1 1.5 4 1 2.5

表 2-5 本项目各车型自然车流量 (辆/d)

表 2-6 本项目大、中、小型车日自然交通量(辆/d)

项目名称	特征年	小型车	中型车	大型车	合计
	2025年	3154	2745	1292	7190
全线	2031年	4761	3777	2047	10585
	2039年	6222	4588	2716	13525

表 2-7 项目特征年交通量预测结果一览表 单位:辆/h

		昼间		夜间			高峰			
路段	时段	小型	中型	大型	小型	中型	大型	小型	中型	大型
		车	车	车	车	车	车	车	车	车
	2025年	177	154	73	39	34	16	315	274	129
全线	2031年	268	212	115	60	47	26	476	378	205
	2039年	350	258	153	78	57	34	622	459	272

2.3 施工期噪声源强分析

道路建设施工阶段的噪声主要来自于施工机械的机械噪声和运输车辆的交通噪声。如土方施工阶段有挖掘机、推土机、装载机等;道路基础施工阶段有平地机等;道路结构施工时有压路机、摊铺机、起重机等。根据《环境噪声与振动控制工程技术导则》(HJ 2034-2013),机械运行时在距离声源 5m 的噪声值在82~95dB(A),详见下表 2-8。

测点距施工机 最大声级 序号 机械名称 数量 械距离(m) Lmax(dB) 轮式装载机 平地机 振动式压路机 三轮压路机 堆土机 轮胎压路机 小型挖掘机 移动式吊车 商砼搅拌车 大型载重车

表 2-8 施工机械设备的噪声值

2.4 营运期噪声源强分析

在道路上行驶的机动车辆噪声源为非稳态源。本项目建成投入营运后,车辆的发动机、冷却系统、传动系统等部件均会产生噪声,另外,行驶过程中引起的气流湍动、排气系统、轮胎与路面的摩擦也会产生噪声,路面平整度等原因也会影响整车噪声。

(1) 车速

各种车型单车车速预测采用如下公式:

$$\begin{split} v_i &= k_1 \cdot u_i + k_2 + \frac{1}{k_3 \cdot u_i + k_4} \\ u_i &= N_{\text{minimals}} \cdot \left[\eta_i + m \cdot (1 - \eta_i) \right] \end{split}$$

式中: v_i ——i型车预测车速;

 k_1 、 k_2 、 k_3 、 k_4 ——回归系数,如表2-4所示;

u;──该车型当量车数;

 $N_{\text{单车道小时}}$ ——单车道小时车流量;

 η_i ——该车型的车型比;

m ——其它车型的加权系数。

本项目设计车速为80km/h。

车型 k_1 k_2 k_3 k_4 m 小型车 -0.000023696 -0.061748 149.65 -0.02099 1.2102 中型车 -0.057537 149.38 -0.000016390 -0.012450.08044 大型车 -0.0519000 149.39 -0.000014202 -0.01254 0.70957

表 2-9 预测车速常用系数取值表

根据上面的计算公式,得到本项目各路段车速见表2-7。

(2) 平均辐射声级估算

根据《公路建设项目环境影响评价规范》(JTGB03-2006)附录 C 中单车行驶辐射噪声级公式适用范围为 48~140km/h,则本项目设计车速为 80km/h,

①单车行驶辐射噪声级 Loi

第 i 种车型车辆在参照点(7.5m 处)的平均辐射噪声级(dB)Loi 按下式计算:

小型车: Los=12.6+34.73lgVs+△L_{№面}

中型车: Lom=8.8+40.48lgVm+△L_{纵坡}

大型车: Lo_L=22.0+36.32lgV_L+△L_{44tb}

式中: S、M、L—分别表示小、中、大型车; Vi—该车型车辆的平均行驶速度, km/h。

②源强修正

公路纵坡引起的交通噪声源强修正量△L 纵坡计算按下表取值:

表2-10 路面纵坡噪声级修正值

纵坡 (%)	噪声级修正值(dB)
≪3	+0.0
4~5	+1.0
6~7	+2.0
>7	+3.0

注:本表仅对大型车和中型车修正,小型车不作修正。(本项目最大纵坡为 1.5%, 因此修正值均为 0)

道路路面引起的交通噪声声源强修正量△Lmm取值按下表取值:

表2-11 常规路面修正值△L

路面	△L _{路面} (dB)
沥青混凝土路面	0
水泥混凝土路面	+1~2

注:本表仅对小型车修正,大型车和中型车不作修正(项目道路均为沥青混凝土路面,因此修正值为0)。

③估算结果

经计算,本项目小、中、大三种车型的行驶车速及平均辐射声级见下表。

表 2-12 本项目车辆行驶速度和平均辐射噪声级

时段	车型	行驶车速(km/h)		辐射平均噪声级 dB(A)	
門权	千 <u>空</u>	昼间	夜间	昼间	夜间
	小型车	68	68	76. 3	76. 3
2025年	中型车	48	46	76.9	76. 2
	大型车	47	47	82.8	82.6
	小型车	67	68	76.0	76. 3
2031年	中型车	49	47	77. 1	76. 5
	大型车	48	47	82.9	82.7
	小型车	67	68	76. 1	76. 3
2039年	中型车	49	47	77.3	76. 5
	大型车	48	47	83.0	82.7

3 声环境质量现状调查与评价

1.1 声环境质量现状调查

根据《声环境功能区划分技术规范》(GB/T15190-2014)声环境功能区划的要求,道路与2类声环境功能区相邻时,以道路边界线为起点,分别向道路两侧边界线外35±5m 范围以内区域范围划分为4a类声环境功能区,以及临街建筑高于三层楼房以上(含三层)面向交通干线一侧至交通干线边界线的区域为4a类声环境功能区,其余区域执行2类声环境功能区要求。项目沿线两侧敏感点室内声环境执行《民用建筑隔声设计规范》(GB50118-2010)中的民用建筑室内允许噪声级。

为了解项目沿线声环境质量现状,本评价委托广东利宇检测技术有限公司限公司于 2022 年 12 月 17~18 日对本项目沿线敏感点声环境质量现状进行了监测。监测布点情况见表 3-1。

表 3-1 声环境质量现状监测布点情况一览表

序号	敏感点名称	监测位置	监测因子	备注
N1	散户 1	距离道路最近住宅面向道 路一侧 1、3 层		
N2	散户 2	距离道路最近住宅面向道 路一侧 1、3 层		
N3	散户 3	距离道路最近住宅面向道 路一侧 1、3、5 层		执行声环境 4a
N4	婆岭	距离道路最近住宅面向道 路一侧 1、3、5 层		类标准
N5	牛仔塘岭1	距离道路最近住宅面向道路一侧1、3层 二排住宅面向道路一侧1、 3、5层	监测项目为等效 连续声级 Leq、	
N6	牛仔塘岭 2	距离道路最近住宅面向道 路一侧 1、3 层	L10、L50、L90 值。同步记录天	
N7	陈宅	距离道路最近住宅面向道 路一侧 1、3、5 层	气条件。	执行声环境2类 标准
N8	散户 4	距离道路最近住宅面向道 路一侧1、3层		
N9	黄岭坳	距离道路最近住宅面向道 路一侧 1、3 层		
N10	曙光农场三分 场 曙光农场三分 场	距离道路最近住宅面向道 路一侧 1 层 村庄最高住宅面向道路一 侧 1、3 层		执行声环境 4a 类标准
N11	大榕新村	距离道路最近住宅面向道 路一侧 1、3、5 层		执行声环境2类 标准

N12	黄竹塘村	距离道路最近住宅面向道 路一侧 1、3、5 层 村庄最高住宅面向道路一 侧 1、3 层		
N13	雪屋	距离道路最近住宅面向道 路一侧 1、3 层		
N14	大榕	村庄最高住宅面向道路一侧 1、3 层 距离道路最近住宅面向道路一侧 1、3 层 二排住宅面向道路一侧 1、3、5 层		
N15	元墩岭	距离道路最近住宅面向道路一侧1、3层村庄最高住宅面向道路一侧1、3层		
N16	大榕村 1	距离道路最近住宅面向道 路一侧 1 层		
N17	大榕小学	学校面向道路一侧 1、3 层		
N18	大榕村 2	村庄最高住宅面向道路一 侧 1、3 层		
N19	散户 5	住宅面向道路一侧1、3层		
N20	散户 6	住宅面向道路一侧 1、3、5 层		
N21	炸岭	住宅面向道路一侧 1、3 层		执行声环境 4a
N22	散户 7	住宅面向道路一侧 1、3 层		类标准
N23	风炉岭	住宅面向道路一侧1、3层		
N24	散户8	住宅面向道路一侧1、3层		
N25	散户 9	住宅面向道路一侧1、3层		
N26	水鸡岭	距离道路最近住宅面向道 路一侧 1、3 层 村庄最高住宅面向道路一 侧 1、3 层		 执行声环境 2 类
N27	禾禄岗1	距离道路最近住宅面向道路一侧1层村庄最高住宅面向道路一侧1、3、5层		标准
N28	禾禄岗 2	距离道路最近住宅面向道 路一侧 1、3、5 层		
N29	垂直衰减断面 1#	空旷地段	道路中心线 20m、40m、60m、 80m、120m 处空 地监测	必须严格选取没 有其他噪声源的 地方同时进行昼 夜监测

声环境质量现状监测结果见表 3-2、3-3、3-4。

表 3-2 声环境质量现状监测结果一览表

	表 3-2						标		
检测 日期	检测点位	主要声源	检测 时间	Leq	L10	L50	L90	准限值	结果 评价
	N1 散户 1 距离道路最近住宅面	环境 噪声	昼间	67.3	67.8	63. 4	58. 7	70	达标
	向道路一侧 1层	环境 噪声	夜间	52.3	59	54. 1	49.6	55	达标
	N1 散户 1 距离道路最近住宅面	环境 噪声	昼间	67.2	69.9	65. 5	60.8	70	达标
	向道路一侧 3层	环境 噪声	夜间	52.1	55. 5	53. 1	51	55	达标
	N2 散户 2 距离道路最近住宅面	环境 噪声	昼间	68.1	70	67.9	63.6	70	达标
	向道路一侧 1层	环境 噪声	夜间	53. 3	60.3	58	53. 1	55	达标
	N2 散户 2 距离道路最近住宅面	环境 噪声	昼间	68.5	68. 5	63. 9	61	70	达标
	向道路一侧 3层	环境 噪声	夜间	53. 7	60. 7	56. 7	52.8	55	达标
	N3 散户 3 距离道路最近住宅面	环境 噪声	昼间	67.4	71.3	68. 3	63. 5	70	达标
2022	向道路一侧 1层	环境 噪声	夜间	52.2	56. 5	53.8	51.7	55	达标
. 12.	N3 散户 3 距离道路最近住宅面	环境 噪声	昼间	67.6	71.8	67.6	63. 4	70	达标
11	向道路一侧 3 层	环境 噪声	夜间	52.4	56.8	54. 1	49.3	55	达标
	N3 散户 3 距离道路最近住宅面	环境 噪声	昼间	67.3	68.5	63. 9	60.6	70	达标
	向道路一侧 5 层	环境 噪声	夜间	51.9	55. 1	52.8	48	55	达标
	N4 婆岭 距离道路最近住宅面	环境 噪声	昼间	65. 4	65. 5	63. 3	59. 2	70	达标
	向道路一侧 1层	环境 噪声	夜间	51.8	57.4	55. 1	52	55	达标
	N4 婆岭 距离道路最近住宅面	环境 噪声	昼间	64.9	69.3	65. 6	60.7	70	达标
	向道路一侧 3层	环境 噪声	夜间	51.3	53.8	51.7	49. 3	55	达标
	N4 婆岭 距离道路最近住宅面	环境 噪声	昼间	64. 5	67.9	63. 7	60.7	70	达标
	向道路一侧 5层	环境 噪声	夜间	50.5	53. 7	50. 4	48. 2	55	达标
	N5 牛仔塘岭 1 距离道路最近住宅面	环境 噪声	昼间	66.4	70	66. 3	61.6	70	达标

				I	1	I			
	向道路一侧1层	环境 噪声	夜间	50.6	55	52. 4	48. 7	55	达标
DE	N5 牛仔塘岭 1	环境 噪声	昼间	66.1	70. 2	65. 6	62. 5	70	达标
	函道路最近住宅面 向道路一侧3层	环境 噪声	夜间	50.1	53.3	51. 2	47	55	达标
. PE	N6 陈宅 [离道路最近住宅面	环境 噪声	昼间	58.6	66. 1	63. 4	59.8	60	达标
J L	向道路一侧1层	环境 噪声	夜间	47. 4	51.3	48. 1	43. 7	50	达标
Į.	N6 陈宅 [离道路最近住宅面:	环境 噪声	昼间	59. 1	65. 1	60. 4	56. 5	60	达标
μ <u>Ε</u>	向道路一侧3层	环境 噪声	夜间	47.1	51.6	47. 2	44. 4	50	达标
. PE	N6 陈宅 [离道路最近住宅面:	环境 噪声	昼间	58.8	64.8	62. 2	57. 7	60	达标
μ <u>Ε</u>	向道路一侧5层	环境 噪声	夜间	46.5	50.9	47. 6	45. 2	50	达标
DE	N7 牛仔塘岭 2	环境 噪声	昼间	56. 4	62.6	58. 7	54. 1	60	达标
比 	函道路最近住宅面 向道路一侧1层	环境 噪声	夜间	46.2	49.5	46. 1	42. 1	50	达标
. PE	N7 牛仔塘岭 2 「离道路最近住宅面	环境 噪声	昼间	55.9	56. 1	53	50	60	达标
比 		环境 噪声	夜间	46.3	51.9	48. 9	44. 9	50	达标
DE	N8 散户 4	环境 噪声	昼间	58.6	59.1	55. 6	52. 4	60	达标
比 	函道路最近住宅面 向道路一侧1层	环境 噪声	夜间	47.2	53.5	50.8	47. 8	50	达标
DE	N8 散户 4	环境 噪声	昼间	58.3	59.3	54. 9	50. 5	60	达标
<u> </u> <u> </u> <u> </u>	函道路最近住宅面 向道路一侧3层	环境 噪声	夜间	47. 1	52. 2	49. 2	46. 3	50	达标
DE	N9 黄岭坳 [离道路最近住宅面	环境 噪声	昼间	66.8	72. 3	68. 5	64. 5	70	达标
		环境 噪声	夜间	53. 2	59.6	56. 9	54. 8	55	达标
DE	N9 黄岭坳 「离道路最近住宅面	环境 噪声	昼间	67.2	73.3	70	65	70	达标
#E		环境 噪声	夜间	52.8	59.4	56. 7	53. 1	55	达标
	10 曙光农场三分场 [离道路最近住宅面	环境 噪声	昼间	68. 4	75	70. 4	67. 9	70	达标
	两旦龄取近任七面 向道路一侧 1 层	环境 噪声	夜间	53	57.6	54. 9	52. 1	55	达标
	10 曙光农场三分场 庄最高住宅面向道	环境 噪声	昼间	67.9	73. 4	69. 4	65. 8	70	达标

路一侧 1 层	环境 噪声	夜间	52.9	58. 4	54. 6	51. 4	55	达标
N10 曙光农场三分场 村庄最高住宅面向道	环境 噪声	昼间	67.4	69.8	67. 2	64. 5	70	达标
路一侧3层	环境 噪声	夜间	52.1	57.6	55. 1	52. 2	55	达标
N11 大榕新村 距离道路最近住宅面	环境 噪声	昼间	57.6	62.6	58. 5	54. 8	60	达标
向道路一侧 1层	环境 噪声	夜间	46.8	52.6	48. 3	44. 4	50	达标
N11 大榕新村 距离道路最近住宅面	环境 噪声	昼间	57.3	62. 3	57. 9	55. 2	60	达标
向道路一侧3层	环境 噪声	夜间	46.5	52.8	48. 6	44. 9	50	达标
N11 大榕新村 距离道路最近住宅面	环境 噪声	昼间	57.1	58. 3	55. 7	53	60	达标
向道路一侧 5 层	环境 噪声	夜间	46.1	51.6	48. 9	44. 3	50	达标
N12 黄竹塘村 距离道路最近住宅面	环境 噪声	昼间	57. 7	62.9	58. 3	54. 1	60	达标
向道路一侧 1层	环境 噪声	夜间	46. 4	51.8	48. 3	43. 7	50	达标
N12 黄竹塘村 距离道路最近住宅面	环境 噪声	昼间	57.5	63. 2	58. 3	55. 5	60	达标
向道路一侧 3 层	环境 噪声	夜间	46.1	51.9	47. 3	42. 7	50	达标
N12 黄竹塘村 距离道路最近住宅面	环境 噪声	昼间	56.6	62.4	60	55. 7	60	达标
向道路一侧 5 层	环境 噪声	夜间	45. 7	50. 1	45. 7	42. 7	50	达标
N13 雪屋 距离道路最近住宅面	环境 噪声	昼间	56.2	62. 7	59.8	56.8	60	达标
向道路一侧 1层	环境 噪声	夜间	45	50.5	45. 6	43. 1	50	达标
N13 雪屋 距离道路最近住宅面	环境 噪声	昼间	55.8	61.8	57. 6	55. 5	60	达标
向道路一侧3层	环境 噪声	夜间	44.8	50.3	47. 9	45. 3	50	达标
N14 大榕 村庄最高住宅面向道	环境 噪声	昼间	56.8	60.4	58. 4	55. 9	60	达标
路一侧1层	环境 噪声	夜间	45.9	50.4	46. 4	42. 1	50	达标
N14 大榕 村庄最高住宅面向道	环境 噪声	昼间	56. 5	60	55. 6	51. 7	60	达标
路一侧 3 层	环境 噪声	夜间	45.8	49.8	45. 1	41.7	50	达标
N14 大榕 距离道路最近住宅面	环境 噪声	昼间	58. 1	63. 2	60. 5	57. 6	60	达标

向道路一侧1层	 环境 噪声	夜间	46. 4	51.7	48. 3	44. 2	50	达标
N14 大榕	环境 噪声	昼间	57.9	60.4	55. 9	51. 7	60	达标
距离道路最近住宅面 向道路一侧3层	环境 噪声	夜间	46.5	51.7	46.8	43	50	达标
N14 大榕 二排住宅面向道路一	环境 噪声	昼间	55.9	59.6	54. 9	50	60	达标
侧1层	环境 噪声	夜间	47. 1	53.4	50. 7	47.8	50	达标
N14 大榕 二排住宅面向道路一	环境 噪声	昼间	55.7	58. 1	54	51.5	60	达标
侧 3 层	环境 噪声	夜间	46.8	51.4	47.7	44. 8	50	达标
N14 大榕 二排住宅面向道路一	环境 噪声	昼间	55. 2	59	54. 5	50.6	60	达标
侧 5 层	环境 噪声	夜间	46.6	51.4	48.8	45. 5	50	达标
N15 元墩岭 距离道路最近住宅面	环境 噪声	昼间	56. 7	62.7	59	56. 2	60	达标
向道路一侧 1 层	环境 噪声	夜间	47.6	51.7	49. 2	44. 9	50	达标
N15 元墩岭 距离道路最近住宅面	环境 噪声	昼间	56. 7	63.5	58. 7	54. 7	60	达标
向道路一侧 3 层	环境 噪声	夜间	47.4	52.6	47.8	42.8	50	达标
N15 元墩岭 村庄最高住宅面向道	环境 噪声	昼间	56.4	60.5	55. 9	53. 4	60	达标
路一侧1层	环境 噪声	夜间	47.4	52. 3	50. 1	46.8	50	达标
N15 元墩岭 村庄最高住宅面向道	环境 噪声	昼间	56. 1	58. 3	53. 7	49. 1	60	达标
路一侧 3 层	环境 噪声	夜间	47.3	54. 5	51.1	48. 1	50	达标
N16 大榕村 1 距离道路最近住宅面	环境 噪声	昼间	57.2	62.2	58. 4	54	60	达标
向道路一侧 1 层	环境 噪声	夜间	47	50.8	46. 2	42.6	50	达标
N17 大榕小学 学校面向道路一侧 1	环境 噪声	昼间	58. 4	61.7	58. 4	54. 8	60	达标
层	环境 噪声	夜间	46. 5	50.6	47. 7	43. 4	50	达标
N17 大榕小学 学校面向道路一侧 3	环境 噪声	昼间	58	61.3	58.8	54.6	60	达标
层	环境 噪声	夜间	45. 7	50.9	46. 3	42. 7	50	达标
N18 大榕村 2 村庄最高住宅面向道	环境 噪声	昼间	56. 4	60	57.8	53. 3	60	达标

路一侧1层	环境 噪声	夜间	45. 4	51.1	48.8	46. 7	50	达标
N18 大榕村 2	环境 噪声	昼间	56. 3	59. 1	55. 4	51.9	60	达标
村庄最高住宅面向道路一侧3层	环境 噪声	夜间	45. 2	52. 5	48. 5	45. 6	50	达标
N19 散户 5	环境 噪声	昼间	69.1	74	69. 9	65. 9	70	达标
住宅面向道路一侧 1 层	环境 噪声	夜间	45. 2	51.1	46. 9	42.9	55	达标
N19散户 5	环境 噪声	昼间	69.3	71.9	67. 2	64. 9	70	达标
住宅面向道路一侧 3 层	环境 噪声	夜间	44.9	50.9	46. 5	42.6	55	达标
N20 散户 6 住宅面向道路一侧 1	环境 噪声	昼间	68.6	71. 7	68. 4	64. 7	70	达标
层 层	环境 噪声	夜间	44.4	49.5	47. 4	42.8	55	达标
N20 散户 6 住宅面向道路一侧 3	环境 噪声	昼间	69	74. 5	70. 2	66. 1	70	达标
层层	环境 噪声	夜间	44.3	48.6	43.9	39. 5	55	达标
N20 散户 6 住宅面向道路一侧 5	环境 噪声	昼间	68.4	71	68. 5	65. 6	70	达标
层	环境 噪声	夜间	44. 1	49.5	46.8	42.4	55	达标
N21 炸岭 住宅面向道路一侧 1	环境 噪声	昼间	68. 3	73. 7	68. 7	64. 9	70	达标
层	环境 噪声	夜间	45. 6	51.6	49. 1	46	55	达标
N21 炸岭 住宅面向道路一侧 3	环境 噪声	昼间	68. 2	70	66. 3	61.4	70	达标
层	环境 噪声	夜间	45. 5	50. 7	46. 1	42	55	达标
N22 散户 7 住宅面向道路一侧 1	环境 噪声	昼间	68.6	74. 5	71.6	67. 1	70	达标
层	环境 噪声	夜间	46. 4	52. 7	49.9	46. 2	55	达标
N22 散户 7 住宅面向道路一侧 3	环境 噪声	昼间	68. 2	73.6	71. 2	66. 7	70	达标
层	环境 噪声	夜间	46.3	51.7	48.6	45	55	达标
N23 风炉岭 住宅面向道路一侧 1	环境 噪声	昼间	68	73. 3	71. 1	67. 2	70	达标
层	环境噪声	夜间	46.8	53. 1	50.8	47. 2	55	达标
N23 风炉岭 住宅面向道路一侧 3	环境 噪声	昼间	67.9	70.9	68.8	64. 6	70	达标

层	环境 噪声	夜间	46.6	53	48. 3	46	55	达标
N24 散户 8 住宅面向道路一侧 1	环境 噪声	昼间	67.4	70.7	67. 2	64. 2	70	达标
住七面问 旦 路一侧 1	环境 噪声	夜间	47.3	53. 1	50.8	47.8	55	达标
N24 散户 8 住宅面向道路一侧 3	环境 噪声	昼间	67.2	70.9	65. 9	63. 6	70	达标
住七面内 但路一侧 3	环境 噪声	夜间	47	53. 7	49. 2	45. 2	55	达标
N25 散户 9 住宅面向道路一侧 1	环境 噪声	昼间	57. 5	61	59. 2	54. 5	60	达标
住七面内 但 路一侧 1	环境 噪声	夜间	47.3	52.9	48. 5	44. 7	50	达标
N25 散户 9 住宅面向道路一侧 3	环境 噪声	昼间	57.3	60	55. 1	52. 2	60	达标
住七面内 但路一侧 3	环境 噪声	夜间	47. 4	50.4	46. 3	42. 5	50	达标
N26 水鸡岭	环境 噪声	昼间	57	60.4	56. 3	52. 5	60	达标
距离道路最近住宅面 向道路一侧 1层	环境 噪声	夜间	47. 1	51.3	49. 2	44. 7	50	达标
N26 水鸡岭 距离道路最近住宅面	环境 噪声	昼间	56. 7	60.7	57. 1	52. 3	60	达标
向道路一侧 3层	环境 噪声	夜间	47	51.7	49	45. 4	50	达标
N26 水鸡岭 村庄最高住宅面向道	环境 噪声	昼间	56. 5	61.6	56.8	51.9	60	达标
路一侧1层	环境 噪声	夜间	46. 4	51.2	46.6	44	50	达标
N26 水鸡岭 村庄最高住宅面向道:	环境 噪声	昼间	56. 1	59.5	56. 3	53. 3	60	达标
路一侧3层	环境 噪声	夜间	46. 1	52.6	47. 7	43. 2	50	达标
N27 禾禄岗 1 距离道路最近住宅面	环境 噪声	昼间	58. 1	63. 7	60	56. 1	60	达标
向道路一侧 1层	环境 噪声	夜间	45. 2	48.9	44. 1	40. 5	50	达标
N27 禾禄岗 1	环境 噪声	昼间	57.9	62.8	59. 4	56. 4	60	达标
村庄最高住宅面向道 路一侧1层	环境 噪声	夜间	45. 1	50.6	46	42.8	50	达标
N27 禾禄岗 1 村庄最高住宅面向道	环境 噪声	昼间	57.2	61.8	56.8	52. 9	60	达标
路一侧3层	环境 噪声	夜间	44. 7	50.3	45. 7	42.8	50	达标
N27 禾禄岗 1 村庄最高住宅面向道	环境 噪声	昼间	56. 5	61	56.8	53. 5	60	达标

路一侧 5 层	环境 噪声	夜间	44. 4	49	46. 1	42. 2	50	达标
N28 禾禄岗 2 距离道路最近住宅面	环境 噪声	昼间	57.6	62. 2	58	54. 9	60	达标
超离退路取近往七面	环境 噪声	夜间	44.6	51.3	48.8	45. 3	50	达标
N28 禾禄岗 2	环境 噪声	昼间	57.7	63.9	61.7	58. 3	60	达标
距离道路最近住宅面 向道路一侧 3 层	环境 噪声	夜间	44.3	50	46. 1	42.8	50	达标
N28 禾禄岗 2	环境 噪声	昼间	57.4	60.2	55. 7	51.8	60	达标
距离道路最近住宅面 向道路一侧 5 层	环境 噪声	夜间	43.9	48. 4	43. 7	41.5	50	达标
N29 垂直衰减断面 1#	环境 噪声	昼间	66. 4	70.4	66.6	62	/	/
空旷地段(道路中心线 20m 处空地监测)	环境 噪声	夜间	52. 7	59. 2	57	52	/	/
N29 垂直衰减断面 1#	环境 噪声	昼间	63.8	66. 3	63	58.8	/	/
空旷地段(道路中心 线 40m 处空地监测)	环境 噪声	夜间	50.8	57.5	53. 2	50. 7	/	/
N29 垂直衰减断面 1#	环境 噪声	昼间	61.2	64.9	62. 4	58. 2	/	/
空旷地段(道路中心线 60m 处空地监测)	环境 噪声	夜间	47.4	52. 7	48. 7	45. 7	/	/
N29 垂直衰减断面 1#	环境 噪声	昼间	56. 7	59. 1	56. 1	52. 8	/	/
空旷地段(道路中心线 80m 处空地监测)	环境 噪声	夜间	45. 4	51.3	46. 7	42.7	/	/
N29 垂直衰减断面 1# 空旷地段(道路中心	环境 噪声	昼间	55. 5	58. 1	54. 2	50. 3	/	/
生,地段(坦路中心 线 120m 处空地监测)	环境 噪声	夜间	43. 2	49.9	45. 9	41.8	/	/

表 3-3 声环境质量现状监测一览

	でも、「「別次 <u>工</u> 児 八皿の」と											
检测	检测点位	主要	检测		检测结	果 dB(A))	标准	结果			
日期	124000000000000000000000000000000000000	声源	时间	Leq	L10	L50	L90	限值	评价			
	N1 散户 1	环境 噪声	昼间	67. 1	73. 2	74. 1	66. 7	70	达标			
2022	距离道路最近住宅面 向道路一侧 1 层	环境 噪声	夜间	52. 1	54.6	55. 3	49.5	55	达标			
. 12.	N1 散户 1	环境 噪声	昼间	68	69.2	69. 7	60.8	70	达标			
18	距离道路最近住宅面 向道路一侧 3 层	环境 噪声	夜间	53. 3	57.9	55. 3	53. 2	55	达标			
	N2 散户 2	环境 噪声	昼间	65. 8	70. 1	70. 7	63.6	70	达标			

距离道路最近住宅面 向道路一侧 1 层	环境 噪声	夜间	53. 5	53. 4	57. 1	47.5	55	达标
N2 散户 2	环境 噪声	昼间	66. 1	68.6	68.6	59.5	70	达标
距离道路最近住宅面 向道路一侧 3 层	环境 噪声	夜间	54. 2	54. 2	54. 3	47. 9	55	达标
N3 散户 3	环境 噪声	昼间	67.8	72. 1	72.8	65. 9	70	达标
距离道路最近住宅面 向道路一侧 1 层	环境 噪声	夜间	52. 1	55. 7	55	47.6	55	达标
N3 散户 3	环境 噪声	昼间	67	66. 9	67. 6	57. 9	70	达标
距离道路最近住宅面 向道路一侧 3层	环境 噪声	夜间	52. 4	54. 5	55.8	48. 2	55	达标
N3 散户 3	环境 噪声	昼间	68.3	70. 7	71. 1	63. 9	70	达标
距离道路最近住宅面 向道路一侧 5 层	环境 噪声	夜间	53.3	56. 3	54. 6	49	55	达标
N4 婆岭	环境 噪声	昼间	65.6	70.9	71.8	63. 4	70	达标
距离道路最近住宅面 向道路一侧 1 层	环境 噪声	夜间	51.5	51.3	56. 3	44. 4	55	达标
N4 婆岭	环境 噪声	昼间	66. 2	71.8	71. 9	65. 5	70	达标
距离道路最近住宅面 向道路一侧 3 层	环境 噪声	夜间	52.3	52. 5	52. 3	44. 9	55	达标
N4 婆岭	环境 噪声	昼间	67.7	70	70. 1	60.6	70	达标
距离道路最近住宅面 向道路一侧 5 层	环境 噪声	夜间	53.3	54. 5	52. 5	47. 1	55	达标
N5 牛仔塘岭 1	环境 噪声	昼间	66. 5	66. 9	66. 2	58. 3	70	达标
距离道路最近住宅面 向道路一侧1层	环境 噪声	夜间	52. 4	53. 4	53. 3	43. 7	55	达标
N5 牛仔塘岭 1	环境 噪声	昼间	67. 1	68.8	68	60. 1	70	达标
距离道路最近住宅面 向道路一侧3层	环境 噪声	夜间	52.8	59.8	55. 9	48	55	达标
N6 陈宅	环境 噪声	昼间	56. 3	58.8	58	51.6	60	达标
距离道路最近住宅面 向道路一侧1层	环境 噪声	夜间	46.5	53. 1	52. 5	44	50	达标
N6 陈宅	环境 噪声	昼间	57.4	61.4	60. 5	52. 4	60	达标
距离道路最近住宅面 向道路一侧3层	环境 噪声	夜间	47.2	53.6	53. 3	46. 9	50	达标
N6 陈宅	环境 噪声	昼间	56.8	61.2	60. 3	54. 7	60	达标
距离道路最近住宅面	环境	夜间	46.9	54. 1	54	45.6	50	达标

向道路一侧 5 层	噪声							
N7 牛仔塘岭 2	环境 噪声	昼间	56. 4	59.6	58. 7	52. 3	60	达标
距离道路最近住宅面 向道路一侧1层	环境 噪声	夜间	45. 7	46	45	39. 4	50	达标
N7 牛仔塘岭 2	环境 噪声	昼间	57. 1	58	57.3	50. 5	60	达标
距离道路最近住宅面 向道路一侧3层	环境 噪声	夜间	46. 2	48.8	48.6	42	50	达标
N8 散户 4	环境 噪声	昼间	56. 7	59. 4	60	52. 4	60	达标
距离道路最近住宅面 向道路一侧1层	环境 噪声	夜间	46	46. 2	48.8	40. 1	50	达标
N8 散户 4	环境 噪声	昼间	57. 4	59.8	60	54. 6	60	达标
距离道路最近住宅面 向道路一侧3层	环境 噪声	夜间	47. 2	52. 9	47	44	50	达标
N9 黄岭坳	环境 噪声	昼间	66. 1	72. 7	73.6	66. 5	70	达标
距离道路最近住宅面 向道路一侧 1 层	环境 噪声	夜间	51.6	58. 9	53. 5	42. 7	55	达标
N9 黄岭坳	环境 噪声	昼间	66.8	70. 7	71.6	61.9	70	达标
距离道路最近住宅面 向道路一侧 3 层	环境 噪声	夜间	53. 1	57. 5	59. 4	49. 2	55	达标
N10 曙光农场三分场	环境 噪声	昼间	65. 7	69.8	70. 5	62.8	70	达标
距离道路最近住宅面 向道路一侧 1 ^E	环境 噪声	夜间	52. 1	53	58. 2	46. 1	55	达标
N10 曙光农场三分场	环境 噪声	昼间	66. 3	67. 4	67.4	62. 2	70	达标
村庄最高住宅面向道路一侧1层	环境 噪声	夜间	52.8	54. 3	53. 1	45. 4	55	达标
N10 曙光农场三分场	环境 噪声	昼间	67. 3	68. 2	68. 7	63. 4	70	达标
村庄最高住宅面向道路一侧3层	环境 噪声	夜间	53. 4	56. 7	54. 9	50. 1	55	达标
N11 大榕新村	环境 噪声	昼间	55. 2	58. 4	58. 7	52. 4	60	达标
距离道路最近住宅面 向道路一侧 1 层	环境 噪声	夜间	45. 5	46	56.8	38. 6	50	达标
N11 大榕新村	环境 噪声	昼间	56. 2	61.5	62. 1	54. 1	60	达标
距离道路最近住宅面 向道路一侧3层	环境 噪声	夜间	45. 9	51. 7	46. 9	43. 1	50	达标
N11 大榕新村	环境 噪声	昼间	57	57. 6	58. 3	49	60	达标
距离道路最近住宅面 向道路一侧 5 层	环境 噪声	夜间	45. 3	47. 7	51.8	41.5	50	达标

N12 黄竹塘村	环境 噪声	昼间	55.6	61.2	61.6	51.6	60	达标
距离道路最近住宅面 向道路一侧 1层	环境 噪声	夜间	45. 4	49	48. 1	43. 2	50	达标
N12 黄竹塘村	环境 噪声	昼间	55.9	59	59. 5	52. 6	60	达标
距离道路最近住宅面 向道路一侧 3层	环境 噪声	夜间	45. 1	49.3	49.3	43. 5	50	达标
N12 黄竹塘村	环境 噪声	昼间	56.6	63. 9	64. 1	57	60	达标
距离道路最近住宅面 向道路一侧 5层	环境 噪声	夜间	45.8	49.4	50. 1	42. 1	50	达标
N13 雪屋	环境 噪声	昼间	57.2	60.1	60.9	53. 7	60	达标
距离道路最近住宅面 向道路一侧 1层	环境 噪声	夜间	46.2	46. 4	47. 1	40.6	50	达标
N13 雪屋	环境 噪声	昼间	57.7	63. 1	63. 2	54. 1	60	达标
距离道路最近住宅面 向道路一侧3层	环境 噪声	夜间	46. 7	49.9	50. 9	43.8	50	达标
N14 大榕	环境 噪声	昼间	55.6	59.8	60.6	51.8	60	达标
村庄最高住宅面向道 路一侧1层	环境 噪声	夜间	45. 4	51.4	51.8	44. 1	50	达标
N14 大榕	环境 噪声	昼间	56	61.1	60. 2	52. 2	60	达标
村庄最高住宅面向道路一侧3层	环境 噪声	夜间	45	47.5	47	38. 2	50	达标
N14 大榕	环境 噪声	昼间	58.2	61.9	61.2	57	60	达标
距离道路最近住宅面 向道路一侧1层	环境 噪声	夜间	47.3	49.9	49. 5	42. 9	50	达标
N14 大榕	环境 噪声	昼间	57. 7	62.6	61.9	53.6	60	达标
距离道路最近住宅面 向道路一侧3层	环境 噪声	夜间	47. 1	47.3	46. 4	39	50	达标
N14 大榕	环境 噪声	昼间	56.9	60.4	59. 4	52.8	60	达标
二排住宅面向道路一 侧1层	环境 噪声	夜间	46. 4	50.5	49.6	42. 7	50	达标
N14 大榕	环境 噪声	昼间	57.3	60.2	59. 4	50. 4	60	达标
二排住宅面向道路一 侧 3 层	环境 噪声	夜间	46. 2	50. 5	49.6	42. 7	50	达标
N14 大榕	环境 噪声	昼间	56. 3	58.9	59. 4	53. 2	60	达标
二排住宅面向道路一 侧 5 层	环境 噪声	夜间	45. 7	47. 1	47. 5	40. 3	50	达标
N15 元墩岭	环境	昼间	56. 5	62. 2	62.4	55.6	60	达标

		 噪声							
且	函道路最近住宅面 向道路一侧 1 层	环境 噪声	夜间	45. 7	47. 1	47.5	40.3	50	达标
	N15 元墩岭	环境 噪声	昼间	57	56. 6	57.4	51. 1	60	达标
跙	离道路最近住宅面 向道路一侧 3 层	环境 噪声	夜间	46. 1	46. 5	46. 9	38. 9	50	达标
	N15 元墩岭	-	昼间	57.6	62. 9	63.8	57. 7	60	达标
村	上 住最高住宅面向道 路一侧1层	- 环境 噪声	夜间	46. 5	52. 2	52.6	45. 1	50	达标
	N15 元墩岭	- 环境 噪声	昼间	57. 7	63. 1	63.8	57. 4	60	达标
村	住最高住宅面向道 路一侧3层	-	夜间	46. 9	53. 4	53. 7	46. 7	50	达标
	N16 大榕村 1	-	昼间	57.6	60. 7	61.1	52	60	达标
跙	 离道路最近住宅面 向道路一侧 1	 环境 噪声	夜间	47. 1	49. 3	50	42. 1	50	达标
	N17 大榕小学	- 环境 噪声	昼间	57	62. 7	63. 1	54. 1	60	达标
- 1	学校面向道路一侧 1 层	 环境 噪声	夜间	46. 9	53. 3	53.9	47.8	50	达标
	N17 大榕小学	- 环境 噪声	昼间	57. 4	57. 1	57.8	51.1	60	达标
学	学校面向道路一侧 3 层		夜间	45. 6	51.6	52.6	44. 5	50	达标
	N18 大榕村 2	 环境 噪声	昼间	56.8	62. 6	63. 1	54	60	达标
村	上 住最高住宅面向道 路一侧1层	-	夜间	45.8	45. 9	46.8	39. 3	50	达标
	N18 大榕村 2	环境 噪声	昼间	57.8	62. 7	63. 2	55	60	达标
村	上 注最高住宅面向道 路一侧3层	环境 噪声	夜间	46. 2	51	51.2	44. 3	50	达标
	N19 散户 5	环境 噪声	昼间	66. 1	67. 2	67.4	59. 3	70	达标
自	主宅面向道路一侧 1 层	环境 噪声	夜间	46. 5	46. 3	47.2	40. 5	55	达标
	N19 散户 5	环境 噪声	昼间	66. 7	73. 3	74. 1	68	70	达标
自	E宅面向道路一侧 3 层	环境 噪声	夜间	52. 1	55. 6	55.8	48.6	55	达标
	N20 散户 6	环境 噪声	昼间	66. 5	67. 7	68. 7	61	70	达标
自	主宅面向道路一侧 1 层	环境 噪声	夜间	52.8	54	54. 3	47.6	55	达标
	N20 散户 6	环境 噪声	昼间	66.8	68. 1	68. 3	60. 9	70	达标

住宅面向道路一侧 3 层	环境 噪声	夜间	52. 4	54. 6	54. 7	49.3	55	达标
N20 散户 6	环境 噪声	昼间	67.6	73.6	74. 5	65. 8	70	达标
住宅面向道路一侧 5 层	环境 噪声	夜间	52. 1	57. 4	57. 9	51.4	55	达标
N21 炸岭	环境 噪声	昼间	65. 6	66. 9	67.3	60. 2	70	达标
住宅面向道路一侧 1 层	环境 噪声	夜间	53	87	57. 2	49.3	55	达标
N21 炸岭	环境 噪声	昼间	66. 5	72. 5	72. 7	64. 1	70	达标
住宅面向道路一侧3	环境 噪声	夜间	53. 2	56. 4	57	48. 9	55	达标
N22 散户 7	环境 噪声	昼间	66. 1	67. 1	67.9	60. 2	70	达标
住宅面向道路一侧 1 层	环境 噪声	夜间	52	56. 7	57. 5	50. 1	55	达标
N22 散户 7	环境 噪声	昼间	66.6	70.6	71	62.9	70	达标
住宅面向道路一侧 3 层	环境 噪声	夜间	52. 4	52. 6	53. 4	44	55	达标
N23 风炉岭	环境 噪声	昼间	66. 7	68. 9	69. 4	62	70	达标
住宅面向道路一侧 1 层	环境 噪声	夜间	53. 1	56. 7	57. 3	50. 9	55	达标
N23 风炉岭	环境 噪声	昼间	67.2	72. 2	73	63. 3	70	达标
住宅面向道路一侧 3 层	环境 噪声	夜间	53. 4	58.8	54. 2	51.5	55	达标
N24 散户 8	环境 噪声	昼间	66	71. 1	72. 1	64. 1	70	达标
住宅面向道路一侧 1 层	环境 噪声	夜间	52. 4	56. 2	50.8	49. 1	55	达标
N24 散户 8	环境 噪声	昼间	66. 4	71. 3	71.9	62. 5	70	达标
住宅面向道路一侧 3 层	环境 噪声	夜间	52. 9	58. 6	51.3	49.5	55	达标
N25 散户 9	环境 噪声	昼间	55. 6	58. 6	59. 1	52.6	60	达标
住宅面向道路一侧 1 层	环境 噪声	夜间	45. 1	51.8	51.8	44. 4	50	达标
N25 散户 9	环境 噪声	昼间	56. 2	60. 1	60. 2	51.2	60	达标
住宅面向道路一侧 3 层	环境 噪声	夜间	44. 9	50. 7	50. 7	45. 1	50	达标
N26 水鸡岭	环境 噪声	昼间	55. 7	61.1	62. 1	54. 4	60	达标
距离道路最近住宅面	环境	夜间	46.3	52. 1	52. 1	44. 1	50	达标

向道路一侧 1层	噪声							
N26 水鸡岭	环境 噪声	昼间	55. 9	57.9	58.8	52. 1	60	达标
距离道路最近住宅面 向道路一侧 3 层	环境 噪声	夜间	46	51.9	48.4	44. 1	50	达标
N26 水鸡岭	环境 噪声	昼间	55. 5	56. 4	56. 5	50.6	60	达标
村庄最高住宅面向道路一侧1层	环境 噪声	夜间	45.6	50.7	47.5	43	50	达标
N26 水鸡岭	环境 噪声	昼间	56	60.1	61.1	53	60	达标
村庄最高住宅面向道路一侧3层	环境 噪声	夜间	45. 2	50.5	44. 7	40. 4	50	达标
N27 禾禄岗 1	环境 噪声	昼间	55. 7	58.9	59.4	49.4	60	达标
距离道路最近住宅面 向道路一侧 1 ^E	环境 噪声	夜间	45. 7	51.6	45.8	43.8	50	达标
N27 禾禄岗 1	环境 噪声	昼间	55. 1	57.9	55.6	52. 1	60	达标
村庄最高住宅面向道路一侧1层	环境 噪声	夜间	45. 3	51	45. 5	43.3	50	达标
N27 禾禄岗 1	环境 噪声	昼间	56	58.8	59. 4	53. 9	60	达标
村庄最高住宅面向道路一侧3层	环境 噪声	夜间	45. 2	50.8	47.6	45	50	达标
N27 禾禄岗 1	环境 噪声	昼间	57. 1	63	64	55. 6	60	达标
村庄最高住宅面向道路一侧5层	环境 噪声	夜间	44.8	50.6	45. 2	41.2	50	达标
N28 禾禄岗 2	环境 噪声	昼间	55. 7	61.8	58	53.6	60	达标
距离道路最近住宅面 向道路一侧 1层	环境 噪声	夜间	44.9	51.4	47. 7	43. 4	50	达标
N28 禾禄岗 2	环境 噪声	昼间	56.2	61.7	62.7	53.9	60	达标
距离道路最近住宅面 向道路一侧 3层	环境 噪声	夜间	44.6	49.9	47.8	45. 4	50	达标
N28 禾禄岗 2	环境 噪声	昼间	56. 7	62.9	62.9	55	60	达标
距离道路最近住宅面 向道路一侧 5 层	环境 噪声	夜间	44.5	49.3	46. 4	42.6	50	达标
N29垂直衰减断面 1#	环境 噪声	昼间	57.6	64	59.6	56. 5	/	/
线 20m 处空地监测)	环境 噪声	夜间	52	54. 2	49. 4	44	/	/
N29垂直衰減断面 1#	环境 噪声	昼间	56. 3	62.4	60.1	56. 4	/	/
线 40m 处空地监测)	环境 噪声	夜间	51.6	56. 5	54. 4	50.8	/	/
	N26 水鸡岭 距离道路最近住宅面向道路一侧3层 N26 水鸡岭 村庄最高一侧1 层 N26 水鸡岭 村庄最高一侧3层 N27 禾禄 切 1 距离前道路 子禄 切 1 村庄最高一侧1 层 N27 禾禄 切 1 村庄最高一侧1 扇道 N27 禾 住宅 面 村庄最高一侧3层 N27 禾 住宅 面 村庄最高一侧5层 N28 禾 禄 切 2 距离道路 最近住宅层 N28 禾 禄 切 2 距离道路 天禄 以 2 距离道路 天禄 以 2 距离道路 天禄 以 2 距离道路 开禄 以 2 距离道路 升级 3 层 N28 禾禄 岗 2 距离道路 升级 3 层 水29 垂直衰減断面 1# 空野地投 空地 地路 面 N29 垂直衰減断面 1# 空野地投 郊 2 N29 垂直衰減断面 1# 空野地投 郊 2	N26 水鸡岭 环境	N26 水鸡岭 环境声 昼间 距离道路最近住宅面向道路一侧3层 环境声 夜间 N26 水鸡岭 环境声 昼间 村庄最高(中侧1层 环境声 夜间 N26 水鸡岭 環境声 夜间 村庄最高(中侧1层 环境声 夜间 N27 禾禄岗1 環境声 夜间 N27 禾禄岗1 塚東境声 夜间 N27 禾禄岗1 塚東境声 夜间 N27 禾禄岗1 塚東遠声 夜间 N27 禾禄岗1 塚東遠声 昼间 N27 禾禄岗1 塚東声 昼间 N27 禾禄岗1 塚東声 昼间 N27 禾禄岗1 塚県声 昼间 N27 禾禄岗1 塚県声 夜间 N28 禾禄岗2 野声 夜间 N28 禾禄岗2 野声 夜间 距离道路路最近住宅面向道路一侧1层 环境声 夜间 N28 禾禄岗2 野声 夜间 距离道路路上側3层 环境声 夜间 N28 禾禄岗2 野市 夜间 距离道路路上側3层 环境声 夜间 N29 垂直衰滅断面中の 塚境声 塚原 夜间 N2	N26 水鸡岭 环境 噪声 昼间 55.9 距离道路最近住宅面向道路一侧3层 环境 噪声 夜间 46 N26 水鸡岭 环境 噪声 昼间 55.5 村庄最高住宅面向道路 一侧1层 环境 噪声 夜间 45.6 N26 水鸡岭 环境 噪声 昼间 56 村庄最高住宅面向道路 一侧3层 环境 噪声 昼间 55.7 取3层 环境 噪声 夜间 45.2 N27 禾禄岗1 环境 噪声 夜间 45.7 村庄最高住宅面向道路 一侧1层 路一侧1层 路一侧1层 路一侧3层 环境 噪声 夜间 45.3 N27 禾禄岗1 环境 噪声 夜间 45.2 村庄最高住宅面向道路 一侧3层 环境 噪声 夜间 45.2 N27 禾禄岗1 环境 噪声 夜间 44.8 N28 禾禄岗2 噪声 夜间 44.8 N28 禾禄岗2 噪声 夜间 44.9 N28 禾禄岗2 噪声 夜间 44.9 N28 禾禄岗2 噪声 夜间 44.6 下處道路最近住宅面向道路一侧3层 环境 噪声 夜间 44.6 N28 禾禄岗2 噪声 夜间 56.7 距离道路最近住宅面向道路一侧5层 灰境 声 夜间 56.7 距离道路最近住宅面向道路一侧5层 灰境 声 夜间 56.7 距离道路最近住宅面向道路一侧5层 灰境 声 夜间 57.6 下場直路 (道路) 東岸 夜间 56.3 下境 東京 (道路) 東京 (道路) <t< td=""><td> N26 水鸡岭 环境 夜间 46 51.9 PE B </td><td>N26 水鸡岭 环境 噪声 昼间 55.9 57.9 58.8 距离道路最近住宅面向道路一侧 3层 环境 噪声 夜间 46 51.9 48.4 N26 水鸡岭 环境 噪声 昼间 55.5 56.4 56.5 村庄最高住宅面向道路一侧 1层 环境 噪声 夜间 45.6 50.7 47.5 N26 水鸡岭 噪声 昼间 55.7 56.4 56.5 村庄最高住宅面向道路一侧 1层 环境 噪声 昼间 45.2 50.5 44.7 N27 不禄岗 1 噪声 昼间 55.7 58.9 59.4 地高道路最近住宅面向道路一侧 1层 环境 噪声 昼间 45.7 51.6 45.8 N27 不禄岗 1 環声 夜间 45.7 51.6 45.8 N27 不禄岗 1 環声 昼间 56.1 57.9 55.6 村庄最高住宅面向道路一侧 3层 环境 夜间 45.2 50.8 47.6 N27 不禄岗 1 東声 昼间 56.1 58.8 59.4 村庄最高住宅面向道路一侧 1层 环境 夜间 44.8 50.6 45.2</td><td> N26 水鸡岭 球境 昼间 55.9 57.9 58.8 52.1 距离道路最近住宅面 环境 夜间 46 51.9 48.4 44.1 N26 水鸡岭 塚声 昼间 55.5 56.4 56.5 50.6 村庄最高住宅面向道 环境 夜间 45.6 50.7 47.5 43 N26 水鸡岭 塚声 昼间 56 60.1 61.1 53 村庄最高住宅面向道 塚声 夜间 45.2 50.5 44.7 40.4 N27 禾禄岗 塚声 夜间 45.7 51.6 45.8 43.8 N27 禾禄岗 塚声 夜间 45.7 51.6 45.8 43.8 N27 禾禄岗 塚声 夜间 45.7 51.6 45.8 43.8 N27 禾禄岗 塚声 夜间 45.3 51 45.5 43.3 N27 禾禄岗 塚声 夜间 45.3 51 45.5 43.3 N27 禾禄岗 塚声 夜间 45.2 50.8 47.6 45 所力住最高住宅面向道 环境 塚声 夜间 45.2 50.8 47.6 45 N27 禾禄岗 塚声 夜间 45.2 50.8 47.6 45 N27 禾禄岗 塚声 夜间 44.8 50.6 45.2 41.2 財庄最高住宅面向道 野市 塚市 夜间 44.8 50.6 45.2 41.2 N28 禾禄岗 塚声 昼间 55.7 61.8 58 53.6 西高道路最近住宅面 「城市 夜间 44.8 50.6 45.2 41.2 N28 禾禄岗 野境 昼间 56.2 61.7 62.7 53.9 距离道路最近住宅面 「城市 夜间 44.6 49.9 47.8 45.4 N28 禾禄岗 2 塚声 昼间 56.7 62.9 62.9 55 距离道路最近住宅面 「城市 夜间 44.6 49.9 47.8 45.4 N29 垂直衰減断面 # 空町・地段(道路中心 塚東 夜间 56.7 62.9 62.9 55 N29 垂直衰減断面 # 空町・地段(道路中心 环境 夜间 56.3 62.4 60.1 56.4 Supple 56.5 54.4 50.8 56.5 54.4 50.8 N29 垂直衰減断面 # 空町・地段(道路中心 环境 夜间 56.5 54.2 49.4 44 44 44 44 45 44 45 44 45 </td><td> N26 水鸡岭 环境 夜间 46 51.9 48.4 44.1 50 N26 水鸡岭 塚声 夜间 46 51.9 48.4 44.1 50 N26 水鸡岭 塚声 夜间 45.6 50.7 47.5 43 50 N26 水鸡岭 塚声 夜间 45.6 50.7 47.5 43 50 N26 水鸡岭 塚声 夜间 45.2 50.5 44.7 40.4 50 N27 禾禄岗 塚声 夜间 45.7 51.6 45.8 43.8 50 N27 禾禄岗 塚声 夜间 45.3 51 45.5 43.3 50 N27 禾禄岗 塚声 夜间 45.3 51 45.5 43.3 50 N27 禾禄岗 塚声 夜间 45.3 51 45.5 43.3 50 N27 禾禄岗 塚声 夜间 45.3 51 45.5 43.3 50 N27 禾禄岗 塚声 夜间 45.2 50.8 47.6 45 50 N27 禾禄岗 塚声 夜间 45.2 50.8 47.6 45 50 N27 禾禄岗 塚声 夜间 56 58.8 59.4 53.9 60 村庄最高住宅面向道 塚東声 夜间 57.1 63 64 55.6 60 村庄最高住宅面向道 塚東声 夜间 44.8 50.6 45.2 41.2 50 N28 禾禄岗 塚声 昼间 55.7 61.8 58 53.6 60 村庄最高住宅面向道 塚東声 夜间 44.8 50.6 45.2 41.2 50 N28 禾禄岗 塚声 昼间 56.2 61.7 62.7 53.9 60 下寒声 夜间 44.9 51.4 47.7 43.4 50 下宮 田宮道路一側 3 层 下塚境 昼间 56.2 61.7 62.7 53.9 60 下宮 田宮道路上住宅面 向道路一側 3 层 下塚境 昼间 56.7 62.9 62.9 55 60 下宮 田宮道路 側 5 层 下塚境 昼间 56.7 62.9 62.9 55 60 田宮道路最近住宅面 向道路 側 5 层 坂市 夜间 44.6 49.9 47.8 45.4 50 下宮 世段 (道路中心 5 层 54.2 49.4 44 / / / / / / / / / / / / / / / / / / / / / </td></t<>	N26 水鸡岭 环境 夜间 46 51.9 PE B	N26 水鸡岭 环境 噪声 昼间 55.9 57.9 58.8 距离道路最近住宅面向道路一侧 3层 环境 噪声 夜间 46 51.9 48.4 N26 水鸡岭 环境 噪声 昼间 55.5 56.4 56.5 村庄最高住宅面向道路一侧 1层 环境 噪声 夜间 45.6 50.7 47.5 N26 水鸡岭 噪声 昼间 55.7 56.4 56.5 村庄最高住宅面向道路一侧 1层 环境 噪声 昼间 45.2 50.5 44.7 N27 不禄岗 1 噪声 昼间 55.7 58.9 59.4 地高道路最近住宅面向道路一侧 1层 环境 噪声 昼间 45.7 51.6 45.8 N27 不禄岗 1 環声 夜间 45.7 51.6 45.8 N27 不禄岗 1 環声 昼间 56.1 57.9 55.6 村庄最高住宅面向道路一侧 3层 环境 夜间 45.2 50.8 47.6 N27 不禄岗 1 東声 昼间 56.1 58.8 59.4 村庄最高住宅面向道路一侧 1层 环境 夜间 44.8 50.6 45.2	N26 水鸡岭 球境 昼间 55.9 57.9 58.8 52.1 距离道路最近住宅面 环境 夜间 46 51.9 48.4 44.1 N26 水鸡岭 塚声 昼间 55.5 56.4 56.5 50.6 村庄最高住宅面向道 环境 夜间 45.6 50.7 47.5 43 N26 水鸡岭 塚声 昼间 56 60.1 61.1 53 村庄最高住宅面向道 塚声 夜间 45.2 50.5 44.7 40.4 N27 禾禄岗 塚声 夜间 45.7 51.6 45.8 43.8 N27 禾禄岗 塚声 夜间 45.7 51.6 45.8 43.8 N27 禾禄岗 塚声 夜间 45.7 51.6 45.8 43.8 N27 禾禄岗 塚声 夜间 45.3 51 45.5 43.3 N27 禾禄岗 塚声 夜间 45.3 51 45.5 43.3 N27 禾禄岗 塚声 夜间 45.2 50.8 47.6 45 所力住最高住宅面向道 环境 塚声 夜间 45.2 50.8 47.6 45 N27 禾禄岗 塚声 夜间 45.2 50.8 47.6 45 N27 禾禄岗 塚声 夜间 44.8 50.6 45.2 41.2 財庄最高住宅面向道 野市 塚市 夜间 44.8 50.6 45.2 41.2 N28 禾禄岗 塚声 昼间 55.7 61.8 58 53.6 西高道路最近住宅面 「城市 夜间 44.8 50.6 45.2 41.2 N28 禾禄岗 野境 昼间 56.2 61.7 62.7 53.9 距离道路最近住宅面 「城市 夜间 44.6 49.9 47.8 45.4 N28 禾禄岗 2 塚声 昼间 56.7 62.9 62.9 55 距离道路最近住宅面 「城市 夜间 44.6 49.9 47.8 45.4 N29 垂直衰減断面 # 空町・地段(道路中心 塚東 夜间 56.7 62.9 62.9 55 N29 垂直衰減断面 # 空町・地段(道路中心 环境 夜间 56.3 62.4 60.1 56.4 Supple 56.5 54.4 50.8 56.5 54.4 50.8 N29 垂直衰減断面 # 空町・地段(道路中心 环境 夜间 56.5 54.2 49.4 44 44 44 44 45 44 45 44 45	N26 水鸡岭 环境 夜间 46 51.9 48.4 44.1 50 N26 水鸡岭 塚声 夜间 46 51.9 48.4 44.1 50 N26 水鸡岭 塚声 夜间 45.6 50.7 47.5 43 50 N26 水鸡岭 塚声 夜间 45.6 50.7 47.5 43 50 N26 水鸡岭 塚声 夜间 45.2 50.5 44.7 40.4 50 N27 禾禄岗 塚声 夜间 45.7 51.6 45.8 43.8 50 N27 禾禄岗 塚声 夜间 45.3 51 45.5 43.3 50 N27 禾禄岗 塚声 夜间 45.3 51 45.5 43.3 50 N27 禾禄岗 塚声 夜间 45.3 51 45.5 43.3 50 N27 禾禄岗 塚声 夜间 45.3 51 45.5 43.3 50 N27 禾禄岗 塚声 夜间 45.2 50.8 47.6 45 50 N27 禾禄岗 塚声 夜间 45.2 50.8 47.6 45 50 N27 禾禄岗 塚声 夜间 56 58.8 59.4 53.9 60 村庄最高住宅面向道 塚東声 夜间 57.1 63 64 55.6 60 村庄最高住宅面向道 塚東声 夜间 44.8 50.6 45.2 41.2 50 N28 禾禄岗 塚声 昼间 55.7 61.8 58 53.6 60 村庄最高住宅面向道 塚東声 夜间 44.8 50.6 45.2 41.2 50 N28 禾禄岗 塚声 昼间 56.2 61.7 62.7 53.9 60 下寒声 夜间 44.9 51.4 47.7 43.4 50 下宮 田宮道路一側 3 层 下塚境 昼间 56.2 61.7 62.7 53.9 60 下宮 田宮道路上住宅面 向道路一側 3 层 下塚境 昼间 56.7 62.9 62.9 55 60 下宮 田宮道路 側 5 层 下塚境 昼间 56.7 62.9 62.9 55 60 田宮道路最近住宅面 向道路 側 5 层 坂市 夜间 44.6 49.9 47.8 45.4 50 下宮 世段 (道路中心 5 层 54.2 49.4 44 / / / / / / / / / / / / / / / / / / / / /

	N29垂直衰减断面 1# 空旷地段(道路中心	环境 噪声	昼间	55.8	53. 4	57.9	49.8	/	/
	线 60m 处空地监测)	环境 噪声	夜间	51	54. 5	49.8	46. 1	/	/
	N29垂直衰减断面 1# 空旷地段(道路中心	环境 噪声	昼间	55	59. 7	57	54. 4	/	/
	线 80m 处空地监测)	环境 噪声	夜间	50. 1	55. 3	53.3	50.6	/	/
	N29垂直衰减断面 1# 空旷地段(道路中心	环境 噪声	昼间	54. 1	60. 4	55. 5	52	/	/
	生,地权(但路中心 线120m处空地监测)	环境 噪声	夜间	49.5	52. 4	48. 7	46. 1	/	/

表 3-4 车流量统计表

单位(项目)名称: 观珠出口至沙琅一级公路(第二期)改建工程									
时间	车流量(辆/小时)								
h) ltl	大型车	中型车	小型车	共计					
2022.12.17 (昼)	303	627	1488	2418					
2022.12.17(夜)	102	222	816	1140					
2022.12.18 (昼)	294	603	1476	2373					
2022.12.18(夜)	99	225	807	1131					

3.2 声环境质量现状评价

由表 3-2、3-3 监测数据可知, 敏感点散户 1、散户 2、散户 3、婆岭、牛仔塘岭 1、黄岭坳、曙光农场三分场、大榕新村、散户 6、散户 7、风炉岭、散户 8的监测 Leq 结果满足《声环境质量标准》(GB3096-2008)4a 类标准值要求。

牛仔塘岭 2、陈宅、黄竹塘村、大榕、雪屋、元墩岭、大榕村 1、大榕村 2、大榕小学、散户 5、炸岭、散户 9、水鸡岭、禾禄岗 1 禾禄岗 2 的测 Leq 结果满足《声环境质量标准》(GB3096-2008)2 类标准值要求。

根据表 3-2、3-3,垂向衰减断面噪声 Leq 检测结果可知,本项目垂向衰减断面 20m、40m、60m、80m、120m 处监测断面声环境质量现状均满足《声环境质量标准》(GB3096-2008)4a 及 2 类标准值要求。

综上,项目周边道路及敏感点声环境质量现状较为良好,主要噪声来自周围 道路大型车辆超速行驶、鸣笛以及居民的生活发出的噪声。

4 声环境影响预测与评价

4.1 施工期声环境影响预测与评价

4.1.1 施工期噪声污染源

施工阶段的噪声主要来自于各种施工机械的噪声,其噪声强度与施工设备的种类和施工队伍的管理有关;建筑材料运输过程中产生交通噪声,另外还有突发性、冲击性、不连续性的敲打撞击噪声。施工过程中,不同阶段会使用不同的机械设备,施工作业时,作业机械品种较多,各类施工机械和设备工作将产生施工噪声,土方施工阶段有挖掘机、推土机、装载机等;道路基础施工阶段有摊铺机、压路机等;道路路面施工时有沥青摊铺机等,使现场产生具有强度较高、无规则、不连续等特点的噪声。其强度与施工机械的功率、工作状态等因素有关。

参照《公路建设项目环境影响评价规范》(JTGB03-2006)的表 C.6 常见施工设备噪声源不同距离声压级,这些机械运行时在距离声源 5m 的噪声值在75~90dB(A)之间,具体见表。

4.1.2 施工期声环境影响预测

本项目工程建设期为24个月,工程主要为路基以及桥梁建设。施工期间的噪声主要来源于施工机械、施工运输的车辆及后期的装修噪声,其中施工机械为最主要噪声源。施工期机械噪声的特点是噪声值高,噪声源的位置也并不固定,很多噪声源随施工进程的发展变换位置,随机性比较大。在施工初期,地面平整阶段,运输车辆的行驶和施工设备的运行具有分散性,噪声的影响是属于流动性和不稳定性,此阶段对周围环境的影响不明显。随后进行的定点开挖、建筑材料搅拌等固定噪声源的增多,运行时间将较长,此阶段对周围环境的影响会越来越明显。

(1) 预测模式

本项目施工机械产生的噪声可以近似作为点声源处理,为了了解施工机械噪声在不同距离处对项目敏感点的影响,根据点声源随距离的衰减模式,可估算其施工期间离噪声源不同距离处的噪声值,点声源预测模式为:

$$L_2 = L_1 - 20 \lg r_2 / r_1 - \triangle L$$

式中:

L2—距施工噪声源 r2米处的噪声预测值, dB(A);

L1—距施工噪声源r₁米处的参考声级值,dB(A);

 r_2 —预测点距声源的距离, m_1

r₁—参考点距声源的距离, m;

△L—各种因素引起的衰减量(包括声屏障、空气吸收等), dB(A)。 对两个以上多个声源同时存在时,其预测点总声压级采用下面公式:

$$L_T = 10 \lg(\sum_{i=1}^n 10^{0.1L_i})$$

式中:

 L_T =噪声源叠加 A 声级,dB(A);

L:=每台设备最大 A 声级, dB (A);

n=设备总台数。

(2) 预测结果

施工期各种噪声源多为点声源,根据点声源衰减公式计算机械噪声随着距离的增大而衰减的情况,估算出主要施工机械噪声随距离的衰减结果,见下表:

近夕 夕粉	5			20			70		120	170	200
世备名称 ————————————————————————————————————	5m	10m	20m	30m	40m	50m	70m	90m	120m	170m	200m
轮式装载机	95	89	83	79.4	76.9	75	72.1	69.9	67.4	64.4	63
平地机	90	84	78	74.4	71.9	70	67.1	64.9	62.4	59.4	58
振动式压路 机	90	84	78	74.4	71.9	70	67.1	64.9	62.4	59.4	58
三轮压路机	90	84	78	74.4	71.9	70	67.1	64.9	62.4	59.4	58
堆土机	86	80	74	70.4	67.9	66	63.1	60.9	58.4	55.4	54
轮胎压路机	76	70	64	60.4	57.9	56	53.1	50.9	48.4	45.4	44
小型挖掘机	90	84	78	74.4	71.9	70	67.1	64.9	62.4	59.4	58
移动式吊车	90	84	78	74.4	71.9	70	67.1	64.9	62.4	59.4	58
商砼搅拌车	85	79	73	69.4	66.9	65	62.1	59.9	57.4	54.4	53
大型载重 车、装载车	90	84	78	74.4	71.9	70	67.1	64.9	62.4	59.4	58

表4-1 建筑施工主要噪声源距离衰减后噪声值 dB(A)

项目施工过程可以分为路基施工阶段(即土石方阶段)和路面施工阶段(即结构阶段)。决定施工阶段声源的是同时在场地中运行的施工机械,可以认为在同一施工阶段的单一工作日中使用的工程机械的种类和数量大致相同。路基施工

阶段:小型挖掘机5台、推土机4台、轮式装载机10台、大型载重车3台、移动式 吊机3台。路面施工阶段:商砼运输车5台、振动式压路机5台、三轮压路机5台、 轮胎压路机5台、平地机5台

根据以上预测方法,预测在不采取任何噪声污染防治措施情况下各施工阶段 多台设备运转叠加的噪声随距离的衰减变化情况,具体结果详见表4-2。

_	次十2 十寸加工所及重加 图										
	距离	5m	10m	20m	40m	70m	90m	120m	170m	200m	
	路基施工阶段	98.1	92.1	86.1	80.1	75.2	73.2	70.5	67.5	66.1	
	路面施工阶段	95.2	89.2	83.2	77.1	72.3	70.2	67.6	64.6	63.2	

表 4-2 不同施工阶段叠加值噪声随距离衰减变化情况单位: dB(A)

由上表可知,在距声源 200m 处,项目施工期间噪声源等效声级叠加值路基为 66.1dB(A),路面为 63.2dB(A)。昼间噪声不能满足《声环境质量标准》(GB3096-2008)2 类标准要求。本项目在夜间不施工。

道路施工过程,道路施工期的噪声影响分别来自路基处理、路面施工等阶段,据了解,道路地基处理施工过程噪声强度较大且出现频率多的是装载机、挖掘机同时使用的情况,路面施工噪声强度较大且出现频率较大的主要是各类压路机。通过对这些设备噪声等效声级的叠加影响预测,可以看出在对本项目施工噪声不采取有效防治措施,不考虑其它衰减影响(例如树木、房屋及其它构筑物隔声等)情况下,只考虑施工噪声源排放噪声随距离衰减影响,在距离声源170m处,施工噪声可满足《建筑施工场界环境噪声排放标准》(GB12523-2011)昼间噪声70dB(A)限值要求,本项目夜间不施工。

(3) 声环境影响达标性分析

本次评价标准采用《建筑施工场界环境噪声排放标准》(GB12523-2011),施工期噪声昼间限值70dB(A),夜间限值55dB(A)。根据上表4-1、4-2的预测结果,可以看出在对本项目施工噪声不采取有效防治措施,不考虑其它衰减影响(例如树木、房屋及其它构筑物隔声等)情况下,只考虑施工噪声源排放噪声随距离衰减影响,部分高噪声设备在施工场界处昼间施工噪声无法满足《建筑施工场界环境噪声排放标准》(GB12523-2011)的要求。

(4) 噪声污染防止对策措施

根据施工期间,对沿线集中敏感片区影响情况如下:

①从噪声源强进行控制:尽量使用低噪声设备,同时加强对设备进行定期保 养和维护,严格按操作规范使用各类机械;

- ②施工单位施工期合理调整平面布置,施工机械采取减噪措施,尽可能的使用低噪声的 设备;将高噪声设备尽量远离场界和敏感点;
- ③合理安排施工时间,6:00~22:00 为施工时间,其中12:00~14:00 及20:00~22:00 严禁高噪声施工活动,其它时间严禁施工;施工期夜间连续施工应明确必须取得相应主管部门的批准;
- ④承担材料运输的车辆,行车路线和行车时间进行具体规定,出入口应远离居民区,进入施工现场避免鸣笛,并要减速慢行,装卸材料应做到轻取轻放
- ⑤对施工机械操作工人及现场施工人员按劳动卫生标准控制工作时间,亦可 采取个人防护措施,如戴隔声耳塞、头盔等。
- ⑥筑路机械施工的噪声具有突发、无规则、不连续、高强度等特点。据调查和类比分析,施工现场噪声有时超出 4 类噪声标准,一般可采取施工方法变动措施加以缓解。如噪声源强大的作业可放在昼间或对各种施工机械操作时间作适当调整。施工期间的材料运输、敲击等作为施工活动的声源,要求承包商通过文明施工,加强有效管理加以缓解。昼间施工在必要时设置移动声屏障等环保措施。
- ⑦在施工现场张贴布告和标明投诉电话,建设单位在接到报案后应及时与当 地环保部门取得联系,以便及时处理各种环境纠纷。

综上所述,在采取以上降噪措施后,项目施工期可达到《建筑施工场界环境噪声排放标准》(GB12523-2011)要求,即昼间≤70dB(A),夜间≤55dB(A),产生的噪声影响可控。

通过采取如上措施能有效减少施工噪声对周围环境的影响,且施工期对周边环境的影响是短暂的,随着施工的结束,其对周边环境的不利影响随着结束。

4.2 运营期声环境影响预测与评价

本项目道路进入运营期后,对声环境的影响主要来自车辆行驶产生的交通噪声,对噪声总体辐射水平的影响作出预测和评价,有助于制定合理的降噪措施,同时为沿线规划提供环保依据

4.2.1 交通噪声预测模式

本次评价采用《环境影响评价技术导则声环境》(HJ/T2.4—2021)中推荐的噪声预测模式进行预测。

1、第 i 类车等效声级的预测模式:

$$L_{eq}(h)_i = \overline{(L_{0E})}_i + 101g(\frac{N_i}{V_i T}) + 101g(\frac{7.5}{r}) + 101g[\frac{\psi_1 + \psi_2}{\pi}] + \Delta L - 16$$

式中:

 $L_{eq}(h)_{i}$ —第 i 类车的小时等效声级,dB(A);

 $(L_{0E})_i$ 一第 i 类车速度为 Vi, km/h; 水平距离为 7.5m 处的能量评价 A 声级, dB(A);

Ni—昼间,夜间通过某个预测点的第i类车平均小时,辆/h;

r—从车道中心线到预测点的距离, m; 该模式适用于 r>7.5m 预测点的噪声预测;

Vi—第 i 类车的平均车速,km/h;

T—计算等效声级的时间, 1h;

Ψ1、Ψ2—预测点到有限长路段两端的张角,弧度,如图 5-1 所示;

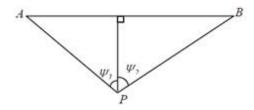


图 4-1 有限长路段修正计算示意图

A—B 为路段, P 为预测点

ΔL—由其他因素引起的修正量, dB(A),可按下式计算:

 $\Delta L = \Delta L_1 - \Delta L_2 + \Delta L_3$

 $\Delta L_1 = \Delta L_{kg} + \Delta L_{kg}$

ΔL₂=Aatm+Agr+Abar+Amisc

式中:

 ΔL_1 —线路因素引起的修正量,dB(A);

ΔL _{坡度}—公路纵坡修正量,dB(A);

ΔL 路面—公路路面材料引起的修正量,dB(A);

ΔL₂—声波传播途径中引起的衰减量, dB(A);

ΔL₃—由反射等引起的修正量,dB(A);

2、总车流等效声级为:

混合车流模式的等效声级是将各类车流等效声级叠加求得。如果将车流分成大、中、小三类车,那么总车流等效声级为:

$$Leq(T) = 10 \lg \left(10^{0.1 Leq(h) \pm} + 10^{0.1 Leq(h) +} + 10^{0.1 Leq(h) +} \right)$$

计算预测点昼间或夜间的环境噪声预测值(LAeq)预计算式为:

$$(LAeq)_{m} = 101g[10^{0.1(LAeq)} + 10^{0.1(LAeq)}]$$

式中:

(LAeq)₁₀——预测点昼间或夜间的环境噪声预测值,dB(A)。

(LAeq)_®——预测点预测时的环境噪声背景值,dB(A)。

3、参数确定

(1) 车流量、车速及车辆辐射平均噪声级

车流量、车速及车辆辐射平均噪声值见表 2-2、表 2-5 和表 2-5。

(2) 修正量和衰减量的计算

线路因素引起的修正量△L₁

①纵坡修正量△L ##

公路纵坡修正量△L_{坡度}可按下式计算:

大型车: ΔL _{坡度}=98×βdB(A)

中型车: ΔL _{##}=73×βdB(A)

小型车: ΔL _{##}=50×βdB(A)

式中,β为公路纵坡坡度,%

②路面修正量△L № 1

不同路面的噪声修正量见表 4-3。

表 4-3 不同路面的噪声修正量(单位: dB(A))

路面类型	不同行驶速度修正量/(km/h)							
	30	40	≥50					
沥青混凝土路面	0	0	0					
水泥混凝土路面	1.0	1.5	2.0					

4.2.2 声波传播途径中引起的衰减量

1、障碍物衰减量(A_{bar})

声屏障衰减量(Abar)计算

无限长声屏障可按下式计算:

$$Abar = \begin{cases} 10 \times \lg(\frac{3 \times \pi \times \sqrt{(1-t^2)}}{4 \times \tan^{-1}\sqrt{\frac{(1-t)}{(1+t)}}}) & t = \frac{40f\delta}{3c} \le 1 \quad dB \\ 10 \times \lg(\frac{3 \times \pi \times \sqrt{(t^2-1)}}{2 \times \ln(t + \sqrt{(t^2-1)})}) & t = \frac{40f\delta}{3c} > 1 \quad dB \end{cases}$$

式中:

f——声波频率, Hz;

δ____声程差, m:

C——声速, m/s。

2、有限长声屏障仍按上式计算,然后根据下图进行修正,修正后的 Abar 取决于遮蔽角。下图中虚线表示:无限长屏障声衰减为 8.5dB,若有限长屏障对应的遮蔽角百分率 92%。则有限长声屏的声衰减为 6.6dB。

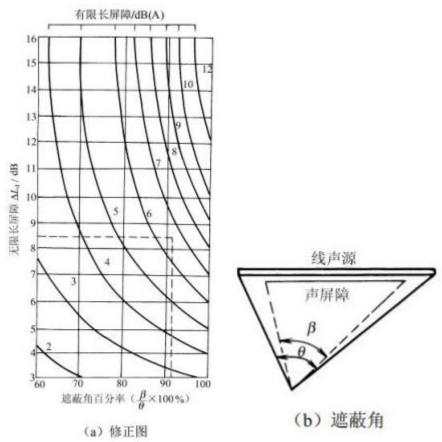


图 4-2 有限长度的声屏障及线声源的修正图

本工程路段未设有隔声屏障,因此无需考虑此项衰减。

3、高路堤或低路堑两侧声影区衰减量 Abar 计算

高路堤或低路堑两侧声影区衰减量 Abar 为预测点在高路堤或低路堑两侧声 影区内引起的附加衰减量。

当预测点处于声照区时, Abar=0;

当预测点处于声影区, Abar 决定于声程差δ。

由图 4-2 计算δ, δ=a+b-c, 再由图 4-3 查出 A_{bar}。

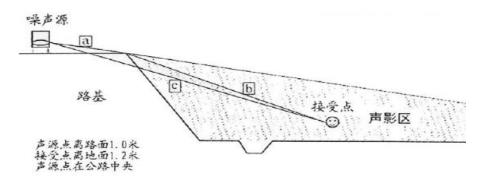


图 4-3 声程差6计算示意图

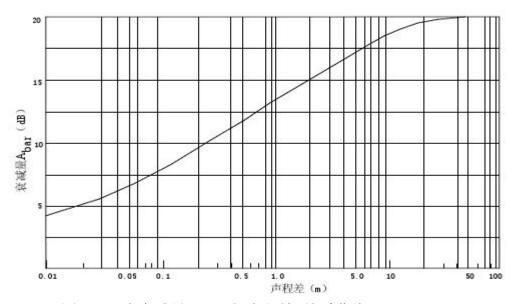


图 4-4 噪声衰减量 Abar 与声程差δ关系曲线(f=500Hz)

3、房屋附加衰减量估算值

在沿公路第一排房屋影声区范围内,农村房屋衰减量近似计算可按图 4-4 和表 4-2 取值。

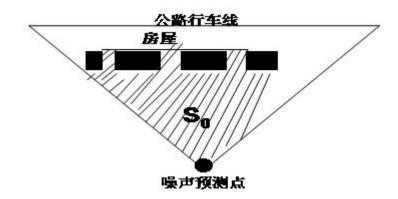


图 4-5 农村房屋降噪量估算示意图

S 为第一排房屋面积和, S_0 为阴影部分(包括房屋)面积 房屋占地面积 $S=S1+S2+\cdots+Sn$

表 4-4 农村房屋噪声附加衰减量估算量

S/S0	Abar
40%~60%	3dB(A)
	5dB(A)
70%~90%	1.5dB(A)
以后每增加一排房屋	最大衰减量≤10dB(A)

4、空气吸收引起的衰减 Aatm

$Aatm = a(r-r_0)/1000$

式中: a 为温度、湿度和声波频率的函数,预测计算中一般根据建设项目所处区域常年平均气温和湿度选择相应的空气吸收系数(见表 4-5)。茂名市近二十年平均气温为 22.3°C,年平均相对湿度 79%。

大气吸收衰减系数α, dB/km 相对 温度 倍频带中心频率 Hz 湿度 $^{\circ}C$ % 63 125 250 500 1000 2000 4000 8000 10 70 0.1 0.4 1.0 1.9 9.7 32.8 117.0 3.7 20 70 0.1 0.3 1.1 2.8 5.0 9.0 22.9 76.6 30 70 0.1 0.3 1.0 3.1 7.4 12.7 23.1 59.3 15 20 0.3 0.6 1.2 2.7 8.2 28.2 28.8 202.0 15 1.2 4.2 50 0.1 0.5 2.2 10.8 36.2 129.0 15 80 0.1 0.3 1.1 2.4 4.1 8.3 23.7 82.8

表 4-5 倍频带噪声的大气吸收衰减系数

5、地面效应衰减 Agr

当声波越过疏松地面传播时,或大部分为疏松地面的混合地面,且在接受点仅计算 A 声级前提下,Agr 可用下式计算:

$$A_{gr}=4.8-(2hm/r)[17+(300/r)]$$

式中:

Agr—地面效应引起的衰减值 dB;

r—声源到接受点的距离, m;

hm—传播路径的平均离地高度,m; hm=面积 F/d,可按图 5-5 进行计算。若 A 计算出负值,A 可用 0 代替。

其它情况参照《声学户外声传播的衰减第 2 部分:一般计算方法》 (GB/T17247.2)

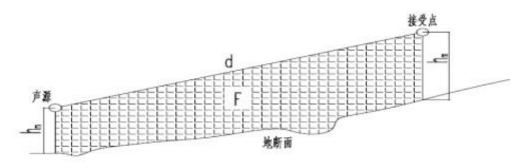


图 4-6 估计平均高度 hm 的方法

4.2.3 由反射等引起的修正量(△L3)

(1) 城市道路交叉路口噪声(影响)修正量

交叉路口的噪声修正值(附加值)见表 4-6。

 受噪声影响点至最近快车道中轴线交叉点的距离(m)
 交叉路口(dB)

 ≤40
 3

 40<D≤70</td>
 2

 70<D≤100</td>
 1

 >100
 0

表 4-6 交叉路口的噪声附加值

(2) 两侧建筑物的反射声修正值

地貌以及声源两侧建筑物反射影响因素的修正。当线路两侧建筑物间距小于 总计算高度 30%时,其反射声修正量为:

两侧建筑物是反射面时:

$$\Delta L_{\text{EM}} = \frac{4H_b}{M} \leq 3.2 \text{dB}$$

两侧建筑物是一般吸收性表面:

$$\Delta L_{\text{EM}} = \frac{2H_{\text{b}}}{\sqrt{W}} \leq 1.6 \text{dB}$$

两侧建筑物为全吸收性表面:

式中:

W——为线路两侧建筑物反射面的间距, m;

 $\mathbf{H}_{m{5}}$ ——为构筑物的平均高度, \mathbf{h} ,取线路两侧较低一侧高度平均值代入计算, \mathbf{m} 。

(3) 交通噪声预测结果

针对本工程交通噪声预测情况,本次环评拟采用石家庄环安科技有限公司开发的噪声环境影响评价系统(NoiseSystem)(版本 V4.0.2022.3)进行预测。

环安科技的噪声环境影响评价系统(NoiseSystem)(版本 V4.3)是根据《环境影响评价技术导则 声环境》(HJ2.4-2021)为核心进行构建,所用预测模式均为导则推荐模式,是基于 GIS 的三维噪声影响评价系统。软件可综合考虑预测区域内所有声源、遮蔽物、气象要素等在声传播过程的综合效应,最终给出计算结果。

本项目相关参数在软件中的设置情况见下图:

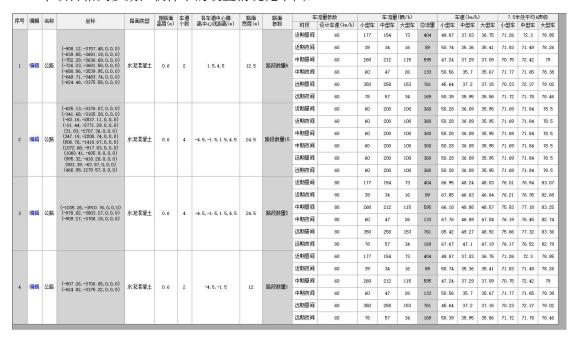


图 4-7 噪声预测软件中公路声源设置图

图 4-8 噪声预测软件中公路声源设置图

①距路中心线不同距离处的交通噪声预测结果

根据各路段评价年昼夜交通量,按平路基、开阔地带(不考虑障碍物遮挡、 地形),仅考虑距离、空气吸收,预测各路段不同评价年的交通噪声值列于表 4-7(见距路中心线不同距离处的交通噪声值)。

距道路中心线	2025		2	2032	2040		
(m)	昼间	夜间	昼间	夜间	昼间	夜间	
20	61.1	52.5	67.8	54.4	64.1	55.5	
40	56.2	46.0	60.0	47.9	59.1	49.0	
60	52.9	42.7	55.7	44.7	56.8	45.8	
80	51.5	40.5	54.0	42.4	55.2	43.5	
100	50.3	38.7	52.2	40.6	53.9	41.7	
120	49.3	37.1	51.6	39.1	52.3	40.2	
140	48.4	35.8	50.6	37.8	51.8	38.9	
160	47.7	34.8	49.8	36.7	51.0	37.8	
180	47.1	33.9	49.2	35.8	50.5	36.9	
200	46.8	33.1	48.6	35.0	49.7	36.1	

表4-7 交通噪声断面分布预测结果单位: dB(A)

②达标距离预测

为了避免未来规划建设受到较大交通噪声影响,报告对平均路堤高度,不考虑建筑物遮挡、地形等因素进行预测,各路段的噪声达标距离进行计算,结果见表4-8(见达标距离)。

达标距离 (距道路边界线距离) 时段 2025年 2031年 2039年 4a 类 4a 类 4a 类 2 类 2 类 2 类 昼间 4.9 11.8 5.9 19.3 7.3 25.1 夜间 15 5.3 8.4 21.4 10.5 24.9

表 4-8 道路两侧交通噪声达标距离(单位: m)

由表 4-8 可知, 达标距离如下:

本项目在预测特征年 2025 年昼间道路边界线外 4.9m 区域均能满足 4a 类标准; 距边界 5.3m 外区域夜间噪声能够满足 4a 类标准要求; 距边界线 11.8 米外区域昼间噪声能够满足 2 类标准要求, 距边界线 15 米外区域夜间噪声能够满足 2 类标准要求。

特征年 2031 年昼间距边界 5.9 米外区域昼间噪声能够满足 4a 类标准要求; 距边界线 8.4 米外区域夜间噪声能够满足 4a 类标准要求; 距边界线 19.3 米外区域昼间噪声能够满足 2 类标准要求, 距边界线 21.4 米外区域夜间噪声能够满足 2 类标准要求。

特征年 2039 年昼间距边界 7.3 米外区域昼间噪声能够满足 4a 类标准要求; 距边界线 10.5 米外区域夜间噪声能够满足 4a 类标准要求; 距边界线 25.1 米外区域昼间噪声能够满足 2 类标准要求, 距边界线 24.9 米外区域夜间噪声能够满足 2 类标准要求。

4.2.4 敏感点噪声预测和评价

根据对拟建道路沿线的现场调查结果,确定道路沿线声环境主要保护目标、保护对象及受影响人群。注:敏感点噪声预测均是在考虑路面降噪、建筑物屏障以及绿化降噪措施下的分析结果。

各关心点的交通噪声预测所使用的交通流量亦按所在路段的交通流量计算, 采用交通噪声预测模式,水平方向敏感点噪声预测结果见表 4-9。

表 4-9 敏感点交通噪声预测结果 单位: dB(A)

							_	文 4-9								\	\ 1100		
	声环					标准	现状		运营	近期			运营	中期			运营	远期	
序号	境保 护 标 称	功能区	位置	楼层	时段	位 /dB(A)	遊水 値 /dB(A)	贡献 值 /dB(A)	预测 值 /dB(A)	较现 状增 量 /dB(A)	超标 量 /dB(A)	贡献 值 /dB(A)	预测 值 /dB(A)	较现 状增 量 /dB(A)	超标 量 /dB(A)	贡献 值 /dB(A)	预测 值 /dB(A)	较现 状增 量 /dB(A)	超标 量 /dB(A)
				1F	昼间	70	67.3	60.1	68. 1	0.8	达标	62.0	68. 4	1.1	达标	63.3	68. 7	1.4	达标
,	散户	,	首	11	夜间	55	52. 3	49.8	54. 2	1.9	达标	51.8	55.0	2. 7	0.0	52. 9	55.6	3.3	0.6
1	1	4a	排	3F	昼间	70	67. 2	63. 2	68. 7	1.5	达标	65. 1	69. 3	2. 1	达标	66.4	69.8	2.6	达标
				31	夜间	55	52. 1	52. 9	55. 5	3. 4	0.5	54. 8	56. 7	4.6	1.7	55.9	57. 4	5.3	2.4
				1F	昼间	70	68. 1	60.8	68. 8	0.7	达标	62. 7	69. 2	1.1	达标	63. 9	69.5	1.4	达标
	散户	10	首	11	夜间	55	53. 3	50.6	55. 2	1.9	0.2	52. 5	55. 9	2.6	0.9	53. 7	56. 5	3.2	1.5
2	2	4a	排	3F	昼间	70	68. 5	64. 1	69. 8	1.3	达标	66.0	70.4	1.9	0.4	67.2	70.9	2.4	0.9
				эг	夜间	55	53. 7	53.8	56. 8	3. 1	1.8	55.8	57. 9	4. 2	2.9	56.9	58.6	4.9	3.6
				1F	昼间	70	67. 4	59.8	68. 1	0.7	达标	61. 7	68. 4	1.0	达标	63.7	68.9	1.5	达标
				11	夜间	55	52. 2	51.2	54. 7	2.5	达标	53. 2	55. 7	3. 5	0.7	54. 3	56.4	4.2	1.4
3	散户	4a	首	3F	昼间	70	67.6	62.5	68.8	1.2	达标	64. 4	69. 3	1.7	达标	66.4	70.0	2.4	0.0
3	3	4 a	排	ЭГ	夜间	55	52.4	53.8	56. 1	3. 7	1.1	55. 7	57. 4	5.0	2.4	56.9	58. 2	5.8	3.2
				5F	昼间	70	67.3	62.2	68. 5	1.2	达标	64. 1	69.0	1.7	达标	66.1	69.7	2.4	达标
				JI.	夜间	55	51.9	53.2	55. 6	3. 7	0.6	55 . 1	56.8	4. 9	1.8	56.4	57.7	5.8	2.7
				1F	昼间	70	65. 4	52. 7	65. 6	0.2	达标	54. 5	65. 7	0.3	达标	58.6	66. 2	0.8	达标
				11.	夜间	55	51.8	45. 5	52. 7	0.9	达标	47. 5	53. 2	1.4	达标	48.6	53. 5	1.7	达标
		4a	首	3F	昼间	70	64. 9	55. 2	65. 3	0.4	达标	57. 1	65.6	0.7	达标	61.2	66.4	1.5	达标
		4 a	排	31	夜间	55	51.3	48. 1	53. 0	1.7	达标	50. 1	53. 7	2.4	达标	51.2	54. 3	3.0	达标
4	婆岭			5F	昼间	70	64. 5	55.0	65. 0	0.5	达标	56.8	65. 2	0.7	达标	61.0	66.1	1.6	达标
				J1 ⁻	夜间	55	50.5	47.8	52. 4	1.9	达标	49.8	53. 2	2. 7	达标	50.9	53. 7	3.2	达标
			_	1F	昼间	60	65. 4	35. 4	65. 4	0.0	5.4	37. 2	65. 4	0.0	5.4	43.4	65.4	0.0	5.4
		2	排	11	夜间	50	51.8	28. 2	51.8	0.0	1.8	30. 2	51.8	0.0	1.8	31.4	51.8	0.0	1.8
			111	3F	昼间	60	64. 9	36.8	64. 9	0.0	4.9	38. 7	64.9	0.0	4.9	44.8	64.9	0.0	4.9

					夜间	50	51.3	29. 7	51. 3	0.0	1.3	31. 7	51. 3	0.0	1.3	32.8	51.4	0.1	1.4
					昼间	60	64. 5	39. 1	64. 5	0.0	4.5	40. 9	64. 5	0.0	4.5	47. 2	64. 6	0.1	4.6
				5F															
					夜间	50	50. 5	31.9	50. 6	0.1	0.6	33.8	50.6	0.1	0.6	35. 0	50.6	0.1	0.6
	牛仔		N/.	1F	昼间	70	66.4	58. 5	67. 0	0.6	达标	60. 3	67. 4	1.0	达标	63. 5	68. 2	1.8	达标
5	塘岭	4a	首		夜间	55	50.6	51.5	54. 1	3. 5	达标	53. 5	55. 3	4. 7	0.3	54.6	56.1	5.5	1.1
	1		排	3F	昼间	70	66. 1	59. 7	67. 0	0.9	达标	61.5	67. 4	1.3	达标	64.8	68.5	2.4	达标
					夜间	55	50. 1	52. 7	54. 6	4. 5	达标	54. 7	56.0	5. 9	1.0	55.8	56.8	6.7	1.8
				1F	昼间	60	58.6	55. 3	60. 3	1.7	0.3	57. 1	60.9	2. 3	0.9	60.3	62.5	3.9	2.5
				11	夜间	50	47.4	47.0	50. 2	2.8	0.2	48. 9	51. 2	3.8	1.2	50. 1	52.0	4.6	2.0
6	陈宅	2	首	3F	昼间	60	59. 1	58. 1	61.6	2.5	1.6	59. 9	62. 5	3.4	2.5	63. 2	64.6	5.5	4.6
		2	排	31	夜间	50	47. 1	49.9	51. 7	4.6	1.7	51.8	53. 1	6.0	3. 1	53.0	54.0	6.9	4.0
				5F	昼间	60	58.8	58.5	61.7	2.9	1.7	60.3	62.6	3.8	2.6	63.5	64.8	6.0	4.8
				31	夜间	50	46.5	50.1	51.6	5. 1	1.6	52.0	53. 1	6.6	3.1	53. 2	54.0	7.5	4.0
	4.77			1F	昼间	60	56.4	52.9	58. 0	1.6	达标	54. 7	58. 7	2.3	达标	56. 1	59.3	2.9	达标
7	牛仔	2	首	11	夜间	50	46.2	42.1	47. 6	1.4	达标	44.0	48. 3	2. 1	达标	45. 2	48. 7	2.5	达标
'	塘岭	2	排	25	昼间	60	55.9	54. 9	58. 4	2.5	达标	56. 7	59. 3	3. 4	达标	58. 1	60.1	4.2	0.1
	2			3F	夜间	50	46.3	44.0	48. 3	2.0	达标	46.0	49. 1	2.8	达标	47.1	49. 7	3.4	达标
				1.5	昼间	70	58.6	62.3	63. 9	5. 3	达标	64. 1	65. 2	6.6	达标	65. 3	66. 1	7.5	达标
	散户		首	1F	夜间	55	47.2	54.0	54. 8	7.6	达标	55. 9	56. 5	9.3	1.5	57.0	57. 5	10.3	2.5
8	4	4a	排	2.5	昼间	70	58. 3	63.0	64. 3	6.0	达标	64.8	65. 7	7.4	达标	66.0	66. 7	8.4	达标
				3F	夜间	55	47.1	54. 5	55. 2	8. 1	0.2	56. 4	56. 9	9.8	1.9	57. 5	57.9	10.8	2.9
					昼间	70	66.8	62. 7	68. 2	1.4	达标	64. 5	68.8	2.0	达标	65. 7	69. 3	2.5	达标
	黄岭			1F	夜间	55	53. 2	54. 5	56. 9	3. 7	1.9	56. 4	58. 1	4.9	3. 1	57. 5	58. 9	5. 7	3.9
9	坳	4a			昼间	70	67. 2	63. 2	68. 7	1.5	达标	65. 0	69. 3	2. 1	达标	66. 2	69. 7	2.5	达标
				3F	夜间	55	52.8	53. 7	56. 3	3. 5	1.3	56. 7	58. 1	5. 3	3. 1	57.8	59.0	6.2	4.0
	曙光		首		昼间	70	68. 4	60. 2	69. 0	0.6	达标	62. 0	69. 3	0.9	达标	63. 1	69. 5	1.1	达标
	农场	4a	排	1F	夜间	55	53	51.3	55. 2	2. 2	0.2	53. 2	56. 1	3. 1	1.1	54. 3	56. 7	3.7	1.7
10	三分				昼间	60	67. 9	45.6	67. 9	0.0	7.9	47. 5	67. 9	0.0	7.9	48. 9	68.0	0.1	8.0
	场	2	排	1F	夜间	50	52. 9	34. 7	53. 0	0.1	3.0	36. 6	53. 0	0. 1	3.0	37. 7	53. 0	0.1	3. 0
			7 11		1/1/1/		_ ~ ~	- 1. ·				_ ~~~	1 00.0	1			1 00.0		0.0

					F 1		07.4	40.0	07.4	0.0	7.4	40.7	05.5	0.1		F0.1	05.5	0.1	7.5
				3F	昼间	60	67.4	46. 9	67. 4	0.0	7.4	48. 7	67. 5	0.1	7.5	50. 1	67. 5	0.1	7. 5
					夜间	50	52. 1	35.8	52. 2	0.1	2.2	37. 7	52. 3	0.2	2.3	38.8	52. 3	0.2	2.3
				1F	昼间	70	57.6	49.9	58. 3	0. 7	达标	51. 7	58. 6	1.0	达标	52.8	58.8	1.2	达标
					夜间	55	46.8	37. 4	47. 3	0.5	达标	39. 3	47.5	0.7	达标	40.4	47. 7	0.9	达标
		4a	首	3F	昼间	70	57.3	50.8	58. 2	0.9	达标	52.6	58.6	1.3	达标	53.8	58. 9	1.6	达标
		та	排	31	夜间	55	46.5	38.4	47. 1	0.6	达标	40.3	47. 4	0.9	达标	41.4	47.7	1.2	达标
				5F	昼间	70	57. 1	51.7	58. 2	1.1	达标	53. 5	58. 7	1.6	达标	54. 7	59. 1	2.0	达标
11	大榕			ЭГ	夜间	55	46. 1	39.3	46. 9	0.8	达标	41.2	47. 3	1.2	达标	42. 3	47.6	1.5	达标
11	新村			1F	昼间	60	57.6	23. 3	57. 6	0.0	达标	25. 1	57.6	0.0	达标	26. 3	57.6	0.0	达标
				11	夜间	50	46.8	10.5	46. 8	0.0	达标	12. 4	46.8	0.0	达标	13.5	46.8	0.0	达标
		_	二	25	昼间	60	57.3	26.0	57. 3	0.0	达标	27. 9	57. 3	0.0	达标	29.0	57.3	0.0	达标
		2	排	3F	夜间	50	46.5	13. 1	46. 5	0.0	达标	15. 1	46. 5	0.0	达标	16. 5	46. 5	0.0	达标
				5 F	昼间	60	57. 1	37. 1	57. 1	0.0	达标	38. 9	57. 2	0.1	达标	40.1	57. 2	0.1	达标
				5F	夜间	50	46. 1	24. 3	46. 1	0.0	达标	26. 2	46. 1	0.0	达标	27. 3	46. 2	0.1	达标
				1.0	昼间	60	57. 7	53. 7	59. 1	1.4	达标	55. 5	59. 7	2.0	达标	56.6	60. 2	2.5	0.2
			首	1F	夜间	50	46. 4	43.4	48. 1	1.7	达标	45. 3	48. 9	2.5	达标	46. 4	49.4	3.0	达标
			排		昼间	60	57. 5	56.8	60. 2	2. 7	0.2	58. 6	61. 1	3.6	1.1	59.8	61.8	4.3	1.8
	黄竹	_		3F	夜间	50	46. 1	46. 5	49. 3	3. 2	达标	48. 4	50. 4	4. 3	0.4	49.5	51.1	5.0	1.1
12	塘村	2			昼间	60	56. 4	41.3	56. 5	0.1	达标	43.0	56.6	0.2	达标	44.1	56.6	0.2	达标
				1F	夜间	50	45. 5	29.4	45. 6	0.1	达标	31. 3	45. 7	0.2	达标	32.4	45. 7	0.2	达标
			排	_	昼间	60	56. 3	48.6	57. 0	0.7	达标	50. 4	57. 3	1.0	达标	51.6	57.6	1.3	达标
				3F	夜间	50	45. 3	36.8	45. 9	0.6	达标	38. 7	46. 2	0.9	达标	39.8	46. 4	1.1	达标
					昼间	60	56. 2	52. 1	57. 6	1.4	达标	53. 9	58. 2	2.0	达标	55.0	58. 7	2.5	达标
			首	1F	夜间	50	45	40.6	46. 3	1.3	达标	42. 5	46. 9	1.9	达标	43.6	47.4	2.4	达标
			排		昼间	60	55. 8	53. 7	57. 9	2. 1	- 达标	55. 5	58. 7	2.9	达标	56. 7	59. 3	3.5	达标
13	雪屋	2	"	3F	夜间	50	44.8	42. 2	46. 7	1.9	达标	44. 1	47. 5	2. 7	达标	45. 2	48.0	3.2	达标
		_			昼间	60	56. 2	47. 8	56. 8	0.6	达标	49. 6	57. 1	0.9	达标	50.8	57. 3	1.1	达标
				1F	夜间	50	45	35. 5	45. 5	0.5	达标	37. 4	45. 7	0.7	达标	38. 5	45. 9	0.9	达标
			排	3F	昼间	60	55.8	49. 0	56. 6	0.8	达标	50. 8	57. 0	1.2	达标	52. 0	57. 3	1.5	达标
				<i>J</i> 1	프마		00.0	10.0	00.0		1 K3/1/1	00.0	01.0	1.2	~ ~ ~ ~ ·	02.0	01.0	1.0	K3/1/1

					夜间	50	44.8	36.6	45. 4	0.6	达标	38. 6	45. 7	0.9	达标	39. 7	46.0	1.0	达标
																		1.2	
			34.	1F	昼间	60	56.8	59.9	61. 6	4.8	1.6	61. 7	62. 9	6.1	2.9	62.9	63.8	7.0	3.8
			首		夜间	50	45. 9	51.1	52. 3	6.4	2.3	53. 0	53.8	7.9	3.8	54. 1	54. 7	8.8	4. 7
			排	3F	昼间	60	56. 5	61.7	62. 8	6.3	2.8	63. 5	64. 3	7.8	4.3	64. 7	65.3	8.8	5. 3
14	大榕	2			夜间	50	45.8	52. 7	53. 5	7. 7	3.5	54. 7	55. 2	9.4	5.2	55.8	56. 2	10.4	6.2
* '	7 (14	-		1F	昼间	60	58. 1	52.9	59. 2	1.1	达标	54. 2	59.6	1.5	达标	55. 9	60.1	2.0	0.1
				11	夜间	50	46.4	42.2	47. 8	1.4	达标	44. 1	48. 4	2.0	达标	45. 2	48.9	2.5	达标
			排	3F	昼间	60	57.9	55. 3	59.8	1.9	达标	57. 1	60. 5	2.6	0.5	58. 3	61.1	3.2	1.1
				31	夜间	50	46. 5	44.6	48. 7	2.2	达标	46. 5	49. 5	3.0	达标	47.6	50.1	3.6	0.1
				1F	昼间	60	56. 7	54. 4	58. 7	2.0	达标	56. 2	59. 5	2.8	达标	59. 7	61.4	4.7	1.4
			首	11	夜间	50	47.6	43.5	49.0	1.4	达标	47. 7	50. 7	3. 1	0.7	48.8	51.3	3.7	1.3
			排	25	昼间	60	56. 7	56. 7	59. 7	3.0	达标	58. 5	60. 7	4.0	0.7	59. 7	61.4	4.7	1.4
1.5	元墩			3F	夜间	50	47.4	45.8	49. 7	2.3	达标	47. 7	50.6	3. 2	0.6	48.8	51.2	3.8	1.2
15	岭	2		1.5	昼间	60	56. 4	51.7	57. 7	1.3	达标	53.6	58. 2	1.8	达标	54. 7	58.6	2.2	达标
				1F	夜间	50	47.4	40.1	48. 1	0.7	达标	42.0	48. 5	1.1	达标	43. 1	48.8	1.4	达标
			排	2.5	昼间	60	56. 1	53. 3	57. 9	1.8	达标	55. 1	58. 6	2.5	达标	56. 2	59. 2	3.1	达标
				3F	夜间	50	47. 3	41.6	48. 3	1.0	达标	43. 5	48. 8	1.5	达标	44.6	49. 2	1.9	达标
				4.0	昼间	60	58. 4	47. 2	58. 7	0.3	达标	49.0	58. 9	0.5	达标	50. 1	59.0	0.6	达标
1	大榕	_	首	1F	夜间	50	46. 5	34. 3	46. 8	0.3	达标	36. 2	46. 9	0.4	达标	37. 3	47.0	0.5	达标
16	小学	2	排		昼间	60	58	48. 5	58. 5	0.5	达标	50. 3	58. 7	0.7	达标	51.5	58.9	0.9	达标
				3F	夜间	50	45. 7	35.6	46. 1	0.4	达标	37. 5	46. 3	0.6	达标	38.6	46. 5	0.8	达标
					昼间	60	69. 1	55. 1	69. 3	0.2	9.3	56. 9	69. 4	0.3	9.4	58.0	69. 4	0.3	9. 4
	散户		首	1F	夜间	50	45. 2	45.0	48. 1	2.9	达标	46, 9	49. 2	4.0	达标	48.0	49.8	4.6	达标
17	5	2	排		昼间	60	69. 3	58. 4	69. 6	0.3	9.6	60, 2	69.8	0.5	9.8	61.4	69.9	0.6	9.9
			"	3F	夜间	50	44. 9	48. 3	49. 9	5.0	达标	50. 2	51. 3	6. 4	1.3	51. 3	52. 2	7.3	2. 2
					昼间	60	56. 4	58. 9	60. 8	4. 4	0.8	60. 7	62. 1	5. 7	2.1	61.8	62. 9	6.5	2.9
	大榕		首	1F	夜间	50	45. 4	49.9	51. 2	5.8	1.2	51.8	52. 7	7.3	2.7	52. 9	53.6	8.2	3.6
17	村 2	2	排		昼间	60	56. 3	60. 9	62. 2	5. 9	2.2	62. 7	63. 6	7. 3	3.6	63. 9	64.6	8.3	4.6
	112		111	3F	夜间	50	45. 2	51.8	52. 7	7. 5	2.7	53. 7	54. 3	9.1	4.3	54.8	55. 3	10. 1	5. 3
					汉四	50	40. 4	91.0	04.1	1.0	۷.۱	00.1	04.0	9.1	4.0	04.0	00.0	10.1	0.0

				1.5	昼间	60	68.6	49. 2	68. 6	0.0	8.6	51.0	68. 7	0.1	8.7	52. 2	68. 7	0.1	8.7
				1F	夜间	50	44. 4	36. 4	45. 0	0.6	达标	38. 3	45. 4	1.0	达标	39. 4	45.6	1.2	达标
18	散户	2	首	3F	昼间	60	69	50.1	69. 1	0.1	9.1	51. 9	69. 1	0.1	9.1	53.0	69. 1	0.1	9.1
18	6	2	排	3F	夜间	50	44. 3	37. 2	45. 1	0.8	达标	39. 2	45. 5	1.2	达标	40.3	45. 7	1.4	达标
				5F	昼间	60	68.4	53.3	68. 5	0.1	8.5	54. 7	68. 6	0.2	8.6	55. 3	68.6	0.2	8.6
				ЭГ	夜间	50	44.1	40.1	45. 6	1.5	达标	42.8	46. 5	2.4	达标	44.1	47.1	3.0	达标
				1F	昼间	60	68. 3	47.6	68. 3	0.0	8.3	49. 4	68. 4	0.1	8.4	50.6	68.4	0.1	8.4
				11	夜间	50	45.6	34. 7	45. 9	0.3	达标	36. 6	46. 1	0.5	达标	37. 7	46. 2	0.6	达标
19	炸岭	2	首	3F	昼间	60	68. 3	48.3	68. 3	0.0	8.3	50. 1	68. 4	0.1	8.4	51.3	68.4	0.1	8.4
19	大F mマ	2	排	эг	夜间	50	45.6	35.3	46. 0	0.4	达标	37. 2	46. 2	0.6	达标	38. 3	46. 3	0.7	达标
				5F	昼间	60	68.2	49.0	68. 3	0.1	8.3	50.8	68. 3	0.1	8.3	51.3	68.3	0.1	8.3
				31	夜间	50	45.5	36.0	46.0	0.5	达标	37. 9	46. 2	0.7	达标	39.0	46.4	0.9	达标
				1F	昼间	70	68.6	56.9	68. 9	0.3	达标	58.8	69.0	0.4	达标	59.9	69. 2	0.6	达标
				11	夜间	55	46.4	47.2	49.8	3.4	达标	49. 1	50. 9	4.5	达标	50. 2	51.7	5.3	达标
20	散户	4a	首	3F	昼间	70	68. 2	60.0	68.8	0.6	达标	61.8	69. 1	0.9	达标	63.0	69.3	1.1	达标
20	7	1 a	排	31	夜间	55	46.3	50.2	51. 7	5. 4	达标	52. 1	53. 1	6.8	达标	53. 1	53. 9	7.6	达标
				5F	昼间	70	68.6	60.2	69. 2	0.6	达标	61. 9	69. 4	0.8	达标	63. 1	69. 7	1.1	达标
				31	夜间	55	46.4	50.2	51. 7	5. 3	达标	52. 1	53. 1	6. 7	达标	53. 2	54.0	7.6	达标
				1F	昼间	60	68	48.8	68. 1	0.1	8.1	50.6	68. 1	0.1	8.1	51.8	68.1	0.1	8.1
21	风炉	2	首	11	夜间	50	46.8	37. 7	47. 3	0.5	达标	39. 6	47. 6	0.8	达标	40.7	47.7	0.9	达标
21	岭		排	3F	昼间	60	67.9	49.8	68. 0	0.1	8.0	51.6	68. 0	0.1	8.0	52.8	68.0	0.1	8.0
				31	夜间	50	46.6	38. 4	47. 2	0.6	达标	40. 3	47. 5	0.9	达标	41.4	47.8	1.2	达标
				1F	昼间	70	67.4	55.5	67. 7	0.3	达标	57. 3	67.8	0.4	达标	58.4	67.9	0.5	达标
22	散户	4a	首	11	夜间	55	47.3	45. 2	49. 4	2. 1	达标	47. 1	50. 2	2.9	达标	48. 2	50.8	3.5	达标
	8	ı a	排	3F	昼间	70	67. 2	58.3	67. 7	0.5	达标	60. 1	68. 0	0.8	达标	61.2	68. 2	1.0	达标
				<i>J</i> 1	夜间	55	47	48.0	50. 5	3. 5	达标	49. 9	51. 7	4.7	达标	51.0	52.4	5.4	达标
	散户		首	1F	昼间	60	57.5	48. 2	58. 0	0.5	达标	50.0	58. 2	0.7	达标	51.2	58. 4	0.9	达标
23	9	2	排		夜间	50	47.3	34.8	47. 5	0.2	达标	36. 7	47. 7	0.4	达标	37.8	47.8	0.5	达标
			111	3F	昼间	60	57. 3	48.8	57. 9	0.6	达标	50. 7	58. 2	0.9	达标	51.8	58. 4	1.1	达标

					夜间	50	47.4	35. 4	47.7	0.3	达标	37. 4	47.8	0.4	达标	38.5	47.9	0.5	达标
				1F	昼间	60	57	61.5	62.8	5.8	2.8	63. 3	64. 2	7.2	4.2	64.5	65. 2	8.2	5. 2
			首	11	夜间	50	47.1	53.1	54. 1	7.0	4.1	55. 1	55. 7	8.6	5. 7	56. 2	56. 7	9.6	6. 7
			排	3F	昼间	60	56. 7	62.9	63.8	7. 1	3.8	64.8	65. 4	8. 7	5. 4	65. 9	66. 4	9.7	6. 4
24	水鸡	2		31	夜间	50	47	54.3	55. 1	8. 1	5. 1	56. 3	56. 7	9. 7	6. 7	57. 4	57. 7	10.7	7. 7
24	岭	2		1F	昼间	60	56. 5	54. 1	58. 5	2.0	达标	55. 9	59. 2	2.7	达标	57. 1	59.8	3.3	达标
				11	夜间	50	46. 4	43.4	48. 2	1.8	达标	45. 4	48. 9	2.5	达标	46. 5	49. 4	3.0	达标
			排	3F	昼间	60	56. 1	56. 7	59. 4	3.3	达标	58. 5	60. 5	4.4	0.5	59.6	61.2	5.1	1.2
				эг	夜间	50	46. 1	46.0	49. 1	3.0	达标	47. 9	50. 1	4.0	0.1	49.0	50.8	4.7	0.8
				1F	昼间	60	58. 1	57. 1	60.6	2.5	0.6	58. 9	61.5	3. 4	1.5	60.1	62. 2	4.1	2. 2
			首	ΙΓ	夜间	50	45. 2	47.5	49.5	4.3	达标	49. 4	50.8	5.6	0.8	50.5	51.6	6.4	1.6
			排	3F	昼间	60	58. 1	59. 9	62. 1	4.0	2.1	61.8	63. 3	5. 2	3.3	62.9	64. 1	6.0	4. 1
25	禾禄	2		ЭГ	夜间	50	45. 2	50.3	51.5	6.3	1.5	52. 2	53.0	7.8	3.0	53.3	53.9	8.7	3. 9
23	岗 1	2		1F	昼间	60	57.9	43.4	58. 1	0.2	达标	45. 2	58. 1	0.2	达标	46. 3	58. 2	0.3	达标
				11	夜间	50	45.1	32.5	45. 3	0.2	达标	34. 4	45. 5	0.4	达标	35.5	45.6	0.5	达标
			排	3F	昼间	60	57. 2	45.0	57. 5	0.3	达标	46.8	57. 6	0.4	达标	48.0	57. 7	0.5	达标
				ЭГ	夜间	50	44. 7	34. 4	45. 1	0.4	达标	36. 3	45. 3	0.6	达标	37. 5	45. 4	0.7	达标
				1F	昼间	60	57.6	45. 1	57.8	0.2	达标	46. 9	58.0	0.4	达标	48.0	58. 1	0.5	达标
				11	夜间	50	44.6	32. 3	44.9	0.3	达标	34. 3	45.0	0.4	达标	35.4	45.1	0.5	达标
26	禾禄	2	首	3F	昼间	60	57. 7	48. 5	58. 2	0.5	达标	50. 4	58. 4	0.7	达标	51.5	58.6	0.9	达标
20	岗 2		排	ЭГ	夜间	50	44.3	35. 9	44.9	0.6	达标	37.8	45. 2	0.9	达标	38.9	45.4	1.1	达标
				5F	昼间	60	57.4	48. 3	57. 9	0.5	达标	49.6	58. 1	0.7	达标	54. 3	59.1	1.7	达标
				ЭГ	夜间	50	43.9	38.6	45.0	1.1	达标	39. 9	45. 4	1.5	达标	41.7	45. 9	2.0	达标

项目建成后散户 1、散户 2、散户 3、婆岭、牛仔塘岭 1、陈宅、散户 4、黄岭坳、曙光农场三分场、大榕新村、黄竹塘村、大榕、大榕村 2、散户 5、散户 6、散户 7、风炉岭、散户 8、水鸡岭、禾禄岗 1 等敏感点执行《声环境质量标准》(GB3096-2008)4a 类标准(即昼间≤70dB(A)、夜间≤55dB(A)),雪屋、元墩岭、大榕小学、炸岭、散户 9、禾禄岗 2 执行《声环境质量标准》(GB3096-2008)2 类标准(即昼间≤60dB(A)、夜间≤50dB(A))。

据表 4-9 预测结果可知:在项目道路两侧敏感点近期昼间、近期夜间、中期昼间、中期夜间、远期昼间、远期夜间均出现不同程度的超标现象。可见本次道路建设,对道路沿线两侧环境的噪声贡献值均有明显升高,建议建设单位采取相应的防护措施,减轻项目对敏感点的噪声污染。

本项目不同规划运行期沿线主要敏感点路段交通水平噪声等值线分布图分别见图 4-9 及表 4-10。

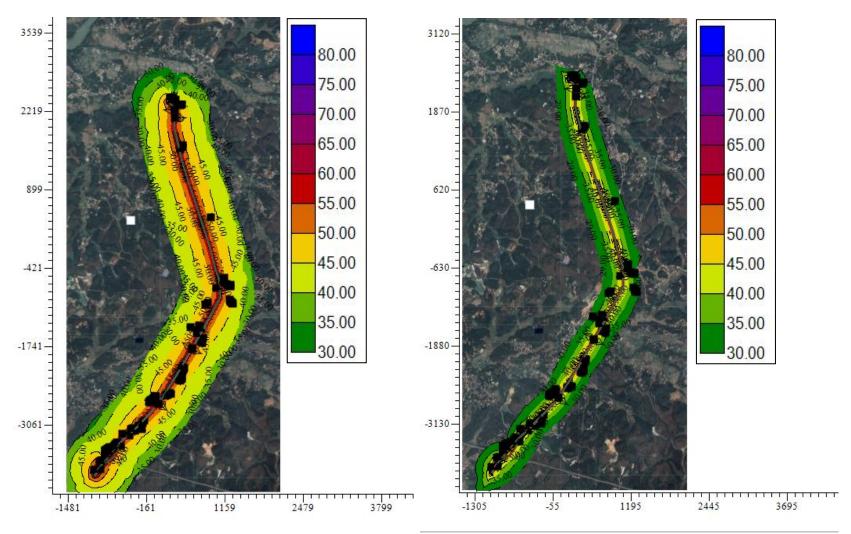


图 4-9 (a) 项目近期昼夜间水平噪声等值线分布图 (左昼右夜)

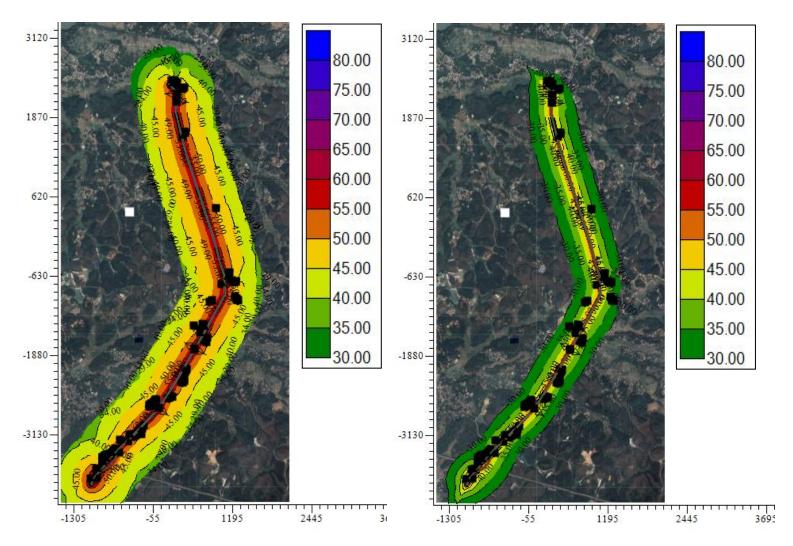


图 4-9(b) 项目中期昼夜间水平噪声等值线分布图(左昼右夜)

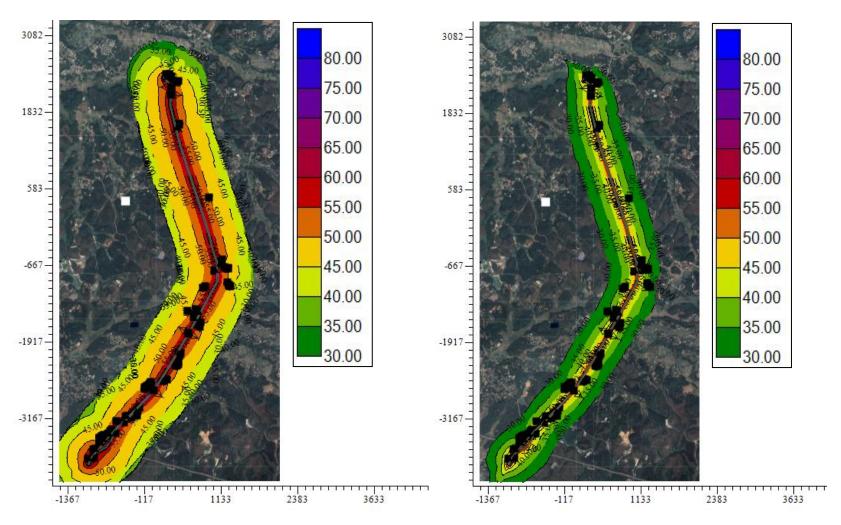
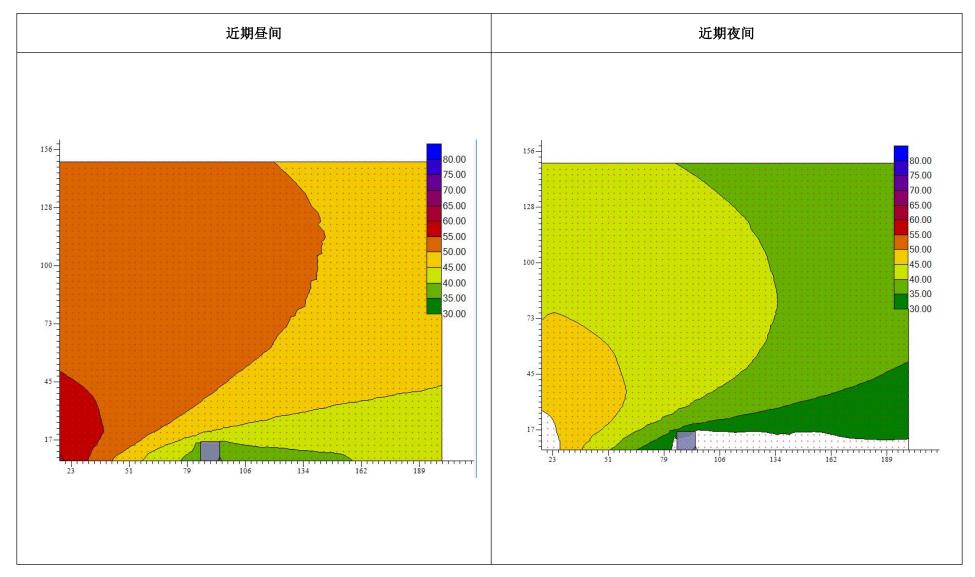
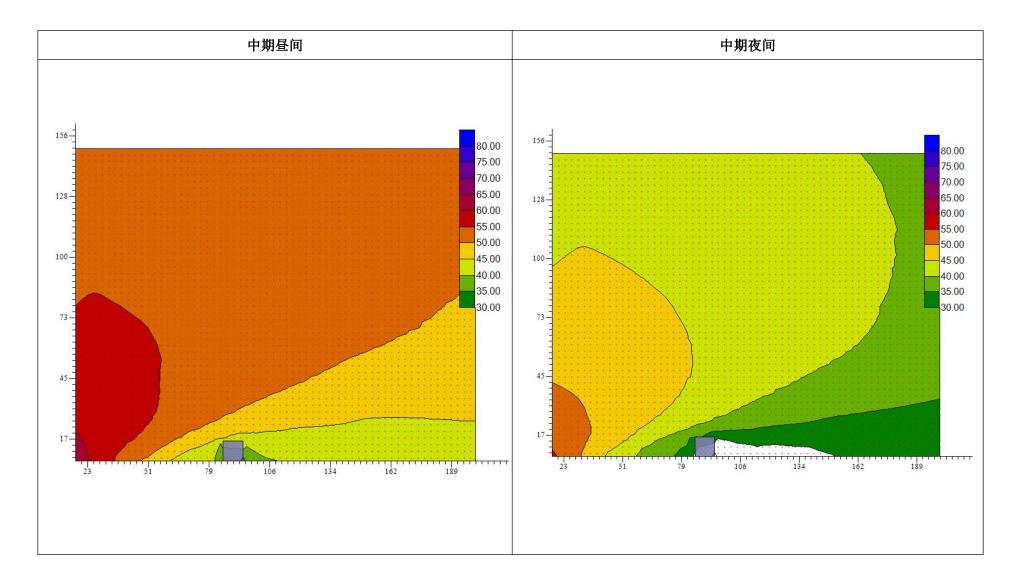




图 4-9(c) 远期昼夜间水平噪声等值线分布图(左昼右夜)



表 4-10 典型敏感点垂直声场图(婆岭)

4.3 预测结果分析

沿线共涉<u>及 26 个</u>环境保护目标,项目对沿线的保护目标的噪声环境造成不同程度的影响,主要超标情况出现在夜间,敏感点超标情况见下表:

表 4-11 项目沿线敏感点超标情况

	声环				1X T		日沿线歌》	·斯	中	 期	远	期
序号	境別	功能区	位 置	楼层	时段	标准 值 /dB(A)	预测 值 /dB(A)	超标 量 /dB(A)	预测 值 /dB(A)	超标 量 /dB(A)	预测 值 /dB(A)	超标 量 /dB(A)
				1	昼间	70	68.1	达标	68. 4	达标	68.7	达标
1	散户	4	首	F	夜间	55	54. 2	达标	55.0	达标	55.6	0.6
1	1	a	排	3	昼间	70	68.7	达标	69.3	达标	69.8	达标
				F	夜间	55	55. 5	0.5	56. 7	1.7	57.4	2.4
				1	昼间	70	68.8	达标	69.2	达标	69.5	达标
2	散户	4	首	F	夜间	55	55. 2	0.2	55. 9	0.9	56. 5	1.5
	2	a	排	3	昼间	70	69.8	达标	70.4	0.4	70.9	0.9
				F	夜间	55	56.8	1.8	57. 9	2.9	58.6	3.6
				1	昼间	70	68.1	达标	68.4	达标	68.9	达标
				F	夜间	55	54. 7	达标	55. 7	0.7	56.4	1.4
3	散户	4	首	3	昼间	70	68.8	达标	69.3	达标	70.0	0.0
	3	a	排	F	夜间	55	56.1	1.1	57.4	2.4	58. 2	3. 2
				5	昼间	70	68.5	达标	69.0	达标	69.7	达标
				F	夜间	55	55.6	0.6	56.8	1.8	57. 7	2.7
				1	昼间	70	65.6	达标	65. 7	达标	66.2	达标
				F	夜间	55	52. 7	达标	53. 2	达标	53. 5	达标
		4	首	3	昼间	70	65.3	达标	65.6	达标	66.4	达标
		a	排	F	夜间	55	53.0	达标	53. 7	达标	54.3	达标
				5	昼间	70	65.0	达标	65. 2	达标	66. 1	达标
4	婆岭			F	夜间	55	52.4	达标	53. 2	达标	53. 7	达标
"	女"(1	昼间	60	65.4	5. 4	65. 4	5. 4	65.4	5. 4
				F	夜间	50	51.8	1.8	51.8	1.8	51.8	1.8
		2	\equiv	3	昼间	60	64.9	4.9	64.9	4. 9	64.9	4.9
			排	F	夜间	50	51.3	1.3	51.3	1.3	51.4	1.4
				5	昼间	60	64.5	4.5	64.5	4. 5	64.6	4.6
				F	夜间	50	50.6	0.6	50.6	0.6	50.6	0.6
	牛仔			1	昼间	70	67.0	达标	67.4	达标	68. 2	达标
5	塘岭	4	首	F	夜间	55	54.1	达标	55. 3	0.3	56. 1	1. 1
	1	a	排	3	昼间	70	67.0	达标	67.4	达标	68.5	达标
				F	夜间	55	54.6	达标	56.0	1.0	56.8	1.8
				1	昼间	60	60.3	0.3	60.9	0.9	62.5	2. 5
				F	夜间	50	50.2	0.2	51.2	1.2	52.0	2.0
6	陈宅	2	首	3	昼间	60	61.6	1.6	62.5	2.5	64.6	4.6
	1/4, []	~	排	F	夜间	50	51.7	1.7	53. 1	3. 1	54.0	4.0
				5	昼间	60	61.7	1.7	62.6	2.6	64.8	4.8
				F	夜间	50	51.6	1.6	53. 1	3. 1	54.0	4.0

				1	昼间	60	58.0	达标	58. 7	达标	59.3	达标
	牛仔		首	F	夜间	50	47.6		48. 3	达标	48. 7	达标
7	塘岭	2	排	3	昼间	60	58. 4	达标	59. 3	达标	60. 1	0.1
	2		7 "	F	夜间	50	48. 3	达标	49. 1	达标	49. 7	达标
				1	昼间	70	63. 9	达标	65. 2	达标	66. 1	达标
	散户	4	首	F	夜间	55	54.8	达标	56. 5	1.5	57. 5	2. 5
8	4	a	排	3	昼间	70	64. 3	达标	65. 7	达标	66. 7	达标
			"	F	夜间	55	55. 2	0. 2	56. 9	1.9	57. 9	2. 9
				1	昼间	70	68.2		68.8	达标	69.3	达标
	黄岭	4		F	夜间	55	56. 9	1.9	58. 1	3. 1	58. 9	3. 9
9	坳	a		3	昼间	70	68.7	达标	69. 3	达标	69.7	达标
				F	夜间	55	56.3	1.3	58. 1	3. 1	59.0	4.0
		4	首	1	昼间	70	69.0	达标	69.3	达标	69.5	达标
	曙光	a	排	F	夜间	55	55. 2	0.2	56. 1	1.1	56. 7	1.7
10	农场			1	昼间	60	67.9	7. 9	67. 9	7. 9	68.0	8.0
10	三分	2		F	夜间	50	53.0	3.0	53.0	3.0	53.0	3.0
	场	2	排	3	昼间	60	67.4	7. 4	67.5	7. 5	67.5	7. 5
				F	夜间	50	52.2	2. 2	52. 3	2.3	52.3	2. 3
				1	昼间	70	58.3	达标	58.6	达标	58.8	达标
				F	夜间	55	47.3	达标	47.5	达标	47.7	达标
		4	首	3	昼间	70	58.2	达标	58.6	达标	58. 9	达标
		a	排	F	夜间	55	47.1	达标	47.4	达标	47.7	达标
				5	昼间	70	58.2	达标	58. 7	达标	59. 1	达标
11	大榕			F	夜间	55	46.9	达标	47. 3	达标	47.6	达标
	新村			1	昼间	60	57.6	达标	57.6	达标	57.6	达标
				F	夜间	50	46.8	达标	46.8	达标	46.8	达标
		2		3	昼间	60	57.3	达标	57. 3	达标	57. 3	达标
			排	F	夜间	50	46.5	<u> </u>	46. 5	达标	46. 5	达标
				5 E	昼间	60	57. 1	达标	57. 2	达标	57. 2	达标
				F	夜间	50	46. 1	<u> </u>	46. 1	さ は な な な な な な な な な な な な な な な な な な	46. 2	达标
			土	1 F	昼间	60	59.1	<u> </u>	59.7	达标	60. 2	0.2
			首排		を を を を を を し	50 60	48. 1 60. 2	<u> </u>	48. 9	<u></u> 达标	49. 4 61. 8	<u> </u>
	黄竹		1111	3 F	夜间	50	49.3	 达标	50. 4	0.4	51. 1	1. 1
12	塘村	2			昼间	60	56. 5		56. 6	达标	56.6	达标
	7013		二	1 F	夜间	50	45. 6		45. 7	达标	45. 7	达标
			排	3	昼间	60	57.0	达标	57. 3	达标	57.6	达标
			1,11	5 F	夜间	50	45. 9	<u></u> 达标	46. 2	达标	46. 4	达标
				1	昼间	60	57.6	达标	58. 2	达标	58. 7	达标
			首	F	夜间	50	46.3	达标	46. 9	达标	47. 4	达标
			排	3	昼间	60	57.9	达标	58. 7	达标	59. 3	达标
			"	F	夜间	50	46. 7	达标	47. 5	达标	48. 0	达标
13	雪屋	2		1	昼间	60	56.8	达标	57. 1	达标	57. 3	达标
			二	F	夜间	50	45.5	达标	45. 7	达标	45. 9	达标
			排	3	昼间	60	56.6	达标	57.0	达标	57. 3	达标
				F	夜间	50	45.4	达标	45. 7	达标	46.0	达标
14	大榕	2	首	1	昼间	60	61.6	1.6	62. 9	2.9	63.8	3.8

			排	F	夜间	50	52.3	2. 3	53.8	3.8	54. 7	4. 7
			1 111	3	昼间	60	62.8	2.8	64. 3	4. 3	65. 3	5. 3
				F	夜间	50	53. 5	3. 5	55. 2	5. 2	56. 2	6. 2
				1	昼间	60	59.2	达标	59.6	达标	60. 1	0.1
				F	夜间	50	47.8	达标	48. 4	达标	48.9	达标
			排	3	昼间	60	59.8	达标	60.5	0.5	61.1	1. 1
				F	夜间	50	48.7	达标	49.5	达标	50. 1	0.1
				1	昼间	60	58. 7	达标	59. 5	达标	61.4	1.4
			首	F	夜间	50	49.0	达标	50. 7	0.7	51.3	1.3
			排	3	昼间	60	59. 7	达标	60.7	0.7	61.4	1.4
15	元墩	2		F	夜间	50	49.7	达标	50.6	0.6	51.2	1.2
15	岭	-		1	昼间	60	57. 7	达标	58. 2	达标	58.6	达标
				F	夜间	50	48.1	<u> </u>	48.5	达标	48.8	达标
			排	3	昼间	60	57.9	达标	58. 6	达标	59. 2	达标
				F	夜间	50	48. 3	达标	48. 8	达标	49. 2	达标
	جيد بــــــــــــــــــــــــــــــــــــ		عد ا	1	昼间	60	58. 7	达标	58. 9	达标	59. 0	达标
16	大榕 小学	2	首批	F	夜间	50	46.8	<u> </u>	46. 9	达标	47. 0	达标
	小子 		排	3 F	昼间	60 50	58.5	达标	58. 7	达标	58. 9	达标
					夜间 昼间	60	46. 1 69. 3	<u></u> 达标	46. 3 69. 4	<u></u>	46. 5 69. 4	<u> </u>
	散户		首	1 F	夜间	50	48. 1	 达标	49. 2	达标	49.8	达标
17	5	2	排	3	昼间	60	69.6	9.6	69. 8	9.8	69. 9	9.9
			1 111	F	夜间	50	49.9	<u> </u>	51. 3	1. 3	52. 2	2. 2
				1	昼间	60	60.8	0.8	62. 1	2. 1	62. 9	2.9
	大榕		首	F	夜间	50	51.2	1. 2	52. 7	2. 7	53.6	3.6
17	村 2	2	排	3	昼间	60	62. 2	2. 2	63. 6	3.6	64.6	4.6
				F	夜间	50	52.7	2. 7	54. 3	4.3	55. 3	5. 3
				1	昼间	60	68.6	8.6	68. 7	8. 7	68.7	8. 7
				F	夜间	50	45.0	达标	45. 4	达标	45.6	达标
18	散户	2	首	3	昼间	60	69.1	9. 1	69. 1	9.1	69.1	9. 1
10	6		排	F	夜间	50	45.1	达标	45. 5	达标	45.7	达标
				5	昼间	60	68.5	8. 5	68.6	8.6	68.6	8.6
				F	夜间	50	45.6	达标	46.5	达标	47. 1	达标
				1	昼间	60	68. 3	8. 3	68. 4	8.4	68. 4	8.4
				F	夜间	50	45.9	达标	46. 1	达标 0 4	46. 2	达标
19	炸岭	2	首	3	昼间	60	68. 3	8.3	68. 4	8.4	68. 4	8.4
			排	F	夜间	50	46.0	<u> </u>	46. 2	达标	46. 3	达标
				5	昼间	60	68.3	8.3	68. 3	8.3	68. 3	8.3
				F	夜间	50	46.0	<u> </u>	46. 2	<u> </u>	46. 4	达标
				1 F	昼间 夜间	70 55	68. 9 49. 8		69. 0 50. 9	达标 达标	69. 2 51. 7	达标 达标
	此一		首		を を を を し を し を し を し を し た り し り り り り り り り り り り り り り り り り	70	68.8		69. 1	込が 达标	69. 3	込标
20	散户 7	4 a	排	3 F	<u></u> 夜间	55	51.7		53. 1	达标	53. 9	达标
	'	"	ן ארנ	5	昼间	70	69. 2	达标	69. 4	达标	69. 7	达标
				5 F	<u></u> 夜间	55	51.7	上	53. 1	达标	54. 0	<u></u>
	风炉		首	1	昼间	60	68. 1	8. 1	68. 1	8.1	68. 1	8.1
21	岭	2	排	F	夜间	50	47. 3	达标	47. 6	达标	47. 7	达标
		1	1 111			1 00	11.0	~	11.0	~ 1/1/1	11.1	~ ~ 1/J

				3	昼间	60	68.0	8.0	68.0	8.0	68.0	8.0
				F	夜间	50	47.2	达标	47. 5	达标	47.8	达标
				1	昼间	70	67.7	达标	67.8	达标	67. 9	达标
	散户	4	首	F	夜间	55	49.4	达标	50. 2	达标	50.8	达标
22	8	a	排	3	昼间	70	67.7	达标	68.0	达标	68. 2	达标
				F	夜间	55	50.5	达标	51.7	达标	52.4	达标
				1	昼间	60	58.0	达标	58. 2	达标	58. 4	达标
22	散户	1	首	F	夜间	50	47.5	达标	47. 7	达标	47.8	达标
23	9	2	排	3	昼间	60	57. 9	达标	58. 2	达标	58.4	达标
				F	夜间	50	47.7	达标	47.8	达标	47.9	达标
				1	昼间	60	62.8	2.8	64. 2	4. 2	65. 2	5. 2
			首	F	夜间	50	54.1	4. 1	55. 7	5. 7	56. 7	6. 7
			排	3	昼间	60	63.8	3.8	65. 4	5. 4	66.4	6.4
24	水鸡	1		F	夜间	50	55. 1	5. 1	56. 7	6. 7	57. 7	7. 7
24	岭	2		1	昼间	60	58.5	达标	59. 2	达标	59.8	达标
				F	夜间	50	48.2	达标	48. 9	达标	49.4	达标
			排	3	昼间	60	59.4	达标	60.5	0.5	61.2	1.2
				F	夜间	50	49.1	达标	50.1	0.1	50.8	0.8
				1	昼间	60	60.6	0.6	61.5	1.5	62.2	2.2
			首	F	夜间	50	49.5	达标	50.8	0.8	51.6	1.6
			排	3	昼间	60	62.1	2.1	63.3	3.3	64.1	4.1
25	禾禄	2		F	夜间	50	51.5	1.5	53.0	3.0	53.9	3.9
23	岗 1	4		1	昼间	60	58. 1	达标	58. 1	达标	58. 2	达标
				F	夜间	50	45.3	达标	45. 5	达标	45.6	达标
			排	3	昼间	60	57.5	达标	57.6	达标	57. 7	达标
				F	夜间	50	45.1	达标	45. 3	达标	45.4	达标
				1	昼间	60	57.8	达标	58.0	达标	58. 1	达标
				F	夜间	50	44.9	达标	45.0	达标	45. 1	达标
26	禾禄	2	首	3	昼间	60	58.2	达标	58. 4	达标	58.6	达标
20	岗 2	~	排	F	夜间	50	44.9	达标	45. 2	达标	45.4	达标
				5	昼间	60	57.9	达标	58. 1	达标	59. 1	达标
				F	夜间	50	45.0	达标	45. 4	达标	45.9	达标

根据统计结果,取运行期远期数据进行分析,项目沿线 26 个敏感点,均出现不同程度超标。本项目为公路改建项目。项目建设完成后,车流量增大,从上述预测结果可知,超标敏感点均位于项目两侧两侧。

根据环境噪声预测结果,沿线敏感点的噪声受道路的交通噪声影响,结合省内公路噪声措施的实施可行性,本评价对营运期受公路交通噪声影响超标的敏感点采取隔声窗等噪声防护措施,具体措施详见表 5-4 所示。

根据项目营运近、中、远期沿线敏感点噪声超标预测结果,以及各敏感点 安装声屏障后的降噪量估算值,采取噪声防护措施后项目营运近、中、远期沿线 敏感点声环境质量均能达到相应的标准要求。但由于公路运营后存在较大不确定 性,且噪声预测模式和预测参数等也存在一定的误差,可能会造成噪声预测值与 实测值间存在一定差异。运营单位应对沿线声环境敏感点进行跟踪监测(费用计 入营运期监测费用),并根据监测结果,及时采取进一步的降噪措施。

4-4、敏感点室内噪声预测结果及拟采取的环保措施

根据《地面交通噪声污染防治技术政策》(环发[2010]7号): 因地面交通设施的建设或运行造成环境噪声污染,建设单位、运营单位应当采取间隔必要的距离、噪声源控制、传声途径噪声削减等有效措施,以使室外声环境质量达标;如通过技术经济论证,认为不宜对交通噪声实施主动控制的,建设单位、运营单位应对噪声敏感建筑物采取有效的噪声防护措施,保证室内合理的声环境质量。室内声环境根据《建筑环境通用规范》(GB55016-2021)(2022年4月1日实施),睡眠昼间不超过45dB(A),夜间不超过35dB(A)。

项目为沿线主要为村庄,现状均为简易门窗,根据现场监测结果,现状简易门窗隔声量为 7-15 dB(A)。根据预测结果,通过对超标敏感点安装通风隔声窗,室内声环境能满足《建筑环境通用规范》(GB55016-2021)睡眠功能(昼间不超过 45dB(A),夜间不超过 35dB(A))的要求。

5 营运期声环境保护措施

5.1 地面交通噪声污染防治技术政策

根据《地面交通噪声污染防治技术政策》(环发[2010]7号)对地面交通噪声污染防治及责任明确如下:

- (1) 地面交通噪声污染防治应遵循如下原则:
- ①坚持预防为主原则,合理规划地面交通设施与邻近建筑物布局:
- ②噪声源、传声途径、敏感建筑物三者的分层次控制与各负其责;
- ③在技术经济可行条件下,优先考虑对噪声源和传声途径采取工程技术措施,实施噪声主动控制:
 - ④坚持以人为本原则,重点对噪声敏感建筑物进行保护。
 - (2) 地面交通噪声污染防治应明确责任和控制目标要求:
- ①在规划或已有地面交通设施邻近区域建设噪声敏感建筑物,建设单位应当 采取间隔必要的距离、传声途径噪声削减等有效措施,以使室外声环境质量达标;
- ②因地面交通设施的建设或运行造成环境噪声污染,建设单位、运营单位应 当采取间隔必要的距离、噪声源控制、传声途径噪声削减等有效措施,以使室外 声环境质量达标;如通过技术经济论证,认为不宜对交通噪声实施主动控制的, 建设单位、运营单位应对噪声敏感建筑物采取有效的噪声防护措施,保证室内合 理的声环境质量。

5.2 管理降噪措施

- (1) 加强交通管理
- ①逐步完善和提高机动车噪声的排放标准:淘汰噪声较大的车辆。
- ②在敏感路段严格限制行车速度,特别是夜间的超速行驶。道路全路段禁鸣喇叭,在本项目道路沿线的明显位置设置禁鸣喇叭标志,并加强监管,及时纠正或处罚违规车辆。
- ③加强交通秩序管理,增强人们的交通意识和环境意识,对主干道实施人车 分流制度,减少机动车启动和停止造成的噪声。
- ④建议项目建成后道路管理部门在噪声敏感建筑物集中区域和敏感时段通过采取禁鸣、限行(含禁行)、限速等措施,合理控制道路交通参数,降低交通噪声。

(2) 加强路面养护

加强道路养护,减少路面破损引起的颠簸噪声,许多城市道路路面破损、缺乏养护,致使车辆行驶时产生颠簸,增加行驶噪声。因此,加强路面养护,保持良好的路况,能有效减少道路交通噪声。

(3) 跟踪监测

道路噪声对周边声环境的影响是受诸多因素影响的,而环境影响评价阶段的不确定性所带来的预测误差也是不可避免的,因此建设单位应落实项目投入使用后的噪声跟踪监测工作,并根据验收监测以及近期跟踪监测的结果预留后期道路噪声防治措施的必需经费,对验收监测或近期跟踪监测噪声超标的敏感点应及时进行评估并积极采取相应噪声控制措施,切实保障道路两侧各声环境功能区的环境质量。项目施工期和营运期噪声监测计划详见下表 5-1。

		TO I MY PROTIME	13 71 743	
监测项目	监测点	监测频次	监测实施机构	负责机构
施工期噪声	施工沿线敏感点	1次/季(具体视施 工情况而变化)	有资质的监测单位	建设单位、施工单位
营运期噪声	道路沿线学校及 居民点	前三年: 2次/年 其他年: 1次/年	有资质的监测单位	道路运营部门

表 5-1 噪声跟踪监测计划

5.3 工程技术措施

根据《关于发布<地面交通噪声污染防治技术政策>的通知》(环发[2010]7号): "地面交通设施的建设或运行造成噪声敏感建筑物室外环境噪声超标,如采取室外达标的技术手段不可行,应考虑对噪声敏感建筑物采取被动防护措施(如隔声门窗、通风消声窗等),对室内声环境质量进行合理保护"。对道路周边的敏感点,应根据《民用建筑隔声设计规范》(GB50118-2010)的要求对室内环境进行保护。目前国内常用的工程降噪措施主要有声屏障、隔声窗、降噪林等。根据减轻交通噪声影响的各种治理工程措施的降噪效果、估计费用及优缺点,结合本项目沿线敏感点的分布情况及项目特点,对降噪工程措施进行选择。

根据《关于发布<地面交通噪声污染防治技术政策>的通知》(环发[2010]7号)"地面交通设施的建设或运行造成噪声敏感建筑物室外环境噪声超标,如采取室外达标的技术手段不可行,应考虑对噪声敏感建筑物采取被动防护措施(如隔声门窗、通风消声窗等),对室内声环境质量进行合理保护"。几种降噪措施比选汇总表详见表 5-2。

表 5-2 本项目噪声防治措施技术可行性分析一览表

序号	措施 类别	具体 措施	环保措施技术可行性 分析	本项目可行性分析	分析结果
1	噪声 源控 制	低噪 声路 面	实践表明,相对混凝 土路面来讲,沥青路 面的减噪性能明显优 于混凝土路面;而改 性沥青的减噪性能更 优于普通沥青	本项目工程设计全路段使用沥 青路面,为主体工程内容,不 纳为噪声治理措施	纳入本 项目主 体工程
2	传送声	声屏障	适合于封闭性道路 (如高架路、快速路、 高速公路、城市轨道 交通等),一般对于 距路较近且分布集中 的中低敏感建筑效果 较好	本项目为市政开放式道路,敏感点与道路的高程差不明显,而且本项目与多个小区出入口和规划主干路口相对接,设置声屏障可能会影响交通出入,总体安装声屏障的条件较小	不纳入本 项目噪声 治理措施
3	削减	绿化带	绿化带在降噪的同时,还可以改善生态、净化空气,且具有良好的心理作用	本工程红线范围内设计有绿化 工程,可改善生态环境,但宽 度较小,不纳为降噪措施	不 项
4	敏建物声护感筑噪防护	机械风声窗	隔声窗适用范围广, 既保证室内 持续有新鲜空气的流 量,又可大 大减轻交通噪声对敏 感点的干扰	机械通风隔声窗适用于受影响 较严重的敏感点,对保护敏感 点室内声环境效果较好,适应 性强,能够保证室内有足够的 空气流量,且具有开启灵活。 安全可靠、性价比高声窗具有后 安全可靠、性价比高声窗具有位、 但同时机械通风隔声窗具有位、 他方政府等部门统筹配合,保 障经费,落实机械通风隔声窗 仍具有较强可操作性	6th) -k-155
6	加交噪管理	禁鸣速路养 等止限、面护	交通管理部门宜利用 交通管理手物集中 声敏感感感,是 声敏敏感感,是 一种,是 一种,是 一种,是 一种,是 一种,是 一种,是 一种,是 一种	本评价建议项目建成后道路管理部门在噪声敏感建筑物集中区域和敏感时段通过采取禁鸣、限行(含禁行)、限速等措施,合理控制道路交通参数,降低交通噪声。	纳入本项 目噪声施 理措施

常用交通噪声污染防治措施简介

①降噪林

降噪林是利用树林的散射、吸声作用以及地面吸声,以达到降低噪声的目的。

如采用种植灌木丛或多层林带构成绿林实体或修建高出路面 1m 的土堆并在土堆边坡种植防噪林带均可达到一定的降噪声效果。大多数绿林实体的衰减量平均为0.15-0.17 dB(A)/m,如松林(树冠)全频带噪声级降低量平均值为0.15 dB(A)/m,冷杉(树冠)为0.18dB(A)/m,茂密的阔叶林为0.12-0.17 dB(A)/m,浓密的绿篱为0.25-0.35 dB(A)/m,草地为0.07-0.10 dB(A)/m。从以上数据可见林带的降噪量并不高,但绿化在人们对防噪声的心理感觉上有良好的效果,同时可以清洁空气、调节小气候和美化环境。在经济方面,建设降噪林带的费用本身并不高,一般30m 深的林带为1200~3000 元/m,但如需要拆迁、征地等则费用增加较多。降噪林措施适用于噪声超标量小、用地宽裕的情况。

③ 通风隔声窗

按照国家环保局发布的《隔声窗》(HJ/T17-1996)标准,隔声窗的隔声量应大于 25dB(A)。传统隔声窗在阻挡噪声传播的同时,也阻隔了室内外的空气流动,给居民生活造成不便。通风隔声窗则同时满足了隔声和空气流通的要求。通风隔声窗是一种用隔断附吸收声音的塑钢或铝合金型材加上特有结构降低声音传输过程的装置,通过特有的消声通道达到在空气流通的同时降低噪声的效果。通风隔声窗的价格通常在 1500 元/m²。通风隔声窗仅能对室内环境进行保护,适用于噪声超标量大、室内环境需要重点保护的情况,本项目多数敏感点主要是夜间噪声超标,且对于房屋二层以上居民,主要以室内活动为主,为保证沿线居民夜间的睡眠质量,适宜采取通风隔声窗措施。

③声屏障

声屏障适合于高架道路桥梁或道路两侧无交叉干扰且超标敏感点相对集中的情况,敏感点需以低矮层为主。其结构形式和材料种类较多,费用从 1200 元/m²-3000 元/m²。声屏障有着较好的隔声效果,一般 3m 高的声屏障,可降低交通噪声 20dB(A)。声屏障可以直接布置在道路用地红线范围内,容易实施。

① 改性沥青低噪声路面

研究表明,用坑纹混凝土铺设的路面,会明显增加道路的噪声水平,因为车辆在这种粗糙的路面高速(快速)行驶时,轮胎和路面的摩擦会产生较大的噪声。低噪声路面实际是一种改性沥青多孔材料铺设的路面(疏水路面),其路面的空隙较大,初期采用这种路面的主要目的是在下雨天能够较快排走路面积水,防滑

以保证行车安全。因这种路面的孔隙率较大,对高速(快速)行驶的车辆,特别是小型车,它能够比较有效地吸收轮胎与路面的摩擦声,达到减低噪声的效果,后来作为一种噪声控制措施予以应用。

各种常用降噪措施的技术经济特点见表 5-3。

表5-3 减轻噪声影响的环保工程措施比较一览表

	表5	-3 减轻噪声影响的环保工程措施比较一览。	表	
减轻措施方案	降噪量 (dB)	优缺点分析	估计费用 (元/m²)	说明
吸隔声屏障	5~20	(1)在开阔地带最有效 (2)噪声的反射影响最小 (3)对安装在复合道路、高架路上的隔声 屏障,会因地面道路的噪声影响及第一建筑 物的反射,而降低其隔声效果,且只有对一 定高度范围有效。 (4)对安装在地面道路上的隔声屏障,其 隔声效果与受保护的建筑物高度有关,在不 同高度其隔声效果不同,高度越低,其效果 越好。 (5)投资较高,声屏障的设计形式可能对 视觉景观有影响;隔断了道路与周边居民生 活和商业发展;	1200~1500	对多层 或高层 建筑效 果不好
反射型隔声屏 障(透明)	5~20	(1)由于隔声屏障内侧没有吸声处理,会 因声波的反射而增大声源的强度 (2)对安装在复合道路、高架路上的隔声 屏障,会因地面道路的噪声影响及第一建筑 物的反射,而降低其隔声效果,且只有对一 定高度范围有效。 (3)对安装在地面道路上的隔声屏障,其 隔声效果与受保护的建筑物高度有关,在不 同高度其隔声效果不同,高度越低,其效果 越好。 (4)投资较高,声屏障的设计形式可能对 视觉景观有影响;隔断了道路与周边居民生 活和商业发展;	800~1000	对多层 或高层 建筑效 果不好
封闭式轻质结 构隔声屏障(部 分透明、部分作 吸声处理)	20以上	(1)隔声效果好 (2)道路采光影响不大 (3)噪声的反射影响小 (4)对机动车尾气的扩散不利 (5)工程费用相对较大 (6)影响视觉景观	1500~3000	/
普通隔声窗	25~45	(1)对保护敏感点室内声环境效果较好, 费用较低,适应性强, (2)不通风,炎热的夏季不适用,影响居 民生活。	900	/

机械隔声通风 窗	25~45	优点: 具有通风和隔声功能, 降噪效果最好, 通风量可以量化、有保障、不受其它因素影响, 室内换气次数可满足国家标准要求。 缺点: 造价较高, 需要耗电(每套通风系统的功率为0.03kw), 受建筑物原有窗结构的制约。	1500	/
改性沥青路面	1~3	(1)适用于高速行驶车辆和平坦路面,从源头降噪,改善交通和生活环境。 (2)路面可能较易磨损,需与其它措施配 合使用才能达到较好效果。	200	/
乔灌木绿化		降噪效果一般,造价低,需根据当地环境的实际情况。一般10m以上绿化带方有隔声效果。		需占用 一部分 土地
搬迁	解决噪声扰民	具有可永久性"解决"噪声污染问题的优点,环境效益和社会效益显著。 考虑重新征用土地进行开发建设,综合投资 巨大,同时实施搬迁也会产生新的环境问题	约 5~8 万元 /户(不含征地 费)	/

5.4 具体噪声防护措施

根据现场踏勘情况,本工程沿线建筑大部分均已安装铝合金玻璃窗,按照《公路环 境保护设计规范》(JTG/B04-2010)的技术要求,本次评价对公路营运中期预测超标的敏感点采取降噪措施。

项目沿线共有 <u>26</u>处声环境敏感点,主要超标时段为夜间,受本项目交通噪声影响而超标的敏感点。各敏感点防噪措施见表 5-4

表 5-4 采取降噪措施后敏感点交通噪声预测结果 单位: dB(A)

	声环								近期	K-174,		中期	*>*************************************]	远期				噪声防治措施	 布	
序号	· 境 护 标 称	功能 区	位置	楼层	时段	室外 标准 值 /dB(A)	室内标 准值 /dB(A)	预测 值 /dB(A)	室外超标量/dB(A)	室内超 标量 /dB(A)	预测 值 /dB(A)	室外超 标量 /dB(A)	室内超 标量 /dB(A)	预测 值 /dB(A)	室外超 标量 /dB(A)	室内超 标量 /dB(A)	<u>受影响人数</u> <u>(户数/人</u> <u>数)</u>	<u>类型</u>	<u>规模(m²)</u>	<u>降噪要求</u> /dB(A)	<u>总投资</u> <u>(万</u> 元)
				1F	昼间	70	45	68. 1	达标	23. 1	68. 4	达标	23. 4	68. 7	达标	23. 7			C.1. C(\(\overline{\pi} \)		
1	散户	4a	 首排	11	夜间	55	35	54. 2	达标	19. 2	55. 0	0.0	20.0	55.6	0.6	20.6	1	铝合金	6×1=6(每一 户按 6m2 计	>25,室内	0.9
1	1	4 a		3F	昼间	70	45	68. 7	达标	23. 7	69. 3	达标	24. 3	69.8	达标	24. 8	1	窗	算,下同)	达标	0.9
				31	夜间	55	35	55. 5	0.5	20.5	56. 7	1.7	21.7	57.4	2.4	22. 4			21 , 11,17		
	2 散户 4a			1F	昼间	70	45	68.8	达标	23.8	69. 2	达标	24. 2	69.5	达标	24. 5					
2		 首排	11	夜间	55	35	55. 2	0.2	20. 2	55. 9	0.9	20. 9	56. 5	1.5	21. 5	1	铝合金	6	>25,室内	0.9	
2	2	та	 Ħ 14L	3F	昼间	70	45	69.8	达标	24. 8	70.4	0.4	25. 4	70. 9	0.9	25. 9	1	窗	0	达标	0.7
				31	夜间	55	35	56.8	1.8	21.8	57. 9	2.9	22. 9	58.6	3.6	23. 6					
				1F	昼间	70	45	68. 1	达标	23. 1	68. 4	达标	23. 4	68. 9	达标	23. 9					
				11	夜间	55	35	54. 7	达标	19. 7	55. 7	0.7	20. 7	56.4	1.4	21. 4					
3	散户	4a	 首排	3F	昼间	70	45	68.8	达标	23.8	69. 3	达标	24. 3	70.0	0.0	25. 0	3	铝合金	18	>25,室内 达标	2.7
	3	та	1	31	夜间	55	35	56. 1	1.1	21. 1	57. 4	2.4	22. 4	58. 2	3. 2	23. 2		窗	10		2.7
				5F	昼间	70	45	68. 5	达标	23. 5	69.0	达标	24. 0	69.7	达标	24. 7					
				31	夜间	55	35	55. 6	0.6	20.6	56.8	1.8	21.8	57. 7	2. 7	22. 7	窗				
				1F	昼间	70	45	65. 6	达标	20.6	65. 7	达标	20. 7	66. 2	达标	21. 2					
				11	夜间	55	35	52. 7	达标	17. 7	53. 2	达标	18. 2	53. 5	达标	18. 5					
		4a	 首排	3F	昼间	70	45	65. 3	达标	20. 3	65. 6	达标	20.6	66.4	达标	21. 4	7	铝合金	42	>25,室内 达标	6.3
		та	 Ħ 14L	31	夜间	55	35	53.0	达标	18. 0	53. 7	达标	18. 7	54. 3	达标	19. 3	,	窗	72		0.5
				5F	昼间	70	45	65.0	达标	20.0	65. 2	达标	20. 2	66.1	达标	21. 1					
4	婆岭			31	夜间	55	35	52. 4	达标	17. 4	53. 2	达标	18. 2	53. 7	达标	18. 7					
-	安岭			1F	昼间	60	45	65. 4	5. 4	20.4	65. 4	5. 4	20. 4	65.4	5. 4	20. 4					
				11	夜间	50	35	51.8	1.8	16.8	51.8	1.8	16.8	51.8	1.8	16.8					
		2	二排	3F	昼间	60	45	64. 9	4. 9	19. 9	64. 9	4.9	19. 9	64.9	4.9	19. 9	10	铝合金	60	>25, 室内	9
				31	夜间	50	35	51.3	1.3	16. 3	51.3	1.3	16. 3	51.4	1.4	16. 4		窗		达标	
				5F	昼间	60	45	64. 5	4. 5	19. 5	64. 5	4.5	19. 5	64.6	4.6	19. 6					
				31	夜间	50	35	50.6	0.6	15. 6	50.6	0.6	15. 6	50.6	0.6	15. 6					
	牛仔			1F	昼间	70	45	67.0	达标	22. 0	67. 4	达标	22. 4	68. 2	达标	23. 2					
5	塘岭	4a	首排	11	夜间	55	35	54. 1	达标	19. 1	55. 3	0.3	20. 3	56. 1	1.1	21. 1	7	铝合金	42	>25, 室内	6.3
	1	14	1111	3F	昼间	70	45	67. 0	达标	22.0	67. 4	达标	22. 4	68. 5	达标	23. 5	,	窗	12	达标	0.5
				31	夜间	55	35	54.6	达标	19. 6	56.0	1.0	21.0	56.8	1.8	21.8					
				1F	昼间	60	45	60. 3	0.3	15. 3	60.9	0.9	15. 9	62.5	2. 5	17. 5					
				11	夜间	50	35	50. 2	0.2	15. 2	51. 2	1.2	16. 2	52.0	2.0	17. 0					
6	陈宅	2	 首排	3F	昼间	60	45	61.6	1.6	16.6	62. 5	2.5	17. 5	64.6	4.6	19. 6	1	铝合金	6	>25, 室内	0.9
			= 11,	31	夜间	50	35	51.7	1. 7	16. 7	53. 1	3. 1	18. 1	54.0	4.0	19. 0		窗		达标	0.7
				5F	昼间	60	45	61.7	1. 7	16. 7	62. 6	2.6	17. 6	64.8	4.8	19.8		Prode			
					夜间	50	35	51.6	1.6	16. 6	53. 1	3. 1	18. 1	54.0	4.0	19. 0					
7	牛仔	2	首排	1F	昼间	60	45	58. 0	达标	13.0	58. 7	达标	13. 7	59.3	达标	14. 3	1	铝合金	6	>25,室内	0.9

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		塘岭				夜间	50	35	47. 6	达标	12. 6	48. 3	达标	13. 3	48.7	达标	13. 7		窗		达标	
																			IXI			
R		_			3F																	
1		## 🗁			1F														加入人		> 25 安山	
10	8		4a	首排														1		6		0.9
Part		7			3F														XI			
Part																						
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		去心			1F														却会会		─────────────────────────────────────	
10 0 0 0 0 0 0 0 0	9	男 型 目	4a								-							3	1	18	- /23, 室内	2.7
		2493			3F														X		270	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																			担人人		▶25 宏由	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		_環 业 4a	4a	首排	1F													7		42		6.3
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																			N.		270	
	10				1F														担스仝			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			2	二排														2		12		1.8
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		- 1993		3F						_								M		270		
				1F																		
大格 青井 5P 使何 55 35 47.1 边际 12.1 47.4 边际 12.2 47.7 边际 12.7 35 並添 12.0 47.4 边际 12.2 47.7 边际 12.7 公际 12.5 35 46.9 边际 11.9 47.3 边际 12.3 47.6 边际 12.1 47.7 边际 12.0 47.6 边际 12.1 47.7 边际 12.6 57.6 边际 12.0 47.7 边际 12.0 47.8 边际 12.3 47.1 边际 12.0 47.2 边际 12.0 47.2 边际 12.0 47.2 20.0 12.0 41.0 20.0 12.0																			铝合全		>25 宏贞	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			4a	首排	3F													13		78	大标	11.7
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												_							لط		270	
11		大核			5F																	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	11																					
12 子子 昼间 60 45 57.3 达标 12.3 57.3 达标 14.6 25.5 证标 14.6 25.5 达标 11.5 46.5 达标 11.5 46.5 达标 11.1 46.1 25.5		37114			1F																	
12 14 15 16 16 17 17 18 18 18 18 18 18					HE 2E						_								铝合金		>25,室内 达标	
			2	二排	3F													8		16		2.4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					5F																	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																						
12 黄竹 塘村 2 昼间 60 45 60.2 0.2 15.2 61.1 1.1 16.1 61.8 1.8 16.8 夜间 50 35 49.3 达标 14.3 50.4 0.4 15.4 51.1 1.1 16.1 61.8 1.8 16.8 1.8 16.8 6				V. 1.11.	1F	夜间													铝合金		>25, 室内	
12 黄竹 塘村 2 本 校间 50 35 49.3 达标 14.3 50.4 0.4 15.4 51.1 1.1 16.2 16.2				百排				45			15. 2	61.1						4		24	达标	3.6
12 塘村 2 1F 昼间 60 45 56.5 达标 11.5 56.6 达标 11.6 56.6 达标 10.7 45.7 达标 10.7 45.7 达标 10.7 45.7 达标 10.7 45.7 达标 11.6 56.6 达标 11.8 57.6 达标 11.2 46.4 达标 11.4 11.4 11.8 57.6 达标 11.8 57.6 达标 11.9 47.4 达标 11.4 13.7 59.3 达标 11.4 13.7 59.3 达标 12.4 50.8 85 25.7 室内 这标 25.5 室内 室内 25.5 室内 室内 25.5 25.7 </td <td></td> <td>黄竹</td> <td>•</td> <td></td> <td>3F</td> <td></td> <td>50</td> <td>35</td> <td>49. 3</td> <td>达标</td> <td>14. 3</td> <td>50. 4</td> <td>0.4</td> <td>15. 4</td> <td>51.1</td> <td>1.1</td> <td>16. 1</td> <td></td> <td></td> <td></td> <td></td> <td></td>		黄竹	•		3F		50	35	49. 3	达标	14. 3	50. 4	0.4	15. 4	51.1	1.1	16. 1					
13 下 夜间 50 35 45.6 达标 10.6 45.7 达标 10.7 45.7 达标 10.7 3F 昼间 60 45 57.0 达标 12.0 57.3 达标 12.3 57.6 达标 12.6 夜间 50 35 45.9 达标 10.9 46.2 达标 11.2 46.4 达标 11.4 大板 10.7 女子 10.9 46.2 达标 11.2 46.4 达标 11.4 本 11 全面 60 45 57.6 达标 12.6 58.2 达标 13.2 58.7 达标 13.7 本 2 全面 60 45 57.6 达标 12.6 58.2 达标 13.2 58.7 达标 13.7 本 2 全面 60 45 57.6 达标 11.3 46.9 达标 11.9 47.4 达标 12.4 本 3F 昼间 60 45 57.9 达标 11.3 46.9 达标 13.7 59.3 达标 14.3 本 4 本 12.6 58.7 达标 12.9 58.7 达标 13.7 59.3 达标 14.3 本 5 本 12.6 46.7 达标 11.7 47.5 达标 12.5 48.0 达标 12.3 本 7 本 12.8 本 12.8 56.8 达标 11.8 57.1 达标 12.7 57.3 达标 12.3 本 7 本 12.8 本 12.8 56.6 达标 11	12		2		45		60	45	56. 5	达标	11.5	56. 6	达标	11.6	56.6	达标	11.6					
				+H-	l IF		50	35	45. 6	达标	10.6	45. 7	达标	10.7	45. 7	达标	10. 7	2	铝合金	10	>25,室内	1.0
Table Tab				一排	25		60	45	57.0	达标	12. 0	57. 3	达标	12. 3	57.6	达标	12. 6	2	1	12		1.8
13 雪屋 1F 昼间 60 45 57.6 达标 12.6 58.2 达标 13.2 58.7 达标 13.7 3F 昼间 50 35 46.3 达标 11.3 46.9 达标 11.9 47.4 达标 12.4 3F 昼间 60 45 57.9 达标 12.9 58.7 达标 13.7 59.3 达标 14.3 支标 50 35 46.7 达标 11.7 47.5 达标 12.5 48.0 达标 13.0 上排 昼间 60 45 56.8 达标 11.8 57.1 达标 12.1 57.3 达标 12.3 3F 昼间 60 45 56.6 达标 10.5 45.7 达标 10.7 45.9 达标 10.9 3F 昼间 60 45 56.6 达标 11.6 57.0 达标 12.0 57.3 达标 12.3					3F		50	35	45. 9	达标	10. 9	46. 2	达标	11. 2	46. 4	达标	11. 4					
13 a					15		60	45	57. 6	达标	12. 6	58. 2	达标	13. 2	58. 7	达标	13. 7					
13 雪屋 2 昼间 60 45 57.9 达标 12.9 58.7 达标 13.7 59.3 达标 14.3 7 夜间 50 35 46.7 达标 11.7 47.5 达标 12.5 48.0 达标 13.0 18 昼间 60 45 56.8 达标 11.8 57.1 达标 12.1 57.3 达标 12.3 19 夜间 50 35 45.5 达标 10.5 45.7 达标 10.7 45.9 达标 10.9 3F 昼间 60 45 56.6 达标 11.6 57.0 达标 12.0 57.3 达标 12.3				→+IF	l IF		50	35	46. 3	达标	11. 3	46. 9	达标	11.9	47.4	达标	12. 4	~	铝合金	0.5	>25,室内	25.5
13 雪屋 2 夜间 50 35 46.7 达标 11.7 47.5 达标 12.5 48.0 达标 13.0 18 昼间 60 45 56.8 达标 11.8 57.1 达标 12.1 57.3 达标 12.3 2 次间 50 35 45.5 达标 10.5 45.7 达标 10.7 45.9 达标 10.9 3F 昼间 60 45 56.6 达标 11.6 57.0 达标 12.0 57.3 达标 12.3				目排	25		60	45	57. 9	达标	12. 9	58. 7	达标	13. 7	59. 3	达标	14. 3	5	1	85		25.5
13 当屋 2 上排 昼间 60 45 56.8 达标 11.8 57.1 达标 12.1 57.3 达标 12.3 本 本 上排 昼间 60 45 56.8 达标 10.5 45.7 达标 10.7 45.9 达标 10.9 3F 昼间 60 45 56.6 达标 11.6 57.0 达标 12.0 57.3 达标 12.3 4	12	13 雪屋	2		3F		50	35	46. 7	达标	11.7	47.5	达标	12. 5	48.0	达标	13. 0					
工排 夜间 50 35 45.5 达标 10.5 45.7 达标 10.7 45.9 达标 10.9 3F 昼间 60 45 56.6 达标 11.6 57.0 达标 12.0 57.3 达标 12.3 4 岩合金 窗 24 >25, 室内达 标	13		2		15		60	45	56. 8	达标	11.8	57. 1	达标	12. 1	57. 3	达标	12. 3					
一排 昼间 60 45 56.6 达标 11.6 57.0 达标 12.0 57.3 达标 12.3 4 窗 24 标				+1F	IF		50	35	45. 5	达标	10.5	45. 7	达标	10.7	45. 9	达标	10.9	A	铝合金	2.4	>25, 室内达	3.6
				<u>~</u> #			60	45	56. 6	达标	11.6	57.0	达标	12.0	57. 3	达标	12. 3	4	1	24	//	
					3F		50	35	45. 4	达标	10. 4	45. 7	达标	10. 7	46.0	达标	11.0					

				1F	昼间	60	45	61.6	1.6	16. 6	62. 9	2.9	17. 9	63.8	3.8	18.8					
			 首排	111	夜间	50	35	52. 3	2. 3	17. 3	53.8	3.8	18.8	54. 7	4.7	19. 7	5	铝合金	30	>25,室内	4.5
			日油	3F	昼间	60	45	62.8	2.8	17. 8	64. 3	4.3	19.3	65. 3	5.3	20.3	3	窗	30	达标	4.3
1.4	十捻	,		36	夜间	50	35	53. 5	3.5	18. 5	55. 2	5. 2	20. 2	56. 2	6. 2	21. 2					
14	大榕	2		15	昼间	60	45	59. 2	达标	14. 2	59.6	达标	14. 6	60.1	0.1	15. 1					
			+1t-	1F	夜间	50	35	47.8	达标	12.8	48. 4	达标	13. 4	48.9	达标	13.9	2	铝合金	10	>25,室内	1.0
			二排	25	昼间	60	45	59.8	达标	14. 8	60.5	0.5	15. 5	61.1	1.1	16.1	2	窗	12	达标	1.8
				3F	夜间	50	35	48. 7	达标	13. 7	49. 5	达标	14. 5	50.1	0.1	15. 1					
					昼间	60	45	58. 7	达标	13. 7	59. 5	达标	14. 5	61.4	1.4	16.4					
		一	- 	1F	夜间	50	35	49.0	达标	14. 0	50. 7	0.7	15. 7	51.3	1.3	16. 3	2	铝合金	1.5	>30,室内	2.25
			自排	25	昼间	60	45	59. 7	达标	14. 7	60. 7	0.7	15. 7	61.4	1.4	16.4	3	窗	15	达标	2.25
	元墩			3F	夜间	50	35	49. 7	达标	14. 7	50.6	0.6	15. 6	51.2	1.2	16. 2					
15	岭	2			昼间	60	45	57. 7	达标	12. 7	58. 2	达标	13. 2	58.6	达标	13.6					
				1F	夜间	50	35	48. 1	达标	13. 1	48. 5	达标	13. 5	48.8	达标	13.8	•	铝合金	10	>25, 室内	1.0
			二排	25	昼间	60	45	57. 9	达标	12. 9	58.6	达标	13. 6	59. 2	达标	14. 2	2	窗	12	达标	1.8
				3F	夜间	50	35	48. 3	达标	13. 3	48.8	达标	13. 8	49. 2	达标	14. 2					
				4.5	昼间	60	45	58. 7	达标	13. 7	58. 9	达标	13. 9	59.0	达标	14.0					
	大榕		-34. LH.	1F	夜间	50	35	46. 8	达标	11.8	46.9	达标	11. 9	47.0	达标	12.0	_	铝合金		>30,室内	
16	小学	2	首排		昼间	60	45	58. 5	达标	13. 5	58. 7	达标	13. 7	58. 9	达标	13. 9	1	窗	6	达标	0.9
				3F	夜间	50	35	46. 1	达标	11.1	46. 3	达标	11. 3	46. 5	达标	11.5					
					昼间	60	45	69. 3	9.3	24. 3	69. 4	9.4	24. 4	69.4	9.4	24. 4					
	散户		-34. LH.	1F	夜间	50	35	48. 1	达标	13. 1	49. 2	达标	14. 2	49.8	达标	14.8	_	双层中	4.0	>30,室内	
17	5	2	首排		昼间	60	45	69.6	9.6	24. 6	69.8	9.8	24. 8	69.9	9.9	24. 9	3	空隔声	18	达标	2.7
				3F	夜间	50	35	49. 9	达标	14. 9	51.3	1.3	16. 3	52. 2	2.2	17. 2		窗			
				4.5	昼间	60	45	60.8	0.8	15. 8	62. 1	2. 1	17. 1	62. 9	2.9	17.9					
	大榕	_		1F	夜间	50	35	51. 2	1.2	16. 2	52. 7	2. 7	17. 7	53.6	3.6	18.6	双层中 2 空隔声	I .		>30,室内	
17	村 2	2	首排		昼间	60	45	62. 2	2.2	17. 2	63.6	3. 6	18. 6	64.6	4.6	19.6			12	达标	3.0
				3F	夜间	50	35	52. 7	2. 7	17. 7	54. 3	4. 3	19. 3	55. 3	5. 3	20.3		窗			
					昼间	60	45	68. 6	8.6	23. 6	68. 7	8. 7	23. 7	68. 7	8. 7	23. 7					
				1F	夜间	50	35	45. 0	达标	10.0	45. 4	达标	10. 4	45.6	达标	10.6					
	散户		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		昼间	60	45	69. 1	9. 1	24. 1	69. 1	9. 1	24. 1	69. 1	9. 1	24. 1		铝合金		>35,室内	
18	6	2	首排	3F	夜间	50	35	45. 1	达标	10. 1	45. 5	达标	10. 5	45. 7	达标	10.7	2	窗	12	达标	1.8
					昼间	60	45	68. 5	8. 5	23. 5	68.6	8.6	23. 6	68.6	8.6	23.6					
				5F	夜间	50	35	45. 6	达标	10.6	46. 5	达标	11.5	47. 1	达标	12.1					
					昼间	60	45	68. 3	8. 3	23. 3	68. 4	8. 4	23. 4	68. 4	8.4	23. 4					
				1F	夜间	50	35	45. 9	达标	10. 9	46. 1	达标	11.1	46. 2	达标	11.2					
			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	_	昼间	60	45	68. 3	8.3	23. 3	68. 4	8. 4	23. 4	68. 4	8. 4	23. 4		铝合金		>35,室内	
19	炸岭	2	首排	3F	夜间	50	35	46. 0	达标	11.0	46. 2	达标	11. 2	46. 3	达标	11.3	4	窗	24	达标	3.6
					昼间	60	45	68. 3	8. 3	23. 3	68. 3	8. 3	23. 3	68. 3	8.3	23. 3					
				5F	夜间	50	35	46. 0	达标	11.0	46. 2	达标	11. 2	46. 4	达标	11.4					
					昼间	70	45	68. 9	达标	23. 9	69. 0	达标	24. 0	69. 2	达标	24. 2					
	20 散户 7 4a			1F	夜间	55	35	49. 8	达标	14. 8	50. 9	达标	15. 9	51.7	达标	16. 7		双层中			
20		首排		昼间	70	45	68. 8	达标	23. 8	69. 1	达标	24. 1	69. 3	达标	24. 3	1	空隔声	6	>25,室内	0.9	
			,,,,,,,,	3F	夜间	55	35	51. 7	达标	16. 7	53. 1	达标	18. 1	53. 9	达标	18. 9	-	窗	-	达标	0.9
				5F	昼间	70	45	69. 2	达标	24. 2	69. 4	达标	24. 4	69. 7	达标	24. 7					
L						1 1		, C 17.		1 22.1			1							l	

					夜间	55	35	51.7	达标	16. 7	53. 1	达标	18. 1	54.0	达标	19.0					
					昼间	60	45	68. 1	8. 1	23. 1	68. 1	8.1	23. 1	68. 1	8. 1	23. 1					
	风炉		-24s Lills	1F	夜间	50	35	47. 3	达标	12. 3	47.6	达标	12. 6	47.7	达标	12. 7	_	双层中		>30,室内	
21	岭	2	首排	25	昼间	60	45	68. 0	8. 0	23. 0	68.0	8.0	23. 0	68.0	8.0	23. 0	4	空隔声	24	达标	3.6
				3F	夜间	50	35	47. 2	达标	12. 2	47.5	达标	12.5	47.8	达标	12.8		窗			
	22 散户 8 4a			1.0	昼间	70	45	67. 7	达标	22. 7	67.8	达标	22.8	67.9	达标	22. 9		-m P d-			
22		4 -	首排	1F	夜间	55	35	49. 4	达标	14. 4	50.2	达标	15. 2	50.8	达标	15.8	=	双层中	20	>30,室内	4.5
22		目用	3F	昼间	70	45	67. 7	达标	22. 7	68.0	达标	23. 0	68. 2	达标	23. 2	5	空隔声 窗	30	达标	4.5	
				36	夜间	55	35	50. 5	达标	15. 5	51.7	达标	16. 7	52.4	达标	17. 4		XI			
				1F	昼间	60	45	58. 0	达标	13. 0	58. 2	达标	13. 2	58. 4	达标	13. 4		カロ中			
23	散户	2	首排	11	夜间	50	35	47. 5	达标	12. 5	47.7	达标	12. 7	47.8	达标	12.8	1	双层中 空隔声		>30,室内	0.9
23	9	2	目升	3F	昼间	60	45	57. 9	达标	12. 9	58. 2	达标	13. 2	58. 4	达标	13. 4	1	一 窗	6	达标	0.9
				ЭГ	夜间	50	35	47. 7	达标	12. 7	47.8	达标	12.8	47.9	达标	12. 9		[XI			
				1F	昼间	60	45	62. 8	2.8	17.8	64. 2	4.2	19. 2	65. 2	5. 2	20. 2		カロ中		>30,室内	
			首排	11	夜间	50	35	54. 1	4. 1	19. 1	55. 7	5. 7	20.7	56. 7	6. 7	21.7	6	双层中 空隔声	36		5.4
			目升	3F	昼间	60	45	63. 8	3.8	18.8	65. 4	5. 4	20.4	66. 4	6. 4	21.4	6	一 窗	30	达标	3.4
24	水鸡	2		ЭГ	夜间	50	35	55. 1	5. 1	20. 1	56. 7	6.7	21.7	57. 7	7. 7	22. 7		[XI			
24	岭	2		1F	昼间	60	45	58. 5	达标	13. 5	59. 2	达标	14. 2	59.8	达标	14.8		カロ中			
			二排	11	夜间	50	35	48. 2	达标	13. 2	48.9	达标	13.9	49.4	达标	14. 4	1	双层中 空隔声	6	>25,室内	0.9
			1H⊦	3F	昼间	60	45	59. 4	达标	14. 4	60.5	0.5	15. 5	61.2	1.2	16. 2	1	一 窗	6	达标	0.9
				ЭГ	夜间	50	35	49. 1	达标	14. 1	50.1	0.1	15. 1	50.8	0.8	15.8		X			
				1F	昼间	60	45	60.6	0.6	15. 6	61.5	1.5	16. 5	62. 2	2. 2	17. 2		カロ中			
			首排	II	夜间	50	35	49. 5	达标	14.5	50.8	0.8	15.8	51.6	1.6	16.6	3	双层中 空隔声	18	>30,室内	2.7
			日刊	3F	昼间	60	45	62. 1	2.1	17. 1	63.3	3.3	18. 3	64.1	4.1	19. 1	3	一 窗	10	达标	2.7
25	禾禄	2		31	夜间	50	35	51.5	1.5	16.5	53.0	3.0	18.0	53.9	3.9	18. 9		N.			
23	岗 1	2		1F	昼间	60	45	58. 1	达标	13. 1	58. 1	达标	13. 1	58. 2	达标	13. 2					
			二排	11	夜间	50	35	45. 3	达标	10. 3	45.5	达标	10.5	45.6	达标	10.6	1	铝合金	6	>25, 室内	0.9
			J∃F	3F	昼间	60	45	57. 5	达标	12. 5	57.6	达标	12.6	57. 7	达标	12.7	1	窗	0	达标	0.9
				31	夜间	50	35	45. 1	达标	10.1	45.3	达标	10.3	45. 4	达标	10.4					
				1F	昼间	60	45	57.8	达标	12.8	58.0	达标	13.0	58. 1	达标	13. 1					
	26			11	夜间	50	35	44. 9	达标	9.9	45.0	达标	10.0	45.1	达标	10.1		和目由			
26		2	 	3F	昼间	60	45	58. 2	达标	13. 2	58. 4	达标	13.4	58.6	达标	13. 6	1	双层中 空隔声	6	>35,室内	0.9
20		2	目別	31	夜间	50	35	44. 9	达标	9.9	45. 2	达标	10.2	45. 4	达标	10.4	1	工 窗	U	达标	0.9
			5F	昼间	60	45	57. 9	达标	12. 9	58. 1	达标	13. 1	59. 1	达标	14. 1		M		,		
)F	夜间	50	35	45. 0	达标	10.0	45. 4	达标	10.4	45. 9	达标	10.9						

6 声环境影响评价结论

6.1 项目概况

建设规模:本项目位于观珠至沙琅一级公路(一期)终点,终点接规划远期G325国道。路线呈南北走向,全线采用双向4车道一级公路标准建设,路线全长7.121km,占地面积约300900m²,设计速度80km/h,路基宽24.5m,桩号:K0+000~K7+121.077,其中受下穿深茂铁路影响,K0+000~K0+792.464段采用分离式路基,设计速度60km/h,左幅老路利用,右幅采用新建形式,路基宽度为12.5米。

建设内容:包括路基工程、路面工程、道路附属工程、交通工程及沿线设施、照明工程、排水工程、绿化工程、桥涵工程、交叉工程等。

6.2 声环境质量现状评价结论

由噪声监测数据可知,散户1、散户2、散户3、婆岭、牛仔塘岭1、陈宅、散户4、黄岭坳、曙光农场三分场、大榕新村、黄竹塘村、大榕、大榕村2、散户5、散户6、散户7、风炉岭、散户8、水鸡岭、禾禄岗1等敏感点执行《声环境质量标准》(GB3096-2008)4a类标准(即昼间≤70dB(A)、夜间≤55dB(A)),雪屋、元墩岭、大榕小学、炸岭、散户9、禾禄岗2执行《声环境质量标准》(GB3096-2008)2类标准(即昼间≤60dB(A)、夜间≤50dB(A)

由表 3-3 垂向衰减断面噪声 Leq 检测结果可知,项目垂向衰减断面 20m、40m、60m、80m、120m 处监测断面声环境质量现状均满足《声环境质量标准》(GB3096-2008)4a 及 2 类标准值要求。

6.3 施工期声环境影响评价结论

项目施工期噪声主要来源于各种机械设备运作时产生的机械噪声,材料运输、场地平整等产生的作业噪声,以及物料运输产生的交通噪声。但施工噪声的影响是短暂性的,通过距离衰减以及采取相应措施,可有效地将项目施工对周围声环境的影响控制在可接受范围内。

6.4营运期声环境影响评价结论

(1) 道路两侧水平方向噪声贡献值超标情况

道路两侧水平方向噪声贡献值预测结果显示,路面上行驶机动车产生的噪声 在道路两侧的噪声预测值随距离的增加而逐渐衰减变小,并且随着车流量的增加 预测噪声值也将随着增加。本项目在昼间距离公路中心线 40m 处可达到《声环境质量标准》(GB 3096-2008) 中的 4a 类区昼间相应标准, 距公路中心线 60m 处夜间均可达到 2 类区相应标准

(2) 敏感点超标情况

根据表 5-7 所示,项目未采取防护措施前,本项目沿线敏感点近期昼间、近期夜间、中期昼间、中期夜间、远期昼间、远期夜间均出现不同程度超标,根据表 5-9 所示,项目采取防护措施后,沿线敏感点噪声预测值满足《声环境质量标准》(GB3096-2008)中的 4a 及 2 类标准值。

(3) 拟采取的噪声污染防治措施

运营期主要噪声防治措施如下:

- ①项目已设计在道路中央及两侧设置绿化带,绿化植被应多选择枝繁叶茂的 高大乔木,并采取多层次的立体绿化,从而加强绿化降噪效果;
- ②建议项目建成后道路管理部门在噪声敏感建筑物集中区域和敏感时段通过采取禁鸣、限行(含禁行)、限速等措施,合理控制道路交通参数,从运行管理上降低交通噪声:
- ③安装机械通风隔声窗,保证沿线室外超标敏感点的室内声环境可以达到相关室内声环境质量标准要求:
- ④机械通风隔声窗安装时,建设单位应与环境敏感目标主体做好沟通,应根据民用建筑隔声相关规范要求,结合各敏感点现场实际情况安装机械通风隔声窗。对室外超标敏感点安装机械 通风隔声窗后,必须保证其室内声环境可以达到相关室内声环境质量标准要求。此外,建设单位还应重视道路营运过程中的噪声跟踪监测,根据跟踪监测情况,适时进行评估并完善相应噪声防治措施,保证本项目道路交通噪声不对周边声环境保护目标造成不良影响。
- ⑤若未来在本项目道路邻近区域建设噪声敏感建筑物,噪声敏感建筑物建设单位应当采取间隔必要的距离、传声途径噪声削减等有效措施,以使室外声环境质量达标。

6.5 声环境影响专项评价综合结论

建设单位必须严格遵守"三同时"的管理规定,落实本报告中所提出的噪声防治措施和建议,确保本项目施工期和运营期噪声不会对沿线声环境保护目标造成

明显负面影响。在落实各项环保措施的基础上,从环境保护角度而言,该项目的 声环境影响程度是可以接受的。