纽荷尔 NREEOHY

手持 3D 形状扫描测量显微镜

使用维护说明书

本说明书详细阐述了 3D-Z10 显微镜的使用维护方法,故障排除以及 维护与保养等说明。请在使用前仔细阅读本说明书,并将其随仪器。 因为技术进步,生产商有权在技术上做出改进,若不影响本仪器的操 作使用,恕不另行通知。

全国免费服务热线:0755-23208317

网址: <u>www.nreeohy.com</u>

深圳纽荷尔科技有限公司

SHENZHEN NREEOHY TECHNOIOGYCO, LTD

深圳纽荷尔科技有限公司

SHENZHEN NREEOHY TECHNOIOGYCO., LTD

地址: 深圳市宝安区西乡街道旭升大厦5楼 邮编: 518000 电话: 0755-23208317

(微信公众号) (获取电子版说明书)

目录

1 i	殳 备概i	迷1
1.	1 名称	、、型号、适用对象1
1.	2 功能	用途1
1.	3 技术	指标1
1.	4 尺寸	、重量1
2 ì	发备 配	套 1
3 💈	且成结构	肉与工作原理 2
3.	1 组成	结构 2
3.	2 工作	原理 3
4 i	没备使)	用3
4.	1 操作	方法3
4.	2 软件	·操作4
Ľ	4.2.1	拍照 4
Ľ	4.2.2	平面校准 4
Ľ	4.2.3	3D Z 轴校准6
Z	1.2.4	平面测量 9
Ľ	4.2.5	3D Z 轴扫描测量9
Ľ	4.2.6	保存报告10
Z	4. 2. 7	使用注意事项 12
5 岔	常见故障	章与排除 15

6 维	护保	养	•••••	••••		•••	• • • •	• • • •	• • • •	• • • •	••••	•••	• • • •	.15
7. 设	备计	量		••••		•••	••••	••••	• • • •	•••		•••	••••	.15
7.1	检定	周期		••••		•••	• • • •	••••	••••	•••		•••	••••	16
7.2	检定	项目		••••		•••	• • • •	••••	• • • •	•••		•••	••••	16
7.3	检定	条件		••••		•••	••••	••••	• • • •	•••		•••	••••	17
7.4	检定	方法	•••••	••••		•••	••••	••••	• • • •	••••		•••	••••	17
7.	4.1	Z 轴重复定	它位精度相	金测 .		•••	••••	••••	••••	•••		•••	••••	17
7.	4.2	正确的图值	象获取和	处理	技巧.	•••	• • • •	••••	• • • •	•••		•••	••••	17
7.	4.3	三维测量打	支术进行	高精	度测	<u>旱</u> 里・・	••••	••••	• • • •	•••		•••	••••	17
附录	Α	•••••		••••		•••	••••	••••	• • • •	•••		•••	••••	. 18
附录	в	•••••				•••	• • • •	• • • •	• • • •	•••		•••	• • • •	. 18

1 设备概述

1.1 名称、型号、适用对象

设备名称: 纽荷尔手持形状扫描 3D 测量显微镜。

设备型号: 3D-Z10。

适用对象:物理学、化学、材料科学、电子与通讯技术等领域。

1.2 功能用途

3D-Z10 手持形状扫描 3D 测量显微镜用于物理学、化学、材料科学、电子与通讯技术等领域。

1.3 技术指标

1) 工作介质: 激光和光电倍增管。

2)检查对象包括:固体材料表面形貌、结构特征、生物样本、透明和半透明材料的层厚测量等。

1.4 尺寸、重量

1) 外形尺寸: 150mm×170mm×380mm。

2) 重量: 4.7kg。

2 设备配套

表 1 3D-Z10 手持形状扫描 3D 测量显微镜配套情况表

序号	名称	型号或代号	数量	备注
1	屏幕		1台	
2	连接线1		1根	随机配套件
3	连接线 2		1根	随机配套件
4	连接线 3		1根	随机配套件
5	鼠标 (含发射器)		1件	随机配套件
6	电源充电器		1根	随机配套件
7	光源充电器		1块	随机配套件
8	使用维护说明书		1本	随机配套件
9	校准证书		1套	随机配套件
10	装箱清单		1张	随机配套

3 组成结构与工作原理

3.1 组成结构

3D-Z10 手持形状扫描 3D 测量显微镜主要由电脑主机、光源亮度旋钮、粗调焦距、气细调焦距、屏幕、轴移动、镜头等组成。3D-Z10 手持形状扫描 3D 测量显微镜结构示意图如图 1 所示。

图 1 3D-Z10 手持形状扫描 3D 测量显微镜实物结构示意图

①电脑主机	⑤屏幕
②光源 亮度 旋钮	⑥轴移动
③粗调焦距	⑦镜头
④细调焦距	

表 2 3D-Z10 手持形状扫描 3D 测量显微镜组成部件功用

序号	组成部件名称	部件功用	备注
1	电脑主机	电脑的核心组成部分,它包含 了多个关键部件,每个部件都 有其特定的功能,共同协作以 支持电脑的运作。	
2	光源亮度旋钮	调节光源的亮度	
3	粗调焦距、细调焦距	调节显微镜的焦距	
4	镜头	调节不同的放大倍率	

3.2 工作原理

3D-Z10 手持形状扫描 3D 测量显微镜的基本工作原理是涉及多个步骤,包括光学成像、数字化处理、三维重建、显示与交互,以及软件功能。这些步骤共同作用,使得 3D 测量显微镜能够实现对微小物体的三维立体观察和测量。3D-Z10 手持形状扫描 3D 测量显微镜工作原理图详见附录 B。

4 设备使用

4.1 操作方法

- 1) 将所有的线连接好。
- 2) 打开源开关。
- 3) 打开软件。
- 3) 打开光源。

4)选择合适的镜头。每调节不同的倍率,就要调节一下焦距, 5倍镜头物距正常的是3 厘米左右。

5)调节焦距。

6)调节光源亮度,证样品观察视野明亮,无反光现象。

镜头	工作距离	视野	景深	最小间	Z 轴测量	XY 轴测量	电子倍率 X
	сm	μm	μm	隙 μm	精度 µm	精度 µm	
5X	4	1500*820	924	0.363	±8	± 7	250
10X	3.5	730*410	323	0.091	± 2	±1	500
20X	1.8	369*207	61.1	0.024	± 0.5	± 0.25	1000

我们从新来看这张对照表,也就是说当用 20X 物镜的时候它的有效景深是 61.1 微米,超过了 这个景深就会扫描不到。解决方法就是降低倍率,但是降低倍率也意味着降低了 Z 轴的精准 度。

4.2 软件操作

0

4.2.1 拍照

点击按钮

平面测量和 3D 测量前这里 要选择和倍率一样的数值,例如现在选择 的时 5 倍的镜头,就要选择 5.00XNA0.12 这个数值。

可以采集图像。

4.2.2 平面校准

用于二维 xy 坐标的校准,软件支持"手动绘制"和"贴边绘制",相机接上显 微镜时,使用微分尺进行校准。

	权	准尺	^
绘制选项:	✓ 手式	的绘制 🗌 贴边绘制	1
先画线:	绘制	50	
再标定:	5	mm 💌	- 1651.319 像素
命名并保存:	80x 校准尺20		保存
选择:	80x校准	▼ 应用	

"手动绘制"操作步骤:

测微尺单位间隔 0.1mm

- 1) 先画线:点击绘制,在微分尺一刻度两侧点击,结束后自动标注出微分尺一刻度对应的 像素数;
- 2) 再标定: 手动输入标定微分尺一刻度值 0.1mm, 进行应用和保存;

"贴边绘制"操作步骤:

1) 先画线: 勾选贴边绘制, 绘制矩形框去贴近一条边, 双击结束, 同样方法, 继续绘制矩 形框

贴近另一条边,双击结束,自动标注出标准块宽度对应的像素数。

2) 再标定: 手动输入校准标块的值, 进行应用和保存。

	1			
再标定:	2	mm	▼ = 12	4.652 像素
命名并保存:	校准尺1	校准尺12		
洗择:	当前绘制	制	*	应用

注意:

1) 软件提供一个 default 校准尺——单位为 pixel。

2) 应用校准尺后进行变倍需要重新校准,一个物镜对应一个校准尺。

4.2.3 3D Z 轴校准

在进行 3D 测量时需要对 Z 轴进行校准,软件提供默认参数和自定义校准两种方式供用户选择,当用户未进行校准时,使用系统默认校准参数。自定义校准后会覆盖默认参数。

校准:同 2D 校准尺原理一致,使用已知物体的高度进行标定,得到整个景深范围的高度表。 Z 轴校准操作步骤:

1) 请确认倍率与物镜一致(保证校准时倍率与物镜倍率一致)

2) 放入标准块(使用配件 0.5mm 水平平行放置)

3) 输入标准块规高度值(输入 500um)

4) 在图像中绘制低平面矩形区域(如图绘制左边/右边矩形区域)

5) 在图像中绘制高平面区域(如图绘制右边/左边矩形区域)

6) 点击开始校准,等待校准完成,完成后校准数据自动保存应用;重新校准将覆盖上次校 准数据。

注意:

- 1) 校准时,应保证高低区域能对焦清楚;
- 当前倍率校正完成后已生成数据存储,下次直接选择使用即可;再次校准后覆盖数据 重新存储;
- 3) 默认的校准尺为出厂配置不可删除,可进行重新校正覆盖默认数据。

Smart Software 允许用户根据实际需求调节图像的比例尺属性。设置窗口如图所示。

	🗌 显示比例尺
属性	值
▼ 比例尺	
名称	default
长度	100
颜色	[255, 0, 0] (255)
宽度	5
▼ 形状	
文本颜色	[255, 0, 0] (255)
文本字体	A [Arial, 28]
边框颜色	[255, 0, 0] (255)
边框宽度	1
透明背景	✔是
背景颜色	[255, 255, 255] (255)

- 显示校准尺:控制校准尺显示与否,默认不显示。
- 名称: 支持输入文本编辑校准尺名称, 默认为保存时的名称。
- 长度:设置校准尺显示的长度。
- 颜色:设置校准尺显示颜色,可点击 弹出调色板自定义颜色显示。默认为红色。
- 宽度:校准尺的线条宽度,可调节范围为 1~5,默认设为 2。
- 文本颜色:校准尺名称的字体颜色,可点击 弹出调色板自定义颜色显示。
- 文本字体:校准尺名称的字体类型,点击 弹出字体选择窗口,可对字体的类型和大小

进行调节。

- 边框颜色:校准尺边框的字体颜色,可点击 弹出调色板自定义颜色显示。
- 边框宽度:校准尺边框的宽度,可调节范围 1~5,默认为 1。
- 透明背景:将校准尺背景设置为透明色,默认勾选是。
- 背景颜色:校准尺背景设置颜色,点击 弹出调色板自定义颜色显示。
- 默认:点击默认按钮,可将该模块的参数恢复到出厂默认参数。

4.2.4 平面测量

等,取两个点就可以进行测量

了。

4.2.5 3D Z 轴扫描测量

字,如下图:

11.0	15711	1 the state	HITCH!	02	intry.	E and
3	4	2	4	101	Phil	6
101	4		3	tu:	B	4
		4	3	4	-	3
	3	3	3	2	in .	4
10.000	4	3	4	9	1.	
	4	3	3	1	10	-

选择完成后会弹出一个提示窗口

点击 3D, 创建模型

这个时候为保证数值的准确性,不要去触碰桌面,轻

微的晃动会影响准确性。

等待一会, 3D 建模就完成了:

Sand Ballinov	
0 0 0 0	Can Canada Base Classification Callor
SAL OF SUR	
111 I I I I I I I I I I I I I I I I I I	
AT 48 58	
	8822 1 1 1 1 1 1 (D) (O)
11	TRUDOWN RE 420am
-	- Your
1200 100	
1.000	
Y IL BE	the set of his me all pre-all me and
	1 9 9 M AN
ARE INTER CONTRACTOR	2 BULL BULLER HE BUT 141.354 BULLER AUTOR

4.2.6 保存报告

AIDE AS	PERE					
6-30µm	0.00µm	\$872 72pm	940 14pm	1918 61/4m	102.019µm	
1						

首先要先下方数据保存下来然后点击创建报告

将项目填写完整后点击保存导出,

4.2.7 使用注意事项

安全提示是用以下符号表示的。请务必遵从以下符号的提示,以确保正确、安全操作。

忽视此符号的提示有可能导致人身伤害或仪 器损坏!

1) 在安装显微镜、更换灯泡、保险丝和插拔电源之前,必须关闭电源开关, 拔掉电源线。

为防止发生触电或火灾,安装显微镜、更换灯泡、更换保险丝和插拔电源之前,必须关闭 电源开关,拔掉电源线。

 2) 严禁分解
 (除本说明书所提及的可拆卸部分外,严禁拆卸其它任何部件。否则可能会降低仪器性能、导致触电、受伤及仪器的损坏。如有任何故障,请与供应商联系。

请确认输入电压与您所在地区的供电电压是否一致。如果不一致,请不要使用显微镜,并请与 供应商联系。如果显微镜使用了错误的输入电压,会导致电路短路或造成火灾,从而损坏 显微镜。

4) 使用特定灯泡、保险丝和电源线
如果使用不恰当的灯泡、保险丝或电源线可能导致仪器损坏或仪器火灾。如果使用加长电源线,必须使用有接地的电源线(PE)。

▲ 5) 显微镜需防高温、防潮、防异物

为防止发生短路或其它故障,请不要长时间在高温,潮湿的环境下使用,适宜工作环境温度 5°C³5°C,相对湿度 20%^{80%}(25°C时)。如果有水洒在显微镜上时,请立即关闭电源开关,并拔掉电源线,然后用干布将水擦去。当有异物进入或滴入显微镜时,请停止使用并与供应商联系。

照明灯泡在使用时会产生高温,在灯亮时不要触摸集光镜或灯箱,熄灯 30 分钟
 以内不要接触灯泡。更换灯泡时,请确认灯泡是否已足够冷却(至少熄灭 30 分钟)。

- ★ 为防止烫伤,在灯亮时或熄灯 30 分钟以内不要触摸灯泡。
- ★ 为防止火灾,请不要在灯泡附近放置纤维制品、纸张或易燃易爆物品(如汽油、石油醚、 酒精等)。

7) 轻拿轻放
本仪器应轻拿轻放,否则会损坏显微镜外型或者内置设备。

8)放置场所

注意 本显微镜是精密光学仪器,如果使用或存放不当,将会导致仪器损坏或对其精 度产生不良影响。在选择使用场所时请考虑以下条件:

※. 避免将显微镜放置在以下场所:有阳光直射处、室内照明的垂直下方及其它明亮场所。
 ※. 适宜工作环境温度 5°C^{35°C},相对湿度 20%^{80%}(25°C时)。不要将显微镜长时间放置在高温、潮湿与积满灰尘的场所,否则镜头上会结雾或发霉,积聚灰尘等,从而损坏显微镜,缩短其使用寿命。

| 9) 安装灯泡

注意 请不要用手指直接触摸灯泡的玻璃表面。安装灯泡时请戴上手套或用棉质料包 裹灯体后再进行安装。

- ※ .擦拭灯体表面污渍,可用干净的棉质布料蘸上酒精擦拭。如不擦拭干净则会蚀刻在灯 泡表面,使其亮度减弱,寿命降低。
- ※.安装灯泡时要小心,防止灯泡滑落或伤害手指。
- ※.更换灯泡时,请确认灯泡的触点是否完好。如果触点被损坏,灯泡可能不亮或短路。※.更换灯泡时,将灯脚尽可能深地插进灯座内。如果灯脚松了,灯泡可能熄灭或接触不

良。

10) 仪器搬运

注意 本显微镜是精密光学仪器且重量较重,搬运时小心谨慎,严禁强烈撞击和野蛮 操作,否则会造成仪器损坏。

11) 环境保护

▲ → 请将显微镜包装与使用过程中产生的废弃物,如纸箱、泡沫,塑胶、灯光、电池等 分类后妥善处理,保护环境!

5 常见故障与排除

序号	故障现象	原因分析	排除方法	备注
1	测量不准确	校准不准确	重新校准	
2	光源不亮	灯泡没电或灯泡损坏	及时充电或更换灯泡	

表 3 常见故障分析与排除

6 维护保养

无。

7. 设备计量

依据 GJB5109-2004《装备计量保障通用要求-检测和校准》,可使用市场通用标准计量器

具进行检定,无需另行开发专用计量设备,随设备配套相应检定规程。

镜头	工作距离	视野 µm	景 深	最小间隙	Z轴测量精	XY 轴测量精	电子倍率
	ст		μm	μm	度μm	度 μm	Х
5X	4	1500*820	924	0.363	±8	±7	250
10X	3.5	730*410	323	0.091	± 2	±1	500
20X	1.8	369*207	61.1	0.024	±0.5	± 0.25	1000

校准以及扫描经验分享:

校准 5X 物镜用 1 和 1.8 高度块组合,相差 0.8cm 也就是 800 µm,自定义扫描更加精准。 校准 10X 物镜也可以用 1 和 1.04 高度组合,相差 40 µm,440X 镜头已经适应自动扫描。 校准 20x 物镜,用 1 和 1.04 高度组合,相差 40 µm,适应自动扫描。

7.1 检定周期

12个月。

7.2 检定项目

名称				
Z 轴精度测量				
图像获取处理技巧				
三维测量				

7.3 检定条件

1) 环境温度: 5° C[~]35° C。

2) 相对湿度: 20%~80%。

7.4 检定方法

7.4.1 Z 轴重复定位精度检测

Z 轴重复定位精度的检测是评估 3D 测量显微镜性能的重要指标之一。这种检测通常涉及 对显微镜 Z 轴的重复定位能力进行量化,以确保在多次操作中,显微镜能够准确地返回到同一 位置。例如,通过使用精密电控平移台进行测试,可以测量平移台的分辨率和重复定位精度, 从而评估 3D 测量显微镜在 Z 轴方向上的精确度和稳定性。

7.4.2 正确的图像获取和处理技巧

图像获取和处理技巧则是另一个关键方面,它涉及到正确的样本准备、观察与聚焦方法, 以及图像获取时的稳定性保持。正确的操作指南包括开机的校准过程、样本的放置和清洁、选 择合适的观察模式、调整焦距和光源强度以达到最佳观察效果、实时捕获和存储图像,以及使 用完毕后对设备的清洁和维护。

7.4.3 三维测量技术进行高精度测量

3D 测量显微镜还利用条纹投影轮廓测量术原理进行三维表面的测量。这种方法通过投影 正弦条纹到物体表面,并记录由于物体表面高度差异导致的条纹形变,通过相移算法和去包裹 算法处理获取物体表面的三维信息,实现精确的三维测量。

附录 A 3D-Z10 显微镜外型尺寸图

附录 B 3D-Z10 手持形状扫描 3D 测量显微镜工作原理图

