

MeshWorks中面网格划分详细教程

Powered by

公众号/视频号搜索"MeshWorks" 扫描下方二维码添加微信号

联系电话: 18665820511

中面网格划分步骤

快捷键

默认快捷键

快捷键	功能	Function
F1	帮助文档	HELP
F2	删除	Delete
F3	替换节点	Replace Nodes
F4	测量	Measure
F5	隐藏/显示	Hide/Display
F6	创建单元	Create Elements
F7	对齐单元	Align Nodes
F8	创建节点	Create Node
F9	编辑线	Edit Line
F10	质量检查	Quality Check
F11	网格重划分	Remesh
F12	网格划分	Mesher

鼠标操作	功能
Ctrl + 左键	旋转
Ctrl + 右键	平移
Ctrl + 中键	缩放至屏幕中心
C + 左键	旋转中心

自定义快捷键推荐

功能	推荐自定义快捷键
Locate to Mid	W
Stitch	S
Element Split	Е
Combine	Х
Translate	Υ
Project	U
Remesh	Shift $+ Z$
Smooth	Shift + Q
Feature Insert	Q
Mesh Editing	Shift + Λ
Spline Mesh	Shift + S
Display	D

Note:

• 导入的几何文件尽量选择x_t格式, MeshWorks软件对Parasolid格式支持最好。

Taport	Todel				
Select file	E:\[Database]\[All_Mod	dels]\Plastic_Model\Part_10.x_t	View Log File	Cad Route	Import
Template	Parasolid			O Datakit Route	Return
	Replace Model T Append Model Add Model	olerance 0.01 2 Enable Healing			

Note:

 ✓ 选择Surfaces后直接点击Auto Clean Up即可。无需点击Check按钮。此步骤将外部几何模型转换为 MeshWorks自有几何格式,更有助于后续网格划分呈现更好的结果。

✓ Auto clean up 失效时

- 如果几何模型有问题,找客户提供原始几何文件,CAD最好导出parasolid文件格式。
- · 导入几何时,若几何明显有问题,先补面,修复面,再clean up
- 如果肉眼发现不了问题,跳过clean up 步骤,直接画中面网格,查看网格质量,在网格上修正问题。

CAD Check Panel				
Methods List Check	Methods	Select Surface(s)	Clean Auto Clean Repair Tolerance: 1	Check Reset Return

✓ 几何模型中若有logo,可用该面板去除。CAD标签→Defeaturing→Logo

Logo Defeature					
Features Logo Removal Fillet Inside Single Face Logo Across Multiple Faces	Select Surface(s)	Logo Height Range Max Height: 1.5 Slant Angle Range Min. Angle: 60	HighLight Logos HighLight	Options Move Logo Faces to New Component	Remove Reject Return

几何 清理

٠

PReview Mid Plane Pairs 来重新手动识别中面对。

如果是小面积缺陷就用创建网格的方式来修复。

- (3)Join Patches: 缝合
- (4)Remesh: 重新划分
- (5)Move To Mid Plane: 移动到中面
- ✓ 以上5步骤相对独立,可单独勾选或取消勾选用于高级操作。 默认全部勾选。

Auto Iid Plane Iesh Select Surfaces II Identify Mid Pairs Generate Mesh Join Patches Remesh Move To Mid Plane	Advanced Inputs Option Bxecute Method 1 Reject Return	Method 1是新算法 Method 2是旧算法

▶ > Advanced Inputs面板

自动划

分中面 网格

3.2

- ✓ Boss Capture区别如图:
- ① Straight: 会忽略肋筋特征
- ② 2D Mesh Close: 创建有顶盖的壳圆柱网格
- ③ 2D Mesh Hollow: 创建无顶盖的壳圆柱网格
- ④ Tetra Mesh:创建四面体的圆柱形网格
- Maintain Edge Perimeter: 划分的网格不会超出几何, 默认 勾选。
- Maintain Assembly Info: 划分网格后会把每个中面对都创建一个Assembly (方便后续对中面对操作),默认勾选。

塑料件: 推荐10

铸件: 推荐15或20

- Maximum Thickness : 10
- Target Element Size : 5
- Minimum Element Size: 2
- Maximum Element Size: 8

Auto Midplane Mesh Inputs

Teshing Parans		General Params			
Maximum Thickness	10	Feature Angle 30.0			
Target Element Size	5.0	Corner Angle 40.0			
Minimum Element Size	2.0	Remesh Method			
Maximum Element Size	8.0	○ Advanced Front			
Chordal Tolerance	20.0	Flow Mesher			
Chordal Angle	60.0	Method			
Boss Capture		Boundary Oriented Mesh			
Straight O 2DM	esh-Close	Maintain Edge Perimeter			
O Tetra Mesh O 2DM	esh-Hollow	🗹 Maintain Assembly Info			
		Split Ambiguous Surfaces			
		Sliver Collapse Length < 0.75 * Min E			
	Accent				

MeshWorks 23.3-GA

① 点击Preference图标

② 设置具体网格质量标准

- Environment	1D Eler	ments 2D Elements 3D Elem	ients		
General					
Canvas		Criteria	Calculation	Color	Failed
Lighting		Aspect Ratio	NASTRAN	-	5.00000
Display		Skewness	PATRAN	- -	40.000000
Geometry		Warning	IDEAS		15 000000
- Screen Capture/Animation		Tanan	DATRAN		0.000000
Advance Visual Properties		Taper	PATRAN		0.00000
Appearances		Crash Time Step	LS_DYNA		1.000000e-06
Surface Mesh Quality Criteria		Min Height	QUADS & TRIAS	<u> </u>	0.000000
Mesh Quality Criteria		Squish			0.300000
Menu Builder	-	Jacobian	NASTRAN	<u> </u>	0.600000
SpotWeld Prop	✓	Min Length			2.000000
Keyboard Shortcuts	1	Max Length			8.00000
Parameterization		Min Quad Angle	IDEAS	-	45.00000
- Tool Groups	-	Max Quad Angle	IDEAS	-	135.000000
- Memory Management		Min Tri Angle	IDEAS	-	25.000000
Selection Tools	1	Max Tri Angle	IDEAS	-	120.000000
Debug		Stretch			0.500000
Solver Options		Triangles %			20.00000
		Triangles Per Node			3.000000
		Duplicate			-1.000000
		Connectivity			-1.000000
		Thickness To Length			0.500000
		Minimum Size	LSDYNA ISDO=0	-	5,00000

③ 点击屏幕右侧快捷图标

④ 显示模型网格质量不达标单元数量及具体位置

网格质量

检查及自

动修复

(1)

(2)

(3)

(4)

Window - Inside

Window - Outside

 $(\overline{5})$

Select Nodes

Pick

Quality标签→Advanced Quality Check Skewness 点击不同网格质量参数 (Aspect Ratio, Skewness等),显示失效单元数 Warping Jacobian 量及当前极值。 Min Length Max Length 点击Save Failed,存储失效单元。 点击F5, Elements选择Restore, 点击Show, 显示失效单元。 Туре 01-D Deform Zone 2-D Displayed Prop.By Face Face 2D On Plane BySets By Face Propagation Not Displayed Element - Type PID - by Pick First Order By Surface Displayed Dfm Zn By Attached - disp 03-D PolyArea By Part Table ΔII By Attached - al PID PID - WindowInside Second Order By Block By Adjacen 2D Elements PID-by Assembly PID - displayed Save By ElSet PolyLine PID-Region None By ID PID - not displayed Restore By MorphSet Revers By AdjacentExis - =↓ ← (6)BasicMesh标签→Temp Nodes,选择nodes (Displayed方法),点击Add, 在每个失效单元的节点上增加临时节点、以便在单元修复时方便观察 和寻找。(单元修复后点击Remove All,去掉所有临时节点) Create Temp Nodes Add - <u>-</u> Make Copy Remove Remove All

Return

点击屏幕右侧Find Layers快捷图标,在失效单 元周边增加一层单元,再次点击,再增加一层, 方便观察失效单元所在位置,方便修改。

Auto Quality Correction

- ➤ Quality标签→Auto Quality Correction
 - ① 选择Auto方法

网格质量

检查及自 动修复

- 选择全部单元→TL设置为目标单元尺寸→勾选Mid Meshing→其他默认→点击Execute
- 此方法适用于对整个模型网格进行大面积自动修复。
- 在整个模型中面网格自动划分后,推荐在手动修复网格之前,执行一次此自动网格修复功能,往往可以使失效单元 数量直接减少一半以上。

Quality Methods Select Elements Maintain Washer Target Length (TL) 0.400 Quality Methods Select Elements Select Elements Select D Features Select D Features Select D Features Select Fixed Zone Select Fixed Fixed Fixed Fixed Fi	🔁 Quality Cor	crection				
	Quality Methods	Select Elements Maintain Washer Select 1D Features Select Fixed Zone	Target Length (TL)0.400Surface Deviation0.1* TLPerimeter Deviation0.2* TLFeature Angle (FA)20Corner Angle (CA)40Max. Gradation0.5	Quality Methods Quality Methods Merge Fillets Collapse Sliver Face Elements Remesh Planar Att. to Fillet Edges Remesh Failed Elements	Fix Free Face Consider Associativity Mid Meshing Max. Deviation Angle 40 Ret	Check Deviated Nodes Deviation Dist. O.1 Set Preview Urn Save

- ② 选择By Element方法
 - 直接点击单个失效单元即可修复,不勾选Consider Associativity。Feature Angle(FA),推荐调整成40。
 - 此方法适用于修复单个失效单元。

手动修复网格质量常用功能

手动修复 网格质量

- ① 该功能强烈推荐在自动划分中面网格后, Auto Quality Correction之前运行一次。
- ② 步骤为: 自动划分 中面网格 ➡ Adjust Free Edges ➡ Auto quality Correction ➡ 手动修复 网格
- ③ 该功能批量调整所有未在几何边缘面 (boundary surface) 上的节点与表面贴合。
- ④ BasicMesh→ Mesh Editing → Adjust Free Edges, 选择所有Elements, 选择所有Surfaces, Execute。
- ⑤ 执行后出现几何中有黑线的即为贴合完好(黑线若隐若现,如右图所示)
- ⑥ 该功能限制:需要有几何中面对才有效,若整个模型为一个component或缺少 source/target surface,则此功能不起作用。在3.2中勾选Maintain Assembly Info生成中 面对Assembly的用处在此体现。

- ▶ 应用Mesher面板快速划分局部网格
- ▶ BasicMesh→Mesher,或F12
- ▶ 两种方法:
 - ① 勾选Select Source from Src-Trgt Pairs
 - 选择surface,点一次中键为Preview,网格建立在表面上,第二次点击中键后为Accept,将把网格自动移动到中面上。
 - 此功能适合于已有正确中面对场景

Mesh Type	Mesh Options	Inputs	Select Surface(s)	Discretize/UnDiscretize	Select Source from	Proj. To Mid Location		Auto Fix Quality
🔿 Tria	R-Tria \sim Flow \sim	Target Element Size: 5.00			Src-Trgt Pairs		Preview	Preview
O Quad	Aligned Iso Mesh	Min. Element Size: 2.00	Assign Mesh Params	Suppress/UnSuppress Edges	MappedMesh		Treview	lterate
Show Seed Points	Import Template	Max. Element Size: 8.00		Add/Remove Verts	View Failed Faces		Accept	Iterate
Correct Mesh Flow		Chordal Tolerance: 20		ReSeed Edges 9	Move Failed Faces		Deset	Reset
	Surface Component	Chordal Angle: 0.00			To New Pid		Reset	
								Return

- ② 勾选Proj. To Mid Location, 选Select Target
 - 选择surface, 点一次中键为Preview, 网格建立在表面上, 然后选择target Surface, 第二次点击中键后为Accept, 将把网格自动移动到中面上。
 - 此方法适合于无法自动匹配中面对,需手动指定中面对场景

Mesh Type	Mesh Options	Inputs	Select Surface(s)	Discretize/UnDiscretize	Select Source from	Proj. To Mid Location		Auto Fix Quality
⊖ Tria	R-Tria V Flow V	Target Element Size: 5.00		Summer (Un Summer Edma	Src-Trgt Pairs		Preview	Preview
Quad Mixed	Aligned Iso Mesh	Min. Element Size: 2.00	Assign Mesh Params	suppress/onsuppress cages	MappedMesh	From Src-Trgt Pairs Galact Transt		Iterate
Show Seed Points	Import Template	Max. Element Size: 8.00		Add/Remove Verts	View Failed Faces	Select Target	Accept	
Correct Mesh Flow	Surface Component	Chordal Angle: 0.00		ReSeed Edges 9	Move Failed Faces To New Pid	Select Surface(s) 🔜 👟	Reset	Reset
								Return

MeshWorks

- ▶ 应用Locate To Mid面板调整网格到中面上
- $\blacktriangleright \text{ CAD} \rightarrow \text{Locate To Mid}$
- ▶ 两种方法:

- ① 自动划分中面时已生成多个中面对,并建立了Assembly。选择By Assembly,只需点选表面再选择所需移动的单元即可。
- ② 更常用方法:选择By Face/By Edges
 - a. 选择By Face, 选择source→ (中键) → target → (中键) → 单元→ (中键) → done; 该选项用于调整单元面
 - b. 选择By Edges,选择source→(中键)→target→(中键)→Node by Path选择边节点→(中键)→done;该选项用于调整单元边
 - c. 选择By Face-By Edges,选择source edge→(中键)→target surface→(中键)→Node by Path选择边节点→(中键)→done;该选项用于没有中面对,一面

	是面,	一面是一条边的情况
--	-----	-----------

Methods	Options	Salact Source Surface(c)	Methods	Locate To Mid	
By Assembly	By Faces		By Project to mid sheet 🛛 🗸	Denet	
By Faces/By Edges	O By Edges	Select Target Surface(s)	Untrim Surface	Keset	

▶ 遇到source和target线数量不一样时,如下图所示,正面有两条特征线,背面只有一条或没有特征线时,正面可以取其中一条,或者 创建中线进行locate to mid(By faces-By edges),从而对齐网格和特征线。

- ▶ 应用Feature Insert/Cut面板进行特征嵌入或网格捕捉几何特征线
- ➢ BasicMesh→ Feature Insert/Cut
- ① 用途一:特征嵌入
 - Sharp Insert → Cutter Shells → Base Shells → Tolerance (5) → Add/Remove 1D (需要共节点的底边要选为蓝色) → Insert

② 用途二:网格捕捉几何特征线

- Sharp Insert \rightarrow Select Line \rightarrow Base Shells \rightarrow Insert
- 此步骤将会使base shell单元边对齐几何线Line

Methods	Select Line	Insert Type	
 Smooth Insert Sharp Insert Advance Insert 	Base Shells Update FE-CAD Association Maintain Component Merge Tolerance Maintain Sets Retain Insert Edge(s) Correct Mesh Flow	Nearest Insert Tangential Insert Nodal Normal User defined direction	Inser Rese Retur

▶ 应用Stitch面板进行缝合交叉处网格、合并一层网格、底面共节点

\succ Tools \rightarrow Stitch

- ① 用途一:缝合交叉处网格
 - Edge Pair Stitching→选择需要缝合的两条线再选择Move To Mid点击缝合即可。
 - 如果需要缝合多个交叉处网格选择Edge Junction Stitching
- ② 用途二:合并一层网格
 - Edge Pair Stitching→选择需要缝合的两条线再选择Snap To Nearest或Move To Mid。
 - 选择Retain Edge 1 As Destination即为以第一条选择的线为目标线,此线将不 会移动。同理选择Retain Edge2 As Destination。
 - 若想两层倒角合并为一层倒角,选择两边后Move To Mid合并后,此时节点不在中面上,需用locate to mid,调整节点到中面上。
- ③ 用途三: 肋筋共节点
 - Rib Base Stitching→选择肋筋底边再选择底面,使底面的网格对齐肋筋底边 并共节点。

- ▶ 应用Washer/Hole Treatment面板创建Washer
- ➢ BasicMesh→ Washer/Hole Treatment
- ① Circular Hole
 - 选择单元后调整Diameter Range点击Detect Hole可以自动识别孔洞,点击Hole Treatment Inputs可以调整创建Washer的参数,点击Create。
 - 创建Washer尺寸有两种方式: *D(直径×系数)或W(宽度),若选择W方式, 宽度要比最小网格边长大一点;如网格质量标准Min Elements为2,则W值设 置为2.01,否则Washer容易被识别为小于最小边长的不合格单元。
 - Washer周边不能出现三角形节点
- (2) Non Circular Hole

Washer

• Node by Path直接点选孔洞周边节点,设置Hole Treatment Inputs后生成.

Method Selection Diameter Range ≜ Automatic Method Hole Treatment Inputs To 10.00 0.00 Circular Hole Selection Reset Detect Hole Preview O Non Circular Hole **≡**⊾ ♠ Sel Base Elements Reset All = ↓ Add/Remove Holes Return

Zone

.000000

Create

LCS

S. No	Comp ID	Driginal Di	Defea Ho	ture le	laintain C nodes Defeatu Hole	for red	Stand Di	ard a	Nodes Ar the Ho	ound	tole Clearanc (+\- D)	W 2
			No	•	Yes	-	NC	•	8	÷	0.000000	2.01000
1	595	12.500000	No	-	Yes	-	NC	-	8	-	0.000000	2.01000

Edit Columns Visibility

Add Washer Zone

- ▶ 应用Remesher面板进行网格重划分,改进网格流向 (Meshflow)
- ➢ BasicMesh→ Remesher或F11
- ▶ 先设定好参数 (Target Size, Min size, Max size以及Advanced Inputs面板里的参数) 后:
 - ① 方法一: Select elements 后,不勾选Flow Mesher,直接中键Remesh
 - ② 方法二:点击Sel. Discretize Nodes,通过点选nodes创建多条线,Remesh后网格流向将 沿此定义方向构成。
 - ③ 方法三:勾选Flow Mesher, Remesh Mode选择Interactive,并且Advanced Inputs中的 Consider Associativity要取消勾选。
- ▶ 在选择单元格的时候可以使用快捷键:
 - PolyArea可以将所选的四个点围出的单元全部选中
 - PolyLine可以将多点连接线所在的单元全部选中

	143		\searrow		1		5
	eee 🕅	20.0	1			1 19	E
	0		E	-	R	;	@]
	<mark>म्ह</mark> ्य श्री		₩	\blacksquare			□ ≮ ¥ □
🕂 🖉 🔚 🖽 🞬 🔜 🎬	I	Ø	5 019	50 019		[]]	6
		8	F		Ħ		.
	× [· · · ·	<u>цу ши</u> (

Remesher Advanced Inputs

Node Compat

Fix Boundary

✓ Retain Morphs
✓ Preserve Conn

ibility	Consider Associativity
	Retain Set
	🗹 Auto Reconnect Spiders
et	Close Out Features
ections	🗹 Auto Reweld

Remesher Shell Solid	Select Elements	Target Size Minimum Size Maximum Size Corner Angle Angle bet.Elements	5 Advanced Inputs 2 Organize To 40.00 Parent Component 15.00 Max. Gradation 0.10	Maintain Washer	Type O Trias O Quads (in Mixed)	Remeshed Region El. Transition Smooth Correct Mesh Flow	Flow Mesher Propagate Edges Remesh Mode Interactive All Quads	Method Flow	ReMesh Reset Return		
----------------------------	-----------------	---	--	-----------------	--	--	---	----------------	---------------------------	--	--

- ▶ 应用Smooth面板进行网格光滑处理
- \blacktriangleright Quality \rightarrow Element Smooth
 - ① 通常选择New Smooth方法
 - ② 点击Select/Deselect Features按钮,特征线会高亮白色,移除不需要保留的特征线(通常场景框选移除所有特征线,特征线显示绿色表示移除)
 - ③ 在对单元Smooth时若不想影响特征,可以使用Select Nodes To Fix来固定节点

Smooth	Methods	Feature Angle 20.00	Select Entities	Maintain Washer	Fix Free Edges	Iterations 10	Iterate	
Smooth 1D	O Uniform	Corner Angle 20.00	Select/Deselect Features		Fix T-Junctions		Reset	
Smooth Solid	New Smooth	Closeout Feature	Add Features By Path		Proj. To Associated Surface		Return	
			Select Nodes To Fix 📃 💺 🔶					

可以合并

- ▶ Mesh Editing面板集合了多种网格编辑工具
- \blacktriangleright BasicMesh \rightarrow Mesh Editing

(1) Move Tria:

- 点击三角形的单元即可移动 (只有相对的三角形单元可以合在一起)
- ٠

•	在No. Of Sm	ooth Layers输入	、为0的时候移动	tria单元不会影响周围的立	单元。	不可以合并	不可以合并
	Options Move Tria Collapse Slivers Split/Combine/Swap Move Element Nodes Align Nodes	 Fix Dent Smooth Adjust Free Edges Project T-Junction Collapse 	Select Tria Sel. Target Element	Feature Angle 20 No. Of Smooth Layers 0			
2) Fix Dent :	 Fix Dent Smooth Adjust Free Edges 	Select Nodes Sel. Plane Element(s)				
•	用途一: 4	平整网格坑凹	不平				
	田公一山	+ 士トー上面					

• 用途二,共节点三步骤:

① 选择底面节点,选择肋筋单元,中键确定。对齐底面单元边和肋筋底边。 ② 选择肋筋节点,选择底面单元,中键确定。肋筋底边与底面单元边重合。 ③ Replace Nodes共节点

可以合并

- ▶ 在赋厚度之前要检查单元法向,否则分配厚度会发生错误。
- ▶ 屏幕右侧快捷图标: Align Normal
 - 选择Display By Color,颜色不一样的即为两个单元的法向方向不一样
 - 两种方法:

① Select→选择需要翻转的单元→Reverse。

• 此方法适合于调整单独的单元法向方向。

② Select→框选需要翻转单元法向方向的区域,该区域单元法向有正有反→选择Reference Elements → Align。

- 此方法适用于批量修改单元法向方向。
- Reference Elements应选择和所需翻转单元连接的单元

💾 🚹 Align	Normals			
Shells	O Align Whole Model	Elements 👻 🧮 👟	Align	Accept
◯ Solids	 Select 	Reference Elements	Reverse	Reset
		O Display Normals		Return
		Display By Color		1

- ▶ 应用Assign Thickness面板对中面网格赋予厚度
- \blacktriangleright Tools \rightarrow Assign Thickness
- Select Elements(全选模型)→Select Surface(全选模型)→Rib Base Selection(Auto Identify Rib)→反选去除 不是肋筋的单元选择→Calclate Min-Max计算最大最小值→设置厚度步长incremental Val.为0.1mm (通常)
- ▶ Assign Mode: 推荐用Rib Thickness方法
 - □ Auto Thickness和Rib Thickness区别:
 - 用Auto方法同一层单元的厚度会有很多不同厚度值
 - 用Rib方法, 肋筋上同一层单元的厚度会为相同值
- ▶ 如果已经赋完厚度后想要修改网格,例如Move Tria,需将网格移动到New

Component中进行操作。

- ▶ 赋厚度后会出现new component → Failed (错误厚度的单元)
 - 失效的单元实际上有厚度(默认1mm)失效原因是由于几何形状复杂, 无法计算厚度,比如倒角区域等,此时需要手动赋予单元厚度值。

Model-CleanedBody1_Auto_MidMesh_3.20-mm
 III Model-CleanedBody1_Auto_MidMesh_3.30-mm
 III Model-CleanedBody1_Auto_MidMesh_Failed

Auto Thickness

Rib Thickness

- Model-CleanedBody1_Auto_MidMesh_0.70-mm
- ----- 📕 🏼 Model-CleanedBody1 Auto MidMesh 0.80-mm

Assign Mode	Assign By	Select Elements	Rib Base Selection Auto Identify Rib	Calculate Min-Max	Comp.Desc.Prefix Model-Cleane	Re-Group
Check Mode	AutoThickness Rib Thickness	Select Surface	Add or Remove Elements	Minimum Val.	Modify Element Card	Reset
○ Rib Thickness	O Nodal Thickness	Accuracy 50	Maximum Thickness 5.0000	Maximum Val.		Return
O Modify Thickness				Incremental Val.		

▶ 手动修正厚度两种方法: ① 应用Organize面板,将要修改厚度的单元分配到目标component中, 这样该单元的厚度值就变为目标component中的厚度值。 Select Elements→ Existing component	显示厚度图标 ♀! Ц ◀ � ☆ 詳 陰 詳 � [1] ◆ 1]
 ● Organize ○ Include Org. Select Elements Include Org. Existing Component Include December 21708 Name Model-CleanedBody1 	Move Reset Return
② 应用Modify Thickness面板,按步长增加或减少厚度,可以在显示 几何和厚度的情况下应用此功能,当单元和几何若隐若现时,说 明厚度匹配正确。	
Assign Mode Increment By 0.100000 Check Mode Reorganize Thickness Increment By 0.100000 Rib Thickness Modify Thickness Increment By 0.100000	Thickness + Thickness - Reset Return

✓ 赋厚度时不能出现一个单元一个颜色,至少两个单元同一颜色,保证厚度连续性。

- 所有厚度正确后, 点模型树的刷新, 此时 failed component 中单元数应为0。
- 点击扫帚图标, Delete Empty (删除空集)

➤ CAD Thickness测量厚度

两种方法:

- ① 应用Assign Thickness 面板:
 - 当有中面对时, Assign Thickness→CAD Thickness→Frm Src-Trgt Pair (中键) →Calculate (中键)
 - 当无中面对时, Assign Thickness→CAD Thickness→Select Target→选择一表面上的点(中键)→选择对面表面(中键)→Calculate (中键)

	 Assign Mode Check Mode CAD Thickness Rib Thickness Modify Thickness 	Pair	 Assign Mode Check Mode CAD Thickness Rib Thickness Modify Thickness 	Methods O Frm Src-Trgt Pair (a) Select Target	Pick Point on Surface Select Surface			
2	使用Measure (测量F4) 进行测量。						4:2,589318	
		Measure Distance between two nodes/points Angle between Line Length Radius	Face Area Volume CAD Thickness Projected Distance	Methods	Pick Point On Surface		102.1961 102.1961	
						HH.		

- ✔ 两种方法区别:
- 用Assign Thickness面板测量后,切换到Organize面板进行厚度调整时,标注的测量厚度数据不会消失,因为该功能实际是创建了几何线。
- 用Measure面板测量后,切换到Organize面板进行厚度调整时,标注的测量厚度数据会消失。

Description

求解器文件

·■•MeshWorks 23.3-GA

- 🔁 Assemblies

······│∑Ē Materials (0) ···⊞··‡■ Properties (45)

--- 🏪 -- 🔁 Components (45)

-----■-Abaqus::1.inp

▶ 导出两个文件:

- 1. msw文件 (有几何信息)
- 2. 求解器文件 (只有网格信息)
- ✓ 导出时要把Assemblies里的文件全部删掉(例如中面对, temp nodes等),只保留 components和properties。
- ✓ 在求解器文件中Component的数量要与Properties数量一致。
- ✓ 在msw文件里Component数量要比Properties多1个,因为第一个Component为几何数据。

Thank you!

Visit our website: <u>www.MeshWorks.com.cn</u> Write to us: Meng_L@depusa.com

公众号/视频号搜索"MeshWorks" 扫描下方二维码添加微信号

联系电话: 18665820511

Powered by

