

OMT-KISS

用户说明书

西安米索软件有限公司

	瓶子	1
_`		1
`	OMI 彰像测重软件 VI.U 运行环境	1
	2.1)	1
	2.2)软件环境	1
三.	硬件配置	2
	3.1) 机器配置界面	2
	3.2)运动配置界面	
	3.3)补偿界面	
四、	OMT 影像测量软件 V1.0 功能介绍	4
	4.1) 启动软件	
	4.2) 引导操作说明介绍	6
	4.3)详细操作说明介绍······	
	4.3.1)回零 <mark>众</mark>	11
	4.3.2)操纵杆使能 <mark>嗲</mark>	11
	4.3.3〕选择像素 ┠	12
	4.3.4)停止运动 🔮	12
	4.3.5) 基本设置 💁	12
	4.3.6)元素显示设置 <mark>国</mark>	14
	4.3.7)测量设置 3	15
	4.3.8)影像窗口设置	16
	4.3.9)设置操作	
	4.3.9.1) CCD 参数设置	
	4.3.9.2)像素校正	18
	4.3.9.3)自动像素校正	19
	4.3.9.4)变倍修正	20
	4.3.9.5)镜头设置	21
	4.3.9.6)灯光设置	23
	4.3.9.7)两圆距离	23
	4.3.9.8)圆线距离	24

目录

4.3.9.9)圆点距离
4.3.9.10)两线距离
4.3.9.11)停止窗口25
4.3.9.12)关于 OMT.KISS 25
4.3.10) 数据操作
4.3.10.1) 输出 Excel 配置
4.3.10.2) 输出 Excel 模板配置
4.3.11) 灯光控制
4.3.12) 基本几何元素
4.3.13)多种采点模式
4.3.14)运行程序
4.3.15)多种建坐标方式
4.3.16)多种相关计算方法
4.3.17)图形操纵
4.3.18) 元素操作
4.3.18.1) 评定输出
4.3.18.2)修改灯光
4.3.18.3) 垂直度评定
4.3.18.4) 平行度评定
4.3.18.5)倾斜度评定43
4.3.18.6) 对称度评定
4.3.18.7)运动到元素
4.3.18.8) 再现元素
4.3.18.9)清除
4.3.18.10)删除
4.3.18.11) 插入
4.3.18.12〕调试
4.3.18.13) 增加提示信息 44
4.3.18.14〕增加等待时间45
4.3.19)运动控制
4.3.20)功能操作
4.3.20.1)当前位置做点

4.3.20.2)当前位置做测点47	4.3.20.2)
4.3.20.3)确定空间轴	4.3.20.3)
4.3.20.4)坐标系平移	4.3.20.4)
4.3.20.5)坐标系旋转	4.3.20.5)
4.3.20.6)调出坐标系	4.3.20.6)
4.3.20.7)保存坐标系	4.3.20.7)
4.3.20.8)增加安全路径48	4.3.20.8)
4.3.20.9)手动测量模式49	4.3.20.9)
4.3.21) 工作区	4.3.21)工作区
4.3.22)文件操作	4.3.22) 文件接
4.3.22.1) 打开影像	4.3.22.1)
4.3.22.2)关闭影像	4.3.22.2)
4.3.22.3)保存影像	4.3.22.3)
4.3.22.4)导入	4.3.22.4)
4.3.22.5)导出	4.3.22.5)
4.3.22.6)退出	4.3.22.6)
玥	说明

五、其它

一、概述

影像测量软件是配套影像测量仪,采用非接触的光学测量方法, 提供多种采点方式,用户可以方便的测量各种工件的几何尺寸,如长 度、高度、深度、 轮廓、表面形状、角度和位置等。

二、OMT影像测量软件 V1.0 运行环境

2.1)硬件环境:

应用 CCD、测量机床、控制器、Core5、2G RAM、500M 磁盘空间、 1024x960 显示器。

2.2) 软件环境:

Windows 7/ Windows 10.

三. 硬件配置:

3.1) 机器配置界面:

中3	ζ	•		备份参	燅	」「恢复参数」
密码			1	身份點	à证	修改密码
硬	件 卡类型			C-UWC4	юоо	•
	图像卡			I-Vir		•
分	辦室					
ĸ	1	Y	1		z	1
NX	1	NY	1		NZ	1
ΧY	0	XZ	0		YZ	0.008

对影像测量仪硬件及参数进行设置,如控制器类型、分辨率、图像卡类型等进行设置;同时可以将设置参数进行备份或恢复,已及用户操作该界面时的密码进行修改等功能。

3.2)运动配置界面:

运动最	大速度				
速度	30	加速度	60	减速度	2
操纵科	F最大速度和	访问			
速度	20	加速度	0	减速度	0
	◎ X+	۲	Y+	🧿 Z-	F
	🔘 X-	O	γ -	🔘 Z-	
回零速	度和方向				
速度	10	1			
		۲	Y+	🧿 Z-	÷
	🔘 X-	0	Y-	⊚ z-	

对机器用的默认参数及可以由用户设置的运动参数的最大值等 进行设置,包括运动方向回零参数设置。 3.3) 补偿界面:

机器类型	YUP-XDN -	机器常数
项目	▼ 位置	修正值
位置 0		
修正 0		
添加		
保存项		
删除位	置	
清除所有	位置	

对机器进行修正数据的录入和操作。

四、OMT影像测量软件 V1.0 功能介绍

(是按软件安装完成后首次使用操作流程顺序介绍,操作流程不 唯一)

4.1) 启动软件:

Win10 (C:) > Program Files (x86) > OMT > Omt-Kiss 找到类型为应用程序文件

G OMT-Kiss 2018.9.29 03:47 应用程序 1,900 KB

双击启动。

介绍软件操作的主要功能:

4.2) 引导操作说明介绍

6

4.3)详细操作说明介绍

4.3.1)回零🙆:

机器回零	×
● 所有轴	回零
◯×轴	停止
⊖⋎轴	
OZ轴	退出

可以进行全部回零或指定轴向回零;回零程序未执行完毕不可退出对话框,点击"停止"才可退出。

4.3.2) 操纵杆使能 经: 用遥感或手柄控制机器。

4.3.3)选择像素 🔢:

素信息	
44	── ── 空倍提示
X 1.0000, Y 1.0000	

选择当前镜头像素校正值;如选择☑变倍提示当镜头变倍软件会有 提醒,"确定"保存更改,"取消"放弃更改。

4.3.4)停止运动 : 停止机器当前测量运动。

4.3.5) 基本设置 4.3.5)

坐标系 ● 直角	〇极角	显示位数 理论 0.0	001 ~
Space	~	角度 ● 十进制	〇六十制
默认路径	-		10
工程路径	m_sSolu	uPath	>>
图形路径	m_sCad	Path	>>

对当前工件测量环境进行设置,"坐标系"可选择"直角"/"极 角"两种类型。直角坐标系:此坐标系由三个相互垂直的线性轴(如 X轴、Y轴、Z轴)构成;极(圆柱)坐标系:此坐标系由两个线性轴 (H轴和 R轴)和一个旋转轴(A轴)构成,其中的一个线性轴(H 轴)垂直于另外两个轴(R轴及 A轴)构成的平面。

投影面还可选择^{YY-Plane} Z-Plane 四种方式。投影面:将测量点投影 到选择的平面上,再生成测量结果。选择"Space"不进行投影;选 择 XY-Plane、XZ-Plane 或 YZ-Plane,将测点投影到当前坐标系的对 应坐标平面。

"角度"可选择十进制/六十进制。角度单位:角度的表达分十进制和六十进制。选择十进制时,单位为度且以十进制表示;选择六十进制时,则以度、分、秒的形式表示。

点击 >> 可更改默认"工程路径"和默认"图形路径",选择 路径位置点击确定如下图:

▼ 📃 此电脑	^
> 👆 下载	
> 🛆 WPS网盘	
> 🔜 桌面	
> 🧊 3D 对象	- 1
> 🔮 文档	
> 👌 音乐	
> 📑 视频	
> 📰 图片	
> 🏪 Win10 (C:)	
> 🕳 应用 (D:)	
> 🔜 下载 (E:)	
> 📥 个人和娱乐 (F:)	~

返回到"基本设置""确定"保存更改,"取消"放弃更改。

4.3.6) 元素显示设置 💷:

对各种元素显示项进行设置,以"直线"为例,当前直线显示项

4.3.7) 测量设置 🔜:

对测量方式中测点数、滤波参数、显示参数等进行设置。

		则里窗口	□手动阈值
则点数	3	搜索范围	40
边沿点数	10	显示百	10
緊焦速度	0.2	聚焦范围	1

手动阈值:黑白分界值,可选手动调节阈值。

搜索范围:设置测量方式自动搜索测点的测量框大小。

边沿点数:点集与曲线框测量时,轮廓点数小于所设边缘点数,则系统辨识为不是轮廓,不进行采点计算。

聚焦范围:设置自动聚焦过程中的采点范围,在当前测头位置正

负一个聚焦范围内搜索最清楚图像。

显示百分比:设置聚焦测量框的大小。也可通过滚动鼠标中键改 变其大小。

4.3.8) 影像窗口设置 .:

颜色	
元素	— ~
字体	
图形	— ~
十字线	
□显示	□虚线
颜色	• ~
双刻线	0
确定	取消

双刻线:设置测量方式"瞄准点测量 "双刻线的间距。

4.3.9) 设置操作:

点击设置设置操作:

CCD 参数设置[F7]... 像素校正[F8]... 自动像素校正... 变倍修正... 镜头设置... 灯光设置... 两圆距离... 圆线距离... 圆点距离... 两线距离... 停止窗口.... 关于 OMT.KISS...

4.3.9.1) CCD 参数设置:点击 "CCD 参数设置"或按 F7 对 CCD 亮度、 对比度等进行设置。

4.3.9.2) 像素校正:对非接触测头当前使用的倍率进行校正。

象素校正一				
象素名称	44	~	添加	
×	1	Y	1	删除
校正				
×	1	Y	1	保存
	校正X		校正Y	
[Hunter	-		退中

在测量之前点击"像素校正"或按F8,对使用的倍率要进行校正,否则测量数据无效。

像素名称:选择要校正保存的像素名称。

校正 X/Y: 进行校正。(如未校正过则默认值为1)

保存:保存校正值。

删除:删除像素名称文件。

取消:取消校正。

退出:退出界面。

4.3.9.3) 自动像素校正:对已添加的自动变焦镜头的镜头文件进行 X\Y\Z 补偿,即不同倍率偏心量补偿及 Z 焦距补偿。

□全选	□手	□ 手动校正		
文件 □ 44	X补偿	科偿	Z补偿	
-11:				

全选:选择所有的镜头文件。

手动校正:补偿 Z 或补偿 XY 可采用手动方式进行校正。

开始校正:设置好要校正的文件后,点击此按钮进行自动校正。

XY 校正:当选择此项时校正的是 X 和 Y 的补偿值,不勾选时校正的是 Z 的补偿值。

退出:退出界面。

4.3.9.4) 变倍修正:手动将列表中的文件校正一个后,其他镜头文件可选择自动图元校正,即得到其他镜头文件的校正结果。

×校正位置			添加
Y校正位置			添加
□全选			
文件 □ 44	×校正值	Y校正值	

X 校正位置:校正 X 方向时的校正位置。

Y校正位置:校正Y方向时的校正位置。

添加:添加 X 或 Y 方向校正时的校正位置。

全选:选择所有的校正文件。

开始:设置好校正文件后点击开始校正,进行自动校正。

退出:退出界面。

4.3.9.5)镜头设置:根据当前硬件所配置对应的镜头类型选择并点击。 面面 确定。

手动变焦如下图:

镜头设置			
 镜头类型	手动变焦	<u> </u>	应用
_	<u>手动受</u> 度 自动变焦P1 自动变焦P2 自动变焦N		_

自动变焦如下图:

铁设置			倍率文件格式	错误!	
镜头类型	<u>自动变焦P1</u> ~]	镜头类型	自动变焦N]
变焦配置		-	变焦配置		
COM	×	连接	USB	×	连接
最大位置	~	Reset	最大位置	~	Reset
目标位置	0	变倍	目标位置	0	变倍
文件名		添加	文件名		添加
步距	1	按步距添加	步距	1	按步距添加
文件	~	删除	文件	×	刪除
校正次数	1	清空	校正次数	1	清空
Zoom Co	mp 应用	退出	Zoom Co	mp 应用	退出

注意1:若是自动变焦选择类型后界面灰显请重新选择对应类型。

注意 2: 自动变焦 P1、自动变焦 P2 是串口连接,类型选择后选择 COM 口,点 连接,而自动变焦 N 是 USB 连接,选择类型后会自动连接,直到上边状态栏上显示连接成功才可进行下面的操作。

最大位置:是指此镜头对应的最小倍率到最大倍率的范围。

目标位置:可在目标位置范围内输入任意值,点击后面的"变倍", 让变焦镜头变到当前倍率下。也可点击"添加"手动添加此倍率的文件。

文件名: 倍率文件的名称, 可输入名称, 也可不输名称。

步距:自动添加倍率文件时的基数。

文件: 已添加的倍率文件。

Reset: 点击此按钮是让变焦镜头回到出初始位。

变倍: 输入倍率后, 可点击"变倍"使镜头变到当前倍率。

添加:手动添加倍率文件。

按步距添加:输入步距后自动添加倍率文件。

删除:删除已添加的倍率文件,选准要删除的文件,点删除即可。 但只有点了"应用"后才是彻底删除,不应用,界面再次打开还存在。

清空:清空所有的倍率文件。

Zoom Comp:测量时补偿 X\Y\Z 值。

4.3.9.6) 灯光设置:

灯光控制模式	
●数控	○手动
灯光类型 UWC	C Light V
◉ 顶光	〇环光
◉ 同轴光	
确定	取消

设置灯光控制模式及灯光类型,灯光控制模式分为 参数控或

● 手动支持灯光类型 UWC Light LC125A_3R8C UWC6045 UWC6163 。(具体操作请阅读 4.3.11) 灯光 控制章节 P28)

计算设置:

4.3.9.7)两圆距离:

	×
$\Theta\Theta$	0-0
$\Theta \Theta$	$\Theta \Theta$
	00

选择回默认即表示设置当前两圆距离测量方式为默认测量方式。

4.3.9.8) 圆线距离:

计算设定		×
□默认		
O-	Θ	$\bigcirc \dashv$

选择回默认即表示设置当前圆线距离测量方式为默认测量方式。

4.3.9.9)圆点距离:

计算设定		×
□默认		
·	\rightarrow	\leftarrow

选择回默认即表示设置当前圆点距离测量方式为默认测量方式。

4.3.9.10)两线距离:

×

选择回默认即表示设置当前两线距离测量方式为默认测量方式。

4.3.9.11)停止窗口:

止窗口	1	>
X:	0.003	设置
Y:	0.004	
Z:	0.005	退出

设置运动控制的停止窗口大小。

4.3.9.12)关于 OMT.KISS:

4.3.10) 数据操作:

点击 数据:

输出Excel配置… 输出Excel模版配置… 4.3.10.1) 输出 Excel 配置:

输出设置					
颜色	合格		→ 超上差	● ~ 超下差	
使用颜色		钡	☑偏差	☑不合格	☑评定状态
评定标识符	合格	ОК	超上差UN	G 超下差	DNG
各项位置	ACT-2,N	DR-3,UPT-	4,DNT-5,DEV-6,OER	-7,EVI-8	复位

如上图所示为例:在表中"合格"数据用白色填充;"超上差" 超出合格范围上限用红色填充;"超下差"超出合格范围下限用黄色 填充,"使用颜色"表示在表中指定数据使用颜色填充,"评定标识 符"在表中评定结果栏"合格"用 OK 标识;"超上差"用 UNG 标识; "超下差"用 DNG 标识,"各项位置"通过调整数字改变表格中的位 置和顺序点击"复位"恢复到各项的默认状态。

4.3.10.2)	输出 Excel	模板配置:
-----------	----------	-------

Excel输出	C:\Users\p\De	sktop\ffdd.xls		•••
标题行号 4	理论值行号	3 上公差行号	3 下公差行号	2
测量数据	-			
开始行号 1	开始列号	1		
□使用	颜色	超上差	■ ~ 超下差	
☑模版输出	C:\Users\p\De	sktop\temp.xls		•••
☑ 输入工件信息	列号	1 开始行号	1	
提示	Part nom			

Excel输出: 在程序运行中是否实时输出数据存放到指定位置。

标题行号	4 理论值行号	3 上公差行号	3 下公差行号	2
测量数据				
开始行号	1 开始列号	1		
	□使用颜色	超上差	📕 🗸 超下差	

输出表格的样式调整。

📃 模版输出:	是否使用	模板,	模板的存放	<u>故</u> 位置	⊒ L∘	
☑输入工件信息	列号	1	开始行号	1	:	在表格中是否显

示工件信息和在表格中显示的位置。

提示	Part nom	:	用户自行添
加提示信息。			

4.3.11) 灯光控制:

选择不同灯光类型灯光控制界面不同

鼠标左右拖动蓝色方块实现底光、顶光、环光亮度控制,范围 0-200;

点击 🖯 都亮, 点击中心全灭, 如上图:

点击 😌 扇形光,指定区亮或灭,点击中心全灭,如上图:

点击 任意光,指定块亮或灭,点击中心全灭,如上图:

左右拖动蓝色方块 — 200 调节底光 LED 冷光源 亮度,范围 0-200;

4.3.12) 基本几何元素:

通过测点可以计算的几何元素有:

4.3.13) 多种采点模式:

学动和八颜点坐林 X/1/2 点击 和八元成, 选择坐林前的 复选框点击 删除 删除相应坐标, 点击 **那** 清除所有手动输入 的坐标点, 点击 打开 打开已有的坐标点, 点击 **确** 使用当前 手动输入的测点并退出, 点击 **取** 放弃当前手动输入的测点并退 出。

采点具体操作:

点击 【 边界点测量: 以测圆元素为例, 如下图:

在圆外左击长按拖动鼠标经过圆到另一端后拉矩形框,红色箭头 代表鼠标移动的轨迹和方向,绿色箭头代表当前鼠标移动方向(绿色 箭头方向向元素外),框内右击显示采点(红色十字是当前采的点) 框内二次右击确认采点圆元素建立,框外右击直接确认采点圆元素建 立,框内左击长按拖动鼠标可以移动绿色矩形框,框外左击取消采点。

点击 📗 直线点测量: 以测线元素为例,如下图:

在矩形上左击长按拖动鼠标经过矩形一条边界拉框(只可与一条 边界接触),绿色箭头代表当前鼠标移动方向,框内右击显示采点(红 色十字是当前采的点)框内二次右击确认采点线元素建立,框外右击 直接确认采点线元素建立,框内左击长按拖动鼠标可以移动绿色矩形 框,框外左击取消采点。

点击 🔼 框测点测量: 以测圆元素为例,如下图:

左击长按鼠标拉矩形框,将圆全部框起,松开左键,框内/外右 击确认采点圆元素建立,红色十字代表圆点,框内左击长按拖动鼠标 可以移动绿色矩形框,框外左击取消采点。

左击鼠标拖动直线到适当位置再次左击直线变曲线,曲线不可与 圆接触,到适当位置再次左击,鼠标向圆外侧拖动,直到小圆弧完全 位于圆内再次左击,框内右击显示采点(红色十字是当前在圆上采的 点)框内二次右击确认采点圆元素建立,框外右击直接确认采点圆元

点击 🔿 扇形点测量: 以测圆元素为例, 如下图:

素建立,框内左击长按拖动鼠标可以移动绿色框,框外左击取消采点。 (绿色箭头方向向元素外)

点击 ◎ 圆环点测量: 以测圆元素为例, 如下图:

左击长按鼠标拖动绿色圈到合适大小刚好将圆圈起松开左键,向 内滑动鼠标将小绿色圈刚至于圆内再次左击,圈内右击显示采点(红 色十字是当前在圆上采的点)圈内二次右击确认采点圆元素建立,圈 外右击直接确认采点圆元素建立,圈内左击长按拖动鼠标可以移动绿 色圈,圈外左击取消采点。(绿色箭头方向向元素外)

点击 ▽ 聚焦点测量: 以测线元素为例, 如下图:

左击影像内直线绿色方框出现,框内右击开始聚焦,聚焦过程中 聚焦框中的图像不断变换,直到图像清晰。(左击指定位置绿色框出 现在指定位置)

点击 ♥ 最近点测量: 以测圆元素为例,如下图:

滑动鼠标到圆边界处红色十字自动吸附于边界上左击打点点为 绿色十字(建圆至少3个点)右击确认,圆元素建立。

点击 • 瞄准点测量: 以测圆元素为例,如下图:

左击打点(建圆至少3个点)右击确认,圆元素建立。

点击 🔼 极值测量: 以测圆元素为例,如下图:

前三个拉框步骤同上,即可建立圆元素,在前两个拉框步骤时不可在框外直接右击确认否则提示"点数太少!"(建圆至少3个点)如下图:

4.3.14)运行程序:

程序窗口:

直线-0 直线-1 圆-0 圆-1 距离-0 圆-0 圆-1	开始→0 参数→0 直线→0 直线→1 → 两线建坐标→0(直线 → 平面旋转→1(直线→1) ◎ 圆→0 ◎ 圆→1 ↦→ 距离→0(圆→0, 圆→1)

状态窗口:

0K 📑 🏹 😽

评定状态 **○**K: 点击评定状态查看 **○**K 测量元素 **№** 测量元素;

数据输出 ➡: 以 Excel 表格的形式输出数据;

数据刷新 💁: 实时刷新测量元素数据;

过滤条件 **∞**: 点击过滤条件设置是否使用 NG 条件和设置数据 刷新的形式,如下图:

NG 条件		[]
☑ 使用NG条件	超差范围	0
24 def		
利新		
 全部 	○ 到当前行	○ 当前行之后

选择 2 使用NG条件"超差范围"变为可编辑状态输入参数,"刷新" 分为三种:"全部"刷新所有已测量元素状态;"到当前行"从第一 个元素刷新到选中元素为止;"当前行之后"从选中元素往后刷新; 点击 确定 确认设置并退出;点击 取消 放弃设置并退出。

4.3.15) 多种建坐标方式:

两点确定 Y 轴 **1** 选择两个点性元素确定为 Y 轴, Y 轴正向 是确定第一个元素指向第二个元素。

点线建立坐标系 📑 : 点确定原点,直线确定平面轴方向。

两线建立坐标系 4: 两线交点确定为原点, 第一条线的方向为

平面轴的方向。

4.3.16)多种相关计算方法:

对几何元素可以进行相关计算:

			A E ÷ ÷ Q C A B O I A
	组合元素	0:	选择若干元素组合为一个元素。
	相交计算	+:	计算相交元素。
	对称	=	选择两个类似元素,计算对称元素。
	镜像	·	选择两个元素求镜像元素,第二个被选元素必
须是	轴性元素。		
	投影点	<u> </u>	计算点到线的投影点(垂足点)。
	切点	Q:	计算线圆切点。
	平行线	-	由一个点和一条线构造平行线。
	垂线	1:	由一个点和一条线构造垂线。
	角平分线	<:	计算两线的角平分线。
	两线公切圆	</td <td>计算两交线的公切圆。</td>	计算两交线的公切圆。
	两圆公切线	200:	计算两圆的公切线。
	切圆	<u></u> .	有点和线构造切圆。
	元素距离		计算元素距离。
	角度	<.	计算两线角度。

4.3.17)图形操纵:对测量元素图形进行刷新、适中、平移、放 大、缩小、等操纵。

4.3.18) 元素操作:

右击元素:

评定输出.	•
垂直度…	
平行度	
倾斜度	
对称	
运动到元	素
再现元素	
清除	
删除	
插入	
调试	
增加提示(言息
增加等待明	时间

4.3.18.1) 评定输出:

S称	直线-1				输	出	统	ił
	0	0	0	修改	>>	<<	>>	<<
]线-1-SX : 0.]线-1-SY : 0.]线-1-SZ : 0.	0000, 0.0000, 0000, 0.0000, 0000, 0.0000,	0.0000 0.0000 0.0000		直线-1- 直线-1- 直线-1-	-SX -SY -SZ		
		保存				退出		

对元素的理论值、公差、输出项、统计项进行设置。

4.3.18.2) 修改灯光: 可根据单个元素进行灯光调整。

4.3.18.3) 垂直度评定:

直度				
公差名称	垂直度-0	被测元素	直线-1	
公差	0	基准元素		
	计算	评定值	0	
	应用		退出	

对线性元素进行垂直度评定。

4.3.18.4) 平行度评定:

公差名称	平行度-0	被测元素	直线-1
公差	0	基准元素	
	21747	评定值	0

对线性元素进行平行度评定。

4.3.18.5)倾斜度评定:

公差名称	倾斜度-0	被测元素	直线-1
公差	0	基准元素	
角度	0		
	计算	评定值	0

对线性元素进行倾斜度评定。

4.3.18.6) 对称度评定:

公差名称	对称度-0	基准元素	直线-1
公差	0	被测元素	
		被测元素 2	
	计算	评定值	0

对元素进行对称度评定。

4.3.18.7) 运动到元素:将机器运动到元素。

4.3.18.8) 再现元素:将程序前面坐标系中选定元素复制到后边的坐标系中。(只可将前边坐标系的元素复制到后边坐标系中)

4.3.18.9) 清除:删除所有元素。

4.3.18.10) 删除: 删除所选元素。

4.3.18.11) 插入: 所选元素下方加入下一个要建立的元素。

4.3.18.12) 调试:针对指定元素进行手动测量。

4.3.18.13) 增加提示信息: 右击程序选择"增加提示信息"如下图:

OMT.Kiss		×
添加提示信息		
		6
1.22	112	
72,	HT 234	

输入执行程序时所要提示的信息"确定"退出或"取消"放弃操作退出,添加成功如下图:

00 ++	▶ ⇒ ■ %
	始-0
■ 参	数-0
◎ 直线	线-0
◎ 直线	线-1
\$→两	线建坐标0(直线0,直线1)
今平	<u>面祚转—1(直</u> 线—1)
∞ 提注	示信息-2
0员	-0
〇 园-	-1
₩距	离-0(圆-0,圆-1)

执行程序时提示如下图:

Kiss	×
? 测两因的因心	距离
	不(N)

4.3.18.14) 增加等待时间:在程序运行中需要时间等待的步骤,可

OMT.Kiss		×
输入等待时间		_
10		
1	-	-
确定	取消	
		4

4.3.19)运动控制:

< x -	0.162	+ X >
< Y -	0.168	+ Y >
∧ Z +	0.000	- z ~
□高速	□绝对 □相对	A.
	0.001 ~	

实时显示当前位置 X、Y、Z 值;可以单轴移动各个轴向、对机器 进行相对或绝对移动;设置操纵杆参数,手操器高速、低速控制;显 示位数控制(精确程度)等。 在"绝对"运动和"相对"运动两种方式中选择一种运动方式。 若选择"绝对"运动,则输入当前坐标系下要移动目标点的坐标位置 及运动速度。若选择"相对"运动,则在 X、Y、Z 项内输入当前坐标 系下从当前点要移动到目标点的增量值及运动速度。

点击 🔊: 对操纵杆参数进行设置。

点击 [1]: 对运动参数进行设置。

速度	20
加 ————————————————————————————————————	20
减 ————————————————————————————————————	20

4.3.20) 功能操作:

点击 功能:

当前位置做点[F3] 当前位置做测点[F4] 确定空间轴 坐标系平移... 坐标系旋转... 调出坐标系[F5]... 保存坐标系[F6]... 增加安全路径[F2] 手动测量模式

4.3.20.1)当前位置做点:点击"当前位置做点"或按F3即在程序中生成点元素,得到的是当前CCD中心的坐标点。

4.3.20.2) 当前位置做测点:点击"当前位置做测点"或按 F4 即在程序中生成点元素,得到的是当前 CCD 中心的测点。

4.3.20.3) 确定空间轴:找正空间轴。

4.3.20.4) 坐标系平移:

元素	1		
□x 0	Y 0	□z	0

可以单独指定某个轴平移一定的距离。

4.3.20.5) 坐标系旋转:

轴	Z	~	
角度	0		-360~360

可以单独指定某个轴旋转一定的角度(-360~360)。

4.3.20.6)调出坐标系:

择			
名称	模板坐标系1		~
	模板坐标系1		
	确定 模板坐标条2	拟泪	_

点击"调出坐标系"或按F5打开下拉列表选择坐标系。

4.3.20.7)保存坐标系:

俞入坐标系名称		>
模板坐标系1		į,
-	TT NIC	Ť.

点击"保存坐标系"或按 F6 在程序中选择要保存的坐标系命名 后确定保存成功。

4.3.20.8) 增加安全路径:点击"增加安全路径"或按F2手动控制 机器走位程序中会添加一条安全路径,如下图:

▷ 开始-0	
■ 参数-0	
▶ 直线-0	
▶ 直线-1	
┗→ 两线建坐标0(直线0,直线1)	
┗ 平面旋转-1(直线-1)	
◎ 圆-0	
◎ 圆-1	
↔ 距离-0(圆-0,圆-1)	
• 点-0	
∞ 路径位置-1	

4.3.20.9) 手动测量模式:人工手动采点(优点:更精确,缺点:繁琐)

4.3.21) 工作区:

4.3.22) 文件操作:

点击 文件:

打开影像	
关闭影像	
保存影像	
导入	•
导出	•
退出	

4.3.22.1) 打开影像:打开影像窗口。

4.3.22.2) 关闭影像:关闭影像窗口。

4.3.22.3)保存影像:保存当前镜头下的影像为图片。

4.3.22.4) 导入: 导入 CAD Dxf 格式和 Dwg 格式。

4.3.22.5) 导出: 导出 CAD Dxf 格式和 Dwg 格式。

4.3.22.6) 退出:退出软件。

五、其它说明

1. 安装使用软件需要进行官方激活,联系米索软件厂商并获取激
 活文件,将其粘贴至软件安装目录下即可成功激活,盗版必究。

 2.首先是要查看零件图纸,了解测量的要求和方法,规划检测方 案或调出检测程序。 3. 建立正确的坐标系,保证所建的坐标系符合图纸的要求,才能 确保所测数据准确。

5. 如果发现异常情况,请首先记录软件提示的错误信息,电话通 知米索技术服务部。

6 检测完成后,将测量程序和程序运行参数等说明存档。

7. 计算机内不要安装任何与影像测量无关的软件,以保证系统的 可靠运行。

8. 实施测量过程中,操作人员要精力集中,首次运行程序时要注 意减速运行,确定编程无误后再使用正常速度。