

MeshWorks实体网格划分详细教程

联系电话: 18665820511

Powered by

实体网格划分步骤

快捷键

默认快捷键

快捷键	功能	Function
F1	帮助文档	HELP
F2	删除	Delete
F3	替换节点	Replace Nodes
F4	测量	Measure
F5	隐藏/显示	Hide/Display
F6	创建单元	Create Elements
F7	对齐单元	Align Nodes
F8	创建节点	Create Node
F9	编辑线	Edit Line
F10	质量检查	Quality Check
F11	网格重划分	Remesh
F12	网格划分	Mesher

鼠标操作	功能
Ctrl + 左键	旋转
Ctrl + 右键	平移
Ctrl + 中键	缩放至屏幕中心
C + 左键	旋转中心

自定义快捷键推荐

功能	推荐自定义快捷键
Locate to Mid	W
Stitch	S
Element Split	Е
Combine	Х
Translate	Υ
Project	U
Remesh	Shift $+ Z$
Smooth	Shift + Q
Feature Insert	Q
Mesh Editing	Shift + Λ
Spline Mesh	Shift + S
Display	D

Note:

• 导入的几何文件尽量选择x_t格式, MeshWorks软件对Parasolid格式支持最好。

Taport	Todel				
Select file	E:\[Database]\[All_Mod	dels]\Plastic_Model\Part_10.x_t	View Log File	Cad Route	Import
Template	Parasolid			O Datakit Route	Return
	Replace Model Append Model Add Model	folerance 0.01 🗹 Enable Healing			

Note:

- 选择Surfaces后直接点击Auto Clean Up即可。无需点击Check按钮。此步骤将外部几何模型转换为 MeshWorks自有几何格式,更有助于后续网格划分呈现更好的结果。
- Auto clean up 失效时
 - 1. 如果几何模型有问题,找客户提供原始几何文件,CAD最好导出parasolid文件格式。
 - 2. 导入几何时,若几何明显有问题,先补面,修复面,再clean up
 - 3. 如果肉眼发现不了问题,跳过clean up 步骤,直接画中面网格,查看网格质量,在网格上修正问题。

CAD Check Panel				
Methods List Check	Methods	Select Surface(s)	Clean Auto Clean Repair Tolerance: 1	Check Reset Return

• 几何模型中若有logo,可用该面板去除。CAD标签→Defeaturing→Logo

Features Logo Removal Selection Logo Height Range HighLight Logos Options Remove Image: Figure Faces Select Surface(s) Image: Figure Faces Nove Logo Faces Nove Component Reject Image: Figure Faces Slant Angle Range Slant Angle: 60 Slant Angle: 60 <th>Logo Det</th> <th>feature</th> <th></th> <th></th> <th></th> <th></th> <th></th>	Logo Det	feature					
	Features O Fillet (e) Logo	Logo Removal Inside Single Face Across Multiple Faces	Selection Select Surface(s)	Logo Height Range Max Height: 1.5 Slant Angle Range Min. Angle: 60	HighLight Logos HighLight	Options Move Logo Faces to New Component	Remove Reject Return

几何 清理

实体划分四面体网格首先需要设置模板参数:点击窗口顶部 💐 🕯 General Meshing Parameters (1)(2)按下图数值设置各页面,其他选项默认。 Mesh Type (3)每一页设置好后要点击Apply保存。 Tria ○ Quad ○ Mixed MeshWorks安装路径下提供了多种尺寸现成的模板,可以直接Import使用。 (4)对于实体网格划分, Holes/Slots和Fillet Lines页面不用勾选。 $(\overline{5})$ R-Tria (Max) Tria Mesh Type Aligned Iso Mesh (6)Washer尺寸通常可设置为1.5*D,一层。可根据客户要求设置多层Washer Mesh Engine Type Auto (7)Edge Suppression Parameters→No Suppression Meshing Process Control Parameters →勾选Perform Meshing →Tria Auto Meshing Controls, (8)Target Element Size (TL): 3.00 其余默认。 Minimum Element Size: 0.30 (9)不勾选Quality Control Parameters页面。自动质量修复将在后期网格手动修复后进行, Maximum Element Size: 5.00 此处不执行。 Chordal Tolerance: 100.000 (10)不勾选Tetramesher Parameters页面。需要先调整好2D网格后再后期生成四面体网格, Chordal Angle: 30.00 此处不执行。 (11)模板设置好后(每页需点击Apply),点击Export Parameters,将模板保存为xml格式文件。 ight Edg 填写目标单元尺寸 Tubes Create Washer From Zone 1 Zone 2 Min. Diameter Max. Diameter Circumference Straight Edge Treatment Zone 1 Zone 2 Chamfer Dia. O Tube Dia. S. No. Treatment Zone 3 Type Туре 1.000000 20.000000 No. of Elements 16 Element Size 3 1.250000 *D 🔻 1.500000 * D 🔻 Avoid Washer Zones less than Min. Elem. Size 1 **Fillet Edge** 其他几何特征线 Washer宽度,通常只设置Zone 孔圆周单元个数 孔圆周单元尺寸 1 为1.5 *D. Zone 2不设置 WASHER ZONE WITH GIVEN NO OF ELEMENTS Iso-Tria-Tetra-4-Volume-Layers STRAIGHT EDGE ON THE CIRCUMFERENCE Fillets Iso-Tria-Tetra-no-Volume-Layers CIRCUMFERENCE Mixed Mesh S. No. Min. Radius Max. Radius Min. Width Max. Width Method on Fillet Edge Treatment Method on Straight Edge Treatment Add Remove Parametric R-Tria-Tetra-4-Volume-Layers Parametric R-Tria-Tetra-no-Volume-Lavers 0.100000 100.000000 0.100000 6 No. of Elements Chordal Angle • 30.000000 1 2 0.100000 100.000000 6 10 No. of Elements 2 Chordal Angle 30.000000 + R-Tria-Tetra-4-Volume-Layers 3 0.100000 100.000000 10 20.000000 No. of Elements 3 Chordal Angle 30.000000 + R-Tria-Tetra-no-Volume-Layers 4 20 100 Chordal Angle ▼ 30.000000 30.000000 0.100000 100.000000 Chordal Angle + Tria-Tetra-4-Volume-Layers Tetra-no-Default Meshing Templates available in: Mesher Control Parameter File Path C:\Users\Simuliam\AppData\Local\MeshWorks23.3\Meshing Parameters.xml E:\Program\MW 23.3-03-APRIL-2024\MeshWorks Meshing Templates C:\Users\Simuliam\AppData\Local\MeshWorks23.3\Meshing Parameters.xml Import Parameters Export Parameters Cad Model **FE Model**

设置模

板参数

- Chordal Angle 和 Chordal Tolerance参数用来控制生成网格的密度。
- Chordal Angle值越小,网格越密,层数越多,默认30°
- Chordal Tolerance值越小,网格越密,层数越多,默认100(即偏离程度达到100mm,可认为完全没有控制)。

■ BasicMesh→Interactive Batch Mesher

- 点击PID选择所需要划分的component,再点击Template旁边的文件夹按钮,选择批处理模板文件.xml,点击Execute等待网格划分完成即可。
- 多个component可以应用多个不同的模板进行批处理划分。
- 另外MeshWorks安装文件夹里自带了多个现成的模板,能应对大部分场景,可以直接引用。

Interactive I	Mesh Manager							
Sequence No.	Component		Template		Priority	Status	Add	Remove
1	CadComp-0-CleanedBody1<2>		D:\MeshWorksV23.2\MeshWorks_V23.2_64Bit\MeshWorks_Meshing_Templates\Mixer	>	1		+	-
2	CadComp-0-CleanedBody1_MidSurf_1.20<23>	F	D:\MeshWorksV23.2\MeshWorks_V23.2_64Bit\MeshWorks_Meshing_Templates\Parar	6	2		+	-

□ Batch Mesher完成后会在模型树生成以tubes和fillets命名的components,同时几何会自动分组。此时需要检查模型中的 所有Tube是否在Tube Component中,若有surface分组在fillet Component中,则需使用Organize修改,使其分类到正确 的Tube component,所有修改后,删除所有网格单元再重新进行一次Interactive Batch Mesher。

= 🔒 Components (7)

批处理划

分网格

- ---- 📕 🖽 CW_simulation_id959_x_t-None-CleanedBody1
- ----- III CW_simulation_id959_x_t-None-CleanedBody1-SliverEcces-Expand-0.300

- --- 📕 🖽 Failed Surface Elements
- 📕 🎚 CW_simulation_id959_x_t-None-CleanedBody1-FailedFaces

重新批处理划分网格后

- 第一步先检查所有的Tubes网格是否正确。 ٠
 - ① 对于需要修正的网格,用Mesher(F12)面板进行修复。
 - ② 对于Tube,选择Mapped方法进行修复。
 - 直接选择要修复的surface, Preview, Accept。无需删除原来的网格。 (3)
- 第二步修正网格流向(MeshFlow) ٠
 - ① 修正网格流向主要用Mesher-Mapped(F12)功能面板
 - 长方形的表面可以用Mapped的方法改善MeshFlow,如果是不规则形状表面, (2)Mapped方法会失败,可改用Flow选项。
 - 应用Mesher面板时,还可以通过调节边种子数Seed来改善网格 (3)
 - (4)Mesher功能应用后可用replace nodes (F3)功能改善局部网格。

注: 在应用Mesher面板之前,不能用网格编辑工具(如replace node, split, translate, Remesh等)进行改动, 否则Mesher面板无法使用。

Show Seed Points Mapped Map failed, Flow

- 一些微小的特征,如靠的很近的两条特征线,如果只想捕捉一条,可以有两种方法处理:
 - ① Advanced Quality Check→找到小于最小单元尺寸(Min Length)的所有单元,全部删除。然后equivalence整个模型,或者局部stitch。
 - ② Auto Quality Correction执行一次,软件会自动将名字含有collapse的component去除。

- 在用Mesher, Replace Nodes, Element Split等工具修改MeshFlow后,最后一步应用Remesh对网格流向不好的区域进行修改。
- Remesh由于CAD associative关系,即使局部Remesh也会影响周边大面积网格(即使距离很远的网格也会影响),Mesher功能面板将无法 生成网格,所以要谨慎使用Remesh。应用Remesh只能在修复网格的最后一步应用,甚至完全不用。

- ① 修改网格流向后,需要修复网格质量。点击Color by Quality图标 Qi,查看失效单元。
- ② 用Auto Quality Correction面板进行自动修复单元质量,可重复执行几次。Maintain Washer, Auto, Fix Free Face。
- ③ 剩余失效单元,可用手动方法进行修改。
- ④ 修复好所有单元后, Failed Element为0, 然后检查Free Edges和T-Junctions。Tools → Free Edges。对于Free Edges可用Equivalence修复。
- ⑤ 划分四面体网格的前提是模型没有Free Edges和T-Junctions。

Selected Ele	ems Corrected		Target Length (TL)	Quality Mathada	Diriu faux faux	
uto	Select Elements - 🚍	Maintain Washer	Surface Deviation 0.1 * TL	Auto	Consider Associativity	Execute Deviated Nodes
/ Element	Select 1D Features		Perimeter Deviation 0.2 * TL	Merge Fillets	Mid Meshing	Reset
By Node	Select Fixed Zone	Identify Washer(s)	Corner Angle (CA) 40	Collapse Sliver Face Elements	Max. Deviation Angle 40	Return
		Select/Deselect Elements	Max. Gradation 0.5	Remesh Planar Att. to Fillet Edges Remesh Failed Elements		Jave
No Edge	es/T-Ins Found					1/1 x M A
ito Eugo		Confi	uration Tuna Maya Company	ant To		
ements	→ <u>=</u> , ←	Free Edges	New C	omponent		Find Edges
		Model Free Edges				Reset
New Method	1	Internal Free Edges				Return
		✓ T-Junctions				

- · 确保2D网格没有失效单元,并且没有Free Edges和T-Junctions后,即可进行四面体网格的生成。
- BasicMesh→Tetramesher,必须勾选Strict Constraints,勾选Gradation Factor用于调整网格尺寸变化速率,默认0.5即可。点击Sanity
 - Check,显示(No Free Edge, T-Junction or Self Intersection found in the Selected Elements)后,点击Tet Mesh即可完成四面体网格划分。

No Free E Select Elements Select Hard Node	idge, T-Junction or Self Intersect Strict Constraints Internal Cavities No Interior Nodes Layers Method	Stion found in the Selected Elements Gradation Factor 0.50 Max Element Size 0 Quality Correction 0 Coarse Mesh Control 9.0 Speed/Quality Scale (1-10) 9.0 Shape/Quality Scale (0-10) 6.0]	Move Component To New Component No Property	Sanity Check	Tet Mesh Reset Return		
Gradation Factor 数值越大,网格 尺寸变化越剧烈, 网格数量越少	5.45		Element Size = 5 Gradation Factor = 0.2 单元数量: 19475			Element Size = 5 Gradation Factor = 0.5 单元数量: 15996		Element Size = 5 Gradation Factor = 1.2 单元数量 12673

- 修复四面体网格质量: Quality→Tetra Quality Improvement
- 通常要求改善模型的Tet Collapse指标,数值代表四面体单元的扁平度。
- 必须勾选Preserve Geometry
- Iterations可选1-5,最大为5。

DEP

MeshWorks

- 方法有Translate/Remesh/Adjust MidNodes/2D/3D Smoothing四种,通常先执行Translate,若还有不合格单元,再执行Remesh,反复
 来回执行多次以减少失效单元。(最好只选用Translate和Remesh两种方法,另外两种方法不要用)
- 若用Tetra Quality Improvement面板无法完全去除不合格单元,可以再手动一个单元一个单元的修复。(查找/显示失效单元的方法 参见《塑料件中面网格划分教程》)

Tet Quality C	orrection				
 Jacobian Tet Collapse Nve_Correction Min Tria Face Angle Min Tet Height Min/Max Length 	Select Tetras	Min TetCollapse 0.15 Preserve Geometry Perimeter Deviation 0.1 Surface Deviation 0.1 PID Bounds	Translate Translate Remesh Adjust MidNodes 2D/3D Smoothing	Iterations 4	Preview Iterate Reset Return

Thank you!

Visit our website: <u>www.MeshWorks.com.cn</u> Write to us: Meng_L@depusa.com

公众号/视频号搜索"MeshWorks" 扫描下方二维码添加微信号

联系电话: 18665820511

Powered by

