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Abstract Wilson’s disease (WD) is a rare hereditary

disorder of copper metabolism. Some data suggest that

iron metabolism is disturbed in WD and this may

affect the course of the disease. The current study

aimed to determine whether anti-copper treatment

could affect iron metabolism in WD. One hundred

thirty-eight WD patients and 102 controls were

examined. Serum ceruloplasmin and copper were

measured by colorimetric enzyme assay or atomic

adsorption spectroscopy, respectively. Routine and

non-routine parameters of iron metabolism were

measured by standard laboratory methods or enzyme

immunoassay, respectively. WD patients, both newly

diagnosed and treated, had less serum copper and

ceruloplasmin than controls (90.0, 63.0, 22.0 mg/dL,

respectively, p\ 0.001); in the treated patients blood

copper and ceruloplasmin were lower than in

untreated patients (p\ 0.001). Untreated patients

(n = 39) had a higher median blood iron (126.0 vs

103.5 ug/dL, p\ 0.05), ferritin (158.9 vs 47.5 ng/mL,

p\ 0.001), hepcidin (32, 6 vs 12.1 ng/mL,

p\ 0.001) and sTfR (0.8 vs. 0.7 ug/mL, p\ 0.001)

and lower blood transferrin (2.4 vs. 2.7 g/L,

p\ 0.001), TIBC (303.0 vs 338.0 ug/dL,

p\ 0.001), hemoglobin (13.1 vs 13.9 g/dL,

p\ 0.01) and RBC (4.3 vs. 4.6, p\ 0.002) than

controls. Treated patients (n = 99) had a significantly

lower median iron (88.0 vs. 126.0 ug/dL, p\ 0.001),

ferritin (77.0 vs. 158.9 ng/mL, p\ 0.005) and hep-

cidin (16.7 vs. 32.6 ng/mL, p\ 001) and higher

transferrin (2.8 vs. 2.4 g/L, p\ 0.005), TIBC (336.0

vs 303.0 ug/dL, p\ 0.001), RBC (4.8 vs. 4.3 M/L,

p\ 0.001) and hemoglobin (14.4 vs. 13.1 g/dL,

p\ 0.001) than untreated; the median iron

(p\ 0.005) was lower, and ferritin (p\ 0.005),

RBC (p\ 0.005) and hepcidin (p\ 0.002) were

higher in them than in the control group. Changes in

copper metabolism are accompanied by changes in

iron metabolism in WD. Anti-copper treatment

improves but does not normalize iron metabolism.
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Introduction

Wilson’s Disease (WD) (Online Mendelian Inheri-

tance in Man [OMIM] Accession Number # 2779000,

also known as hepato-lenticular degeneration, is a rare

autosomal recessive disease that mainly manifests

with hepatic or neuropsychiatric symptoms. More than

500 mutations have been identified in the ATP7B gene

that cause intracellular copper transporter ATP-ase 7B

(ATP7B) [OMIM * 606882] dysfunction leading to

the accumulation of copper mainly in the liver and

brain, but also in other organs such as the kidney and

brain. In most cases the first symptoms of WD appear

in childhood, but sometimes they can appear later even

after the age of 60 (Mulligan and Bronstein 2020; Ala

et al. 2007; Roberts and Schilsky 2008; Terada et al.

1998; Merle et al. 2007).

Copper and iron metabolism cross over different

metabolic pathways. Therefore, clinical symptoms in

patients with Wilson’s disease can be expected to be

due to impaired copper as well as iron metabolism.

This may be a consequence of the reduced production

and activity of ceruloplasmin, an iron oxidase. Accu-

mulation of copper and iron in the liver was observed

in the experimental WD model (Chandarana et al.

2009; Koizumi et al. 1998; Huster et al. 2006; Park

et al. 2006). Several human studies have also

suggested that in WD iron metabolism may be

impaired, and iron accumulation in the liver and/or

brain tissue may worsen the clinical course of the

disease (Litwin et al. 2013; Pfeiffenberger et al. 2011;

Medici and Weiss 2017; Dusek et al. 2017).

Copper-iron interaction in WD should be clarified

to better understand disease patomechanism and

improve patient treatment. This study is the first that

analyzes many parameters of iron metabolism in a

relatively large population of patients with Wilson’s

disease and compares the value of these parameters

between untreated patients undergoing decoppering

treatment as well as healthy controls.

Patients and methods

A total of 138 patients with WD, including 39

previously untreated (newly diagnosed with WD)

and 99 treated at the Institute of Psychiatry and

Neurology in Warsaw, Poland. All patients met WD 8

diagnostic criteria. International Conference Wilson’s

disease and Menkes’ disease (Ferenci et al. 2003). The

median duration of treatment in the treated group was

48.5 months (IQR 47.0; range 6–168). Diagnosis of

WD was based on the assessment of clinical symptoms

(Gromadzka and Czlonkowska 2011; Gromadzka

et al. 2011, 2015), abnormal copper metabolism

(decreased serum ceruloplasmin (Cp) and serum

copper, increased 24-h copper excretion in urine),

presence of the Kayser–Fleischer ring and genetic test.

In the case of an uncertain diagnosis, the inclusion of

Cu64 in ceruloplasmin was measured after 24 and

48 h. All laboratory tests for copper metabolism were

performed in the same laboratory using the same

standardized methods. The DNA analysis for the three

most frequent mutations of ATP7B detected in the

Polish population was performed using polymerase

chain reaction—restriction fragments length polymor-

phism method (PCR–RFLP) or—if this method did

not confirm the presence of two pathogenic ATP7B

mutations—the DNA sequencing was performed, as

previously described (Gromadzka et al. 2005, 2011).

Such diagnostic strategy allowed to obtain following

results: 70 WD patients (50.7%) were homozygous for

the c. 3207C[A [p.H1069Q] mutation, 51 (36.9%)

had the c. 3207C[A [p.H1069Q] mutation in one

allele and other rare mutation in the second one, and 17

subjects (12.3%) had rare mutations in both ATP7B

alleles. According to the manner in which the disease

was manifested, patients were grouped as hepatic or

neuropsychiatric. Patients were classified as hepatic

when they showed symptoms of chronic or acute liver

disease (increased liver enzymes with increased

bilirubin in the blood and abnormal INR and/or

changes in liver echogenicity; signs of portal hyper-

tension, decompensated liver cirrhosis or acute liver

failure) without neuropsychiatric symptoms. Patients

were classified as neuropsychiatric when liver disease

was accompanied by neurological symptoms such as

tremor, dystonia, ataxia, dysarthria, stiffness or mental

symptoms, including behavioral disorders, depression,

manic psychosis, or cognitive impairment. Several

patients were diagnosed as presymptomatic (they were

identified thanks to family studies of index cases).

The control group consisted of 102 healthy volun-

teers with an average age of 35.6 ± 10.5 years who

had no family history of WD, diagnosed liver disease,

neurological or psychiatric disease, chronic inflam-

matory disease or infectious disease. Control people

were recruited from hospital staff and their families.
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The three most common ATP7B mutations in the

Polish population were absent in these individuals, as

documented by DNA sequence analysis using the

methods previously described (Gromadzka et al.

2011). Detailed criteria for inclusion and exclusion

in the study group are presented in Table 1Blood

samples were taken prospectively from all subjects for

laboratory analysis. Biological material was collected

as separate portions for use in individual measure-

ments to avoid repeated freezing and thawing cycles.

Samples were stored at - 70 �C. Samples were used

for testing immediately after thawing. All study

participants gave written informed consent to partic-

ipate in this study. The study protocol was approved by

the local Ethics Committee and was conducted in

accordance with the Code of Ethics of the World

Medical Association (Helsinki Declaration) for human

experiments.

Serum ceruloplasmin was measured by an enzy-

matic colorimetric assay as described earlier (Ravin

1961). Serum copper was determined by atomic

adsorption spectroscopy using a Shimadzu AA660

instrument.

Routine iron metabolism parameters such as fer-

ritin, transferrin, total iron binding capacity (TIBC),

red blood cells (RBC) and hemoglobin (HGB) were

measured by standard laboratory methods.

Hepcidin, lactoferrin and soluble transferrin recep-

tor were measured using ELISA kits. Serum lactofer-

rin was evaluated using the Human Lactoferrin ELISA

Test Kit (catalogue number EL20111-1; Test Pro)

with a test range of 0.625–40,000.0 ng/mL. Serum

hepcidin level (Hepc) was tested using a hepcidin-

associated immunosorbent assay kit (cat. No.

SEB979Hu; Cloud Clone Corporation) with a test

range of 62.5–4000.0 pg/mL. Serum soluble transfer-

rin receptor (sTfR) was tested using a sandwich

enzyme-assay (cat. No. RD194011100; BioVendor;)

with a test range of 0.4–2.0 lg/mL.

Statistical analysis

The normality of the analysed continuous variables

was determined by Kolmogorov–Smirnov and Lil-

liefors tests. Data are presented as the mean and

standard deviation if they were normally distributed,

or as the median and interquartile range if the variables

were not normally distributed. Student’s t test was

used to compare two groups of normally distributed

data. The Mann–Whitney U test was used to compare

variables that were not normally distributed. Qualita-

tive data is defined as percentage ratios. Comparisons

between groups were performed using a Chi square

test with Yates correction, if applicable, or Fisher’s

exact test, when the Chi square test hypothesis was not

met. Significance was set at p\ 0.05. All statistical

analyses were performed using the STATISTICA 10.0

software (StatSoft PL, Krakow, Poland).

Table 1 Inclusion and exclusion criteria for the study

Patients with WD Control group

Inclusion

criteria

Established WD diagnosis

Age over 18 years

Written consent to participate in the study

Absence of any disease

Age over 18 years

Written consent to participate in the study

Exclusion

criteria

Prevalence of systemic diseases: cancer, current infection,

hepatitis virus infection

History of blood transfusion performed up to a month before

qualifying for the study

History of iron supplementation up to a year before qualifying

for the study

Alcohol abuse

Lack of consent to participate in the study

Prevalence of systemic diseases: cancer, current

infection, hepatitis virus infection

History of blood transfusion performed up to a

month before study

History of iron supplementation up to a year before

qualifying for the study

Alcohol abuse

Lack of consent to participate in the study

Occurrence of phenotypic traits of WD

The presence of the ATP7B mutation
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Results

Patient baseline characteristics, including age, type of

WD manifestation, presence of the Kayser-Fleisher

ring (KF) and copper metabolism parameters are

shown in Table 1. The average age of WD patients

was 36.7 9 11.3 years, which was similar to the age

of control (33.5 vs. 5.9 years, p\ 0.09). The two

groups were similar in terms of gender distribution

(chi2 0.003, df 1, p\ 0.95). Patients included in the

untreated and treated groups did not differ in age and

sex (Table 2). WD patients, both untreated and

receiving therapy, had significantly lower serum

copper (63.0 vs 22.0 vs 90.0 lg/dL, p\ 0.001) and

ceruloplasmin than controls (15.3 vs 5.4 vs 31.8 mg/

dL, p\ 0.001, Table 3). The blood concentration of

copper and ceruloplasmin in treated patients were

lower than in untreated patients, as shown in Table 3.

Untreated patients had statistically significant

higher concentration of ferritin than patients on

treatment (158.9 vs 77.0 ng/mL, p\ 0.005). Patients

form both groups however had higher ferritin concen-

tration than controls 47,5 ng/mL, p\ 0.005, Table 4).

Iron concentration was noteworthy lower in treated

patients than in treatment naive (88.0 vs 126.0 ug/dL,

p\ 0.001, Table 4). Treated patients presented lower

iron values than controls (88.0 vs 103.5 lg/dL

p\ 0.002). Hepcidin concentration was highest in

untreated patients, lower in treated group (32.6 vs

16.7 ng/mL, p\ 0.001) and lowest in controls

(12.1 ng/mL, p\ 0.001). Red blood cells count and

haemoglobin concentration were highest in patients on

treatment, lower in controls (RBC 4.6 vs 4.8 M/L

p\ 0.005, hemoglobin 13.9 vs 14,4 g/dL p\ 0.064)

and lowest in patients without treatment (RBC 4.3 M/

L, hemoglobin 13.1 g/dL). Lactoferrin concentration

did not differ significantly between study groups.

Transferrin concentration was higher in treated

patients than untreated (2.8 vs 2.4 g/L, p\ 0.005), it

was also higher in controls than in untreated group

(2.75 vs 2.4 g/L p\ 0.001), meanwhile soluble

transferrin receptor concentration was lower in con-

trols than in the group of untreated patients (0.7 vs 0.8,

p\ 0.001). The two groups of patients did not differ

in term of sTfR concentration (Table 4). Total iron

binding capacity was highest in controls, significantly

lower in untreated WD population (338.0 vs 303.0

p\ 0.001), with notably difference between treated

group and untreated group (336.0 vs 303.0,

p\ 0.001, Table 4).

Table 2 Clinical and laboratory characteristics of studied population

Characteristics Controls Untreated patients Patients on treatment p

Number of persons (n) 102 39 99 –

Age at onset of WD (median (IQR)) 31.0 (8.0) 34.5 (18.5) 33.0 (14.0) (a)\ 0.07

(b)\ 0.18

(c)\ 0.84

Sex. female/male (n (%)) 51/51 (50/0) 23/16 (59/41) 41/58 (41/59) (a)\ 0.34

(b)\ 0.22

(c)\ 0.06

Patients treated with D-penicylamine/zinc sulphate (n (%)) – – 50/49 (50.5/49.5) –

Time of treatment, months (median (IQR)) – – 54.5 (58.0) –

Clinical phenotype of WD (n (%)) –

Hepatic 11 (34.4) 25 (25.2) \ 0.58

Neuropsychiatric 18 (56.2) 65 (65.7)

Presymptomatic 3 (9.4) 9 (9.1)

No data 7 –

IQR interquartile range, SD standard deviation

*p values for the comparison between untreated and treated patients with WD
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Discussion

The presented results showed that iron metabolism is

disturbed in WD. We document that both newly

diagnosed and treated patients present iron metabo-

lism abnormalities that were more apparent in the

untreated group. Before start of treatment, patients

with WD had higher concentration of iron, ferritin and

hepcidin, and lower blood transferrin, TIBC, HGB,

and RBC than controls. In our opinion, most of these

abnormalities may results from hepatitis (Morgan and

Philip 2002). Inflammation is associated with changes

in the synthesis of so-called acute phase proteins

(APP), whose production increases (positive APP) or

decreases (negative APP) during inflammation. Fer-

ritin and hepcidin belong to the positive APP group,

the production of which increases, while transferrin

represents negative APP, the concentration of which

decreases in inflammation. Since circulating iron is

bound mainly to transferrin, the TIBC value is an

indirect measure of the concentration of this protein .

In our view, lower than in the control group, red

blood cell counts and hemoglobin levels in untreated

patients may be due to copper toxicity. An excess of

free copper in the blood can stimulate the production

of reactive oxygen species, oxidation of red blood

cells, and finally impaired function and shortened

survival (Ward et al. 2014; Morris et al. 1995; Harris

et al. 1998).

There was no difference in blood lactoferrin

between untreated patients and the control group.

This was an unexpected result because the

concentration of this protein increases during exces-

sive iron intake as well as inflammation. However, as

Brock suggests, excess lactoferrin is removed very

quickly from the blood (24–48 h) by macrophages and

monocytes, and then the iron associated with lacto-

ferrin is converted to ferritin (Adlerova et al. 2008;

Brock 2002).

We observed that transferrin, hemoglobin, TIBC,

lactoferrin and sTfR normalized on WD treatment.

The hepcidin and ferritin remained elevated, but both

were lower in the treatment group than in the untreated

group. The reduction of ferritin and hepcidin and the

increase in TIBC in treated patients may be interpreted

as a marker of resolution of hepatitis due to decop-

pering treatment. Lower hepcidin concentration in

treated patients than in untreated may also be associ-

ated with normalization of iron metabolism resulting

from decoppering treatment and therefore—a mech-

anism to prevent iron overload including hepcidin

activity, may no longer needed. Unexpectedly treated

patients had higher red blood cell counts and lower

iron levels than control and untreated patients. This

may be due to greater erythropoietic activity or

other—yet undiscovered—mechanisms.

We have not presented results of copper and iron

status according to phenotype. In both clinical pheno-

type of the disease i.e. hepatic and neuropsychiatric

liver is affected. We have performed such analysis-

there was no significant differences between groups.

The differences of copper and iron metabolism

between female and male patients with WD have

Table 3 Markers of copper metabolism in WD patients and healthy controls

Parameter Controls

(n = 102)

Untreated patients

(n = 39)

Patients on treatment

(n = 99)

p

Serum copper (lg/dL) (median (IQR))f 90.0 (26.0) 63.0 (17.0) 22.0 (35.0) (a)\ 0.001

(b)\ 0.001

(c)\ 0.001

Serum ceruloplasmin (mg/dL) (median

(IQR))

31.8 (10.7) 15.3 (8.0) 5.4 (6.7) (a)\ 0.001

(b)\ 0.001

(c)\ 0.001

IQR interquartile range
fReference values: 25.0–45.0 mg/dL for serum ceruloplasmin; 70.0–140.0 lg/dL for serum copper

(a) p for the comparison between untreated and treated patients; (b) p for the comparison between treated patients and controls; (c) p

for the comparison between untreated patients and controls
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been analyzed in a separate study (Gromadzka et al.

2020).

We are aware that although we analyzed a

relatively large number of patients, the number of

untreated patients was small and probably due to this a

few of the observed differences did not reach statis-

tical significance. Therefore, more studies are needed

to verify the presented results

In summary, our findings indicate that changes in

copper metabolism are accompanied by changes in

iron metabolism in WD; anti-copper drug treatment

restores, but does not normalize iron metabolism in

patients with WD. Further research is needed to

determine the optimal methods for control and

normalization of iron metabolism in patients with WD.
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