

CYD3S010

激光测距模块 产品说明书

深圳市芯亿达科技有限公司 2024年7月10日

CYD3S010产品说明书

目录

特性	3
概述	
应用领域	3
方框图	3
引脚图	
引脚说明	4
技术规格	4
极限参数	4
建议工作条件	4
直流电气特性	4
交流电气特性	4
功能描述	5
功能流程	5
校准流程	5
标定环境示意图	6
通信接口	
IIC接口	7
尺寸规格	9

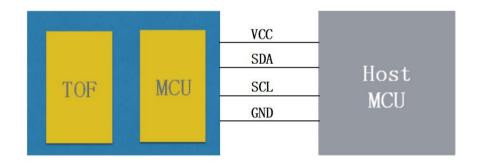
特性

测量范围: 2cm-500cm测量精度: ±1cm或≤4%

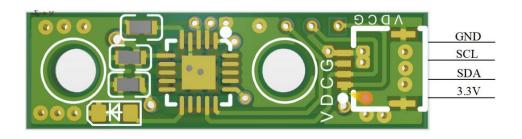
● 供电方式: 0.5MM 4P FPC 连接线

● 工作电压: 3.3 V● 工作电流: 30mA● 通讯方式: IIC通讯

● 数据更新时间: 30帧/1秒


概述

CYD3S010 是一款激光测距专用模块,可针对不同材质的物体,提供高精度的距离测量。探测距离为2cm~500cm;可应用于多种近距离距离测量场景。激光测距适合各类智能居家电子产品使用,如智能灯具、机器人避障、投影仪、商显等。提供 IIC 输出模式供用户选择,可快速调整各项模块特性。模块化设计,拥有快速且便利的开发优势,可有效缩短产品开发周期。


应用领域

- 智能灯具
- 机器人避障
- 投影仪
- ●商业显示器

方框图

引脚图

引脚说明

引脚符号	功能	类型	说明
VCC	VCC	PWR	主控板电源供电
SDA	SDA	SDA	SDA 引脚
SCL	SCL	SCL	SCL引脚
GND	GND	PWR	接地

注: PWR: 电源:

技术规格

极限参数

电源电压 $V_{SS}\text{-}0.3V \sim V_{DD}\text{+}0.3V$ 输入电压 $V_{SS}\text{-}0.3V \sim V_{DD}\text{+}0.3V$

注:这里只强调额定功率,超过极限参数所规定的范围将对芯片造成损害,无法预期芯片在上述标示范围外的工作状态,而且若长期在标示范围外的条件下工作,可能影响芯片的可靠性。

建议工作条件

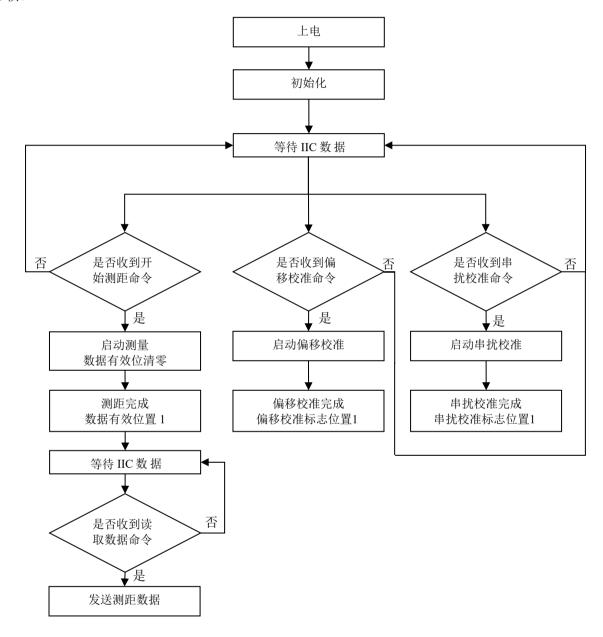
为达到模块的最佳效能,建议让模块工作在-20℃~70℃ 温度区间。若长期工作在高温(>70℃)环境,会导致模块加速老化,出现不可预期的状态。

直流电气特性

 $Ta=25^{\circ}C, V_{DD}=5V$

符号	会粉			最小	典型	最大	单位
19 5	付亏 参数		条件	取小	典望	取八	丰区
V_{DD}	工作电压	ı	_	3.3	3. 3	3. 5	V
$I_{ ext{ iny DD}}$	工作电流	3. 3V	正常上电	_	30	_	mA
V _{IL}	低电平输入电压		0	_	0. 2V _{DD}	V	
V_{IH}	高电平输入电压		_	0.8V _{DD}	_	$V_{\scriptscriptstyle DD}$	V

交流电气特性


IIC 接口

符号	符号 参数		则试条件	最小	典型	最大	单位
13.3		V_{DD}	条件	- J	X ±	-5.7 (
F12C	工作频率	3.3V	_	0	500	-	KHz

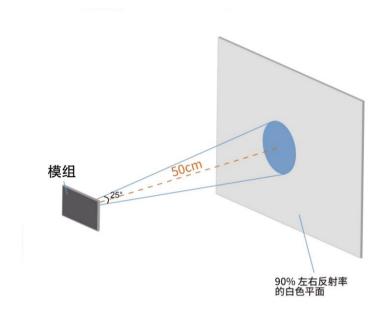
功能描述

功能流程

系统上电后模块初始化,会先通过 IIC 配置激光传感器,需要等待激光传感器初始化完成。初始化到进入工作模式时间约 5S,进入工作模式后就可以通过 IIC 读取距离数据、标定等操作,数据更新时间为每秒30 侦。

功能流程图

校准流程


模组顶部增加盖板·盖板内的 VCSEL 存在光反射·形成了串扰·所以需要进行串扰(盖板)标定。模组(无盖板)是自校准的·无需任何额外校准·如果用户要确保模组的最佳性能·则需要对其进行 offset 标定。

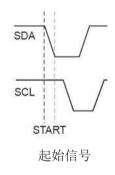
CYD3S010产品说明书

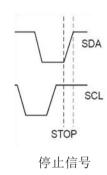
串扰(盖板)标定和 offset 标定可以校准一次,数据自动保存到 flash 后可复用标定环境

- 1、避免在强环境光(大于 500lux)的场景中进行标定。
- 2、标定板为90%左右反射率的白色平面。
- 3、模组位于标定板中心,并且与其平行
- 4、标定板必须覆盖 NDS03 模组整个视场角,且模组居中放置。串扰(盖板)标定和 Offset 标定时,标定板需大于 300mmx300mm。
- 5、需要注意模组的发射端视场角内不能有其他物体的遮挡。
- 6、标定完成后,标定数据会自动存储在 NDS03 模组内部 Flash 中。

标定环境示意图

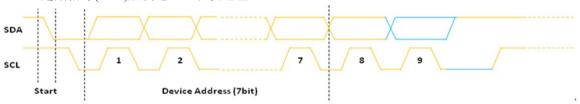
通信接口

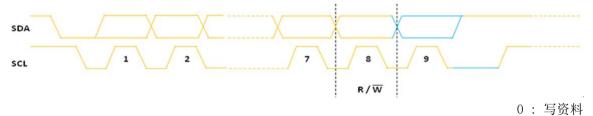

该模块支持 IIC 通信方式,在 IIC 通信模式下,主控设备可向模块发送命令对模块模式功能进行控制,详细通信方式请参照 IIC 章节。


IIC 接口

IIC 协议

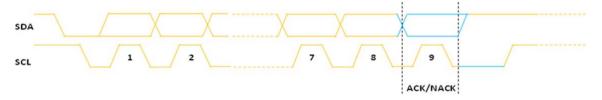
IIC 通讯传输速率: 500KHz


起始、停止信号:

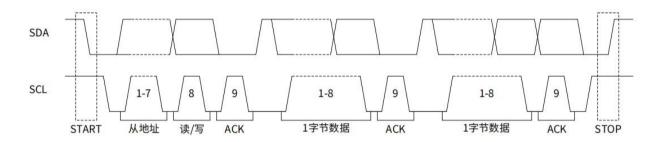

从机地址

起始信号(Start)后发送 7bit 从机地址。

读、写位


7bit 从机地址后紧接着第8位是读、写资料。

可以付
1: 读资料


应答位

每8bit 数据后必须跟着一个应答(ACK)。

0 : 应答 1 : 非应答

通讯帧格式

主机读数据

地址	0x01	0x02	0x05	0x06	0x07
功能	测距数据	测距数据	标定标志	串扰状态	标定状态

设备地址: 0x60 写, 0x61 读;

测距数据 0x01、0x02: 测距数据 0xffff, 地址 0x01 高位数据, 地址 0x01 低位数据;

标定标志 0x05: 判定是否有标定,读到数据为 0xc1 说明已标定过;

串扰状态 0x06: 判定标定的数据是否正确;

串扰状态 0x07: 判定标定的数据是否正确;

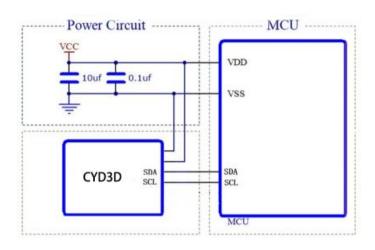
注意: 在读数据前要写入将要读的起始地址;

串扰(盖板)标定和 Offset 标定错误排查

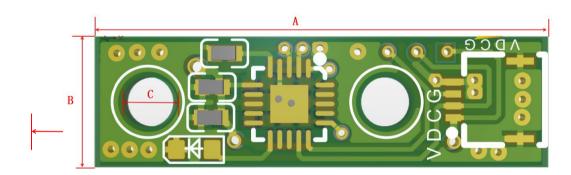
地址	错误码	原因	解决措施
0x06	0x10	盖板串扰过大	1.重新安装盖板 2.更换盖板
0x07	0x20	Offset 标定后测距误差过大	确保标定时模组平稳放置

主机写数据

地址	0x03	0x04	0x05	0x08	0x09
功能	阀值高位	阀值低位	写标定	LED 点亮	阀值标志


阀值高位 0x03: 预留位; 阀值高位 0x04: 预留位;

写标定 0x05: 当 0x05 地址写入 0xC1 后,模组自动进入串扰(盖板)标定和 0ffset 标定模式, 20S 后读标定状态位 0x06、0x07 的状态判定是否标定正常,分别出现 0x10、0x20 需要错误排查


完成后继续 0x05 地址写入 0xC1 进行标定,直到标定不出现错误码为正常;

LED 点亮 0x08: 预留位; 阀值标志 0x09: 预留位;

应用电路

尺寸规格

岭口	单	位
编号	mm	inch
A	19	748.032
В	5.5	216.535
С	1.05	41.339