
Subscriber access provided by Bibliothèque de l'Université Paris-Sud

is published by the American Chemical Society. 1155 Sixteenth Street N.W.,
Washington, DC 20036
Published by American Chemical Society. Copyright © American Chemical Society.
However, no copyright claim is made to original U.S. Government works, or works
produced by employees of any Commonwealth realm Crown government in the
course of their duties.

Computational Biochemistry

Computing the Pathogenicity of Wilson’s Disease
ATP7B Mutations: Implications for Disease Prevalence

Ning Tang, Thomas Damgaard Sandahl, Peter Ott, and Kasper P. Kepp
J. Chem. Inf. Model., Just Accepted Manuscript • DOI: 10.1021/acs.jcim.9b00852 • Publication Date (Web): 21 Nov 2019

Downloaded from pubs.acs.org on November 23, 2019

Just Accepted

“Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted
online prior to technical editing, formatting for publication and author proofing. The American Chemical
Society provides “Just Accepted” as a service to the research community to expedite the dissemination
of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in
full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully
peer reviewed, but should not be considered the official version of record. They are citable by the
Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore,
the “Just Accepted” Web site may not include all articles that will be published in the journal. After
a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web
site and published as an ASAP article. Note that technical editing may introduce minor changes
to the manuscript text and/or graphics which could affect content, and all legal disclaimers and
ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or
consequences arising from the use of information contained in these “Just Accepted” manuscripts.



1

Computing the Pathogenicity of Wilson’s Disease ATP7B Mutations: 

Implications for Disease Prevalence

Ning Tang†, Thomas D. Sandahl§, Peter Ott§, and Kasper P. Kepp†*

† Technical University of Denmark, DTU Chemistry, Kemitorvet 206, 2800 Kongens Lyngby, Denmark 

§ The Danish Wilson Centre, Medical Department LMT, Hepatology, Aarhus University Hospital, Palle 

Juul Jensens Boulevard 99, 8200 Aarhus, Denmark.

*Corresponding author. E-mail: kpj@kemi.dtu.dk. Phone: +045 45252409  

Page 1 of 52

ACS Paragon Plus Environment

Journal of Chemical Information and Modeling

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

mailto:kpj@kemi.dtu.dk


2

Abstract

Genetic variations in the gene encoding the copper-transport protein ATP7B are the primary cause 

of Wilson’s disease. Controversially, clinical prevalence seems much smaller than prevalence 

estimated by genetic screening tools, causing fear that many people are undiagnosed although early 

diagnosis and treatment is essential. To address this issue, we benchmarked 16 state-of-the-art 

computational disease-prediction methods against established data of missense ATP7B mutations. 

Our results show that the quality of the methods vary widely. We show the importance of optimizing 

the threshold of the methods used to distinguish pathogenic from non-pathogenic mutations against 

data of clinically confirmed pathogenic and non-pathogenic mutations. We find that most methods 

use thresholds that predict too many ATP7B mutations to be pathogenic. Thus, our findings explain 

the current controversy on Wilson’s disease prevalence, because meta analysis and text search 

methods include many computational estimates that lead to higher disease prevalence than clinically 

observed. Since proteins and diseases differ widely, a one-size-fits-all threshold cannot distinguish 

efficiently pathogenic and non-pathogenic mutations, as shown here. We also show that amino acid 

changes with small evolutionary substitution probability, mainly due to amino acid volume, are 

more associated with disease, implying a pathological effect on the conformational state of the 

protein, which could affect copper transport or ATP recognition and hydrolysis. These findings may 

be a first step towards a more quantitative genotype-phenotype relationship of Wilson’s disease. 

Keywords: Wilson’s disease; ATP7B mutations; pathogenic mutations; sequence conservation; 

amino acid volume; copper transport
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Introduction

Wilson’s disease (WD) is a rare autosomal recessive disorder of copper metabolism caused by 

pathogenic variants of the human ATP7B gene encoding the ATP7B protein, which is a copper-

transporting P-type ATPase.1,2 The approximately 160-kDa membrane protein contains a large N-

terminal domain consisting of six metal-binding domains, eight transmembrane segments (TMs), 

an adenosine triphosphate (ATP) binding domain, and a soluble C-terminal tail.3–8 In the hepatocyte, 

ATP7B transports copper from the cytosol into the Golgi apparatus and mediates either the 

incorporation of copper into ceruloplasmin or the excretion of excess copper into the bile.9,10 To 

accomplish its copper transport function, the protein depends critically on its ability to use the 

energy gained by ATP hydrolysis.3 

Pathogenic ATP7B mutations cause loss of copper transporting function resulting in 

accumulation of copper in multiple organs, most notably brain, liver, and kidney.11–13 As a result, 

WD patients present with either hepatic, neurologic or psychiatric symptoms, often in 

combination.14,15 If left untreated, WD with chronic presentation is fatal within a 5−10 year period 

from first symptom onset. However, apart from the rare acute fulminant hepatic presentation that 

requires liver transplantation, proper medical treatment can typically ensure a near-normal life 

expectancy, but this depends critically on early and accurate diagnosis.16–19 

The clinical handling of patients with WD faces two major challenges; the uncertainty of the 

prevalence of the disease (the number of affected people within a given population) and the lack of 

a clear genotype-phenotype relation that enables the estimate of disease severity and manifestation. 

The worldwide prevalence has been estimated to be around 1 in 30,00020, corresponding to a carrier 

frequency of approximately 1 in 90 with slightly higher numbers reported in areas where diagnostic 

awareness of WD is high, such as Austria21 and France.16,22–24 Due to the heterogeneity in the clinical 

presentation and the age of presentation, a substantial number of patients are undiagnosed.25  Recent 

population-genetic studies based on the computer analysis of observed variants have led to estimates 
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of WD prevalence of 1:7,02615, 1:7,20026 or 1:4,00027. If true, these studies suggest that at least 75% 

of people affected by the disease are undiagnosed with potentially fatal consequences.

However, the difference between clinical observations and genetic predictions may also raise 

questions regarding the validity of current computational methods widely used to examine disease 

mechanisms and categorize pathogenic and non-pathogenic variants.28–34 These predictive methods 

use the evolutionary “unlikeliness” of the amino acid substitution, the involved change in 

biochemical properties, and/or 3-dimensional protein structure to classify mutations. Loss of protein 

stability potentially leading to partial loss of function is a common feature of many inherited 

diseases. In such cases, structure-based computational methods can identify pathogenic mutations.35 

Alternatively, evolutionary conservation information may capture disruptive amino acid changes 

that are unlikely to occur during natural evolution as they typically impair protein conformational 

integrity or function.36 

From a molecular evolution perspective, we expect that a majority of naturally occurring protein 

variants are nearly neutral in their functional effect, which is the basis for the so-called neutral theory 

of evolution and the widely supported use of molecular clocks in phylogeny37. In the clinical 

terminology38, these probably tend to be the benign variants. This insight is further complicated by 

penetrance being modulated by non-genetic and genetic confounding factors. We hypothesize that, 

since proteins differ widely in size, shape, stability, location, and natural function, the impact of a 

typical human mutation will be very protein-dependent. For example, abundant proteins are known 

to evolve much more slowly than less abundant proteins due to selection pressures, and evolution 

rate is also very dependent on specific selection pressures of the protein39–42. Yet most methods 

suggest a default threshold to distinguish pathogenic from non-pathogenic mutations based on 

conservation patterns. From a clinical strategic perspective there is an urgent need to solve this issue 

and identify methods that correctly distinguish truly disease-causing mutations from benign (neutral) 

variants38, and possibly also the severity and penetrance of the pathogenic mutations. 
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As ATP7B is the only identified gene known to cause WD, genetic screening for known 

pathogenic variants is a sensitive approach to diagnose WD. However, in cases where the functional 

impact of a variant is unclear, genetic testing only provides circumstantial evidence, as variants 

display diverse functional effects. Further complications such as life-style and environmental risk 

modifiers and the low frequency and unknown penetrance of the mutations complicate diagnosis 

even further.43 Direct functional testing of disease-causing ATP7B mutations would ideally be the 

most sensitive method to diagnose WD, but such functional tests are time-consuming. Clarification 

of these issues may affect the use of genetic testing for diagnosing patients suspected of having 

WD16 and may also have implications for conclusions based on genetic population screenings. 

Genotype-phenotype relations would aid our understanding of the pathophysiology and the 

development of new diagnostic and therapeutic strategies. Such relations have so far met with little 

success.17 More than 700 ATP7B natural variants have been identified, including mostly missense 

mutations, insertions/deletions, and some rare splice-site mutations as summarized in the WD 

database (http://www.wilsondisease.med.ualberta.ca).44 Whereas truncating mutations tend to 

severely impair copper metabolism and cause early age of disease onset, some mutations do not 

relate to hepatic or neurologic presentations, supporting our assumption of a pool of disease-wise 

benign natural ATP7B variants.45,46 For missense mutations the genotype-phenotype relationship is 

even weaker as they cause a wide variety of symptoms in WD patients implying that they may affect 

ATP7B function in different ways.47,48 These missense mutations are distributed across the ATP7B 

gene, but tend to cluster in the ATP binding domain indicating its importance for the ATP-dependent 

copper transport function.49 There is considerable phenotypic variation between individuals with 

the same mutation, even within the same families and in monozygotic twins50,51 showing clearly the 

need for understanding the risk modulation effects of specific mutations on ATP7B functionality 

and clinical presentation. 

In the present study we performed a detailed computational study of ATP7B protein variants 

using 16 widely used structure- and sequence-based methods with the specific aims i) to test the 
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application of state of the art computational screening methods to the problem of WD where 

diagnosis is challenged; ii) to identify amino acid properties that correlate with disease presentation. 

We show that several sequence-based methods can accurately classify pathogenic variants if the 

threshold is optimized before quantitative diagnosis of WD. However, outcomes are extremely 

dependent on the thresholds used, and default thresholds tend to overestimate disease prevalence. 

This finding largely explains the discrepancy between genetic-screening based and clinically 

observed WD prevalence. We also identify several important chemical features that determine 

whether a variant is disease-causing or not, which may aid the so far unsuccessful understanding of 

WD genotype-phenotype relations. 
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Computational Methods

Data for ATP7B genetic variants 

We studied several data sets of ATB7B variants related to WD, but ultimately settled on using the 

mutations from the WD database44 (http://www.wilsondisease.med.ualberta.ca) for reasons 

described below. As most of the studied methods can only deal with missense mutations, only these 

were selected for investigation, which substantially reduces the number of relevant data points and 

affects the data set choice. There are two main concerns: 1) the completeness of the dataset and 2) 

the confidence in the assignment of the clinical impact of each variant. 

When comparing to the most recent 2019 database by Gao et al.26 we found that the WD 

database includes almost all variants with high confidence of pathogenicity according to the more 

recent criteria by Richards et al.38 We tested the sensitivity of our conclusions by including the most 

recent variants from 2019.26 As shown below, this did not affect our conclusions, mainly because 

the confidently assigned variants have changed little compared to the major increase in the total 

number of inferred variants from genome screening, since functional and clinical testing has not 

experienced the same growth in capacity as sequencing and computational screening tools.

Many of the most confidently assigned loss-of-function variants are not missense mutations 

(e.g. deletions) and not studied by the applied methods; our analysis deals mainly with the difficult 

grey zone of missense mutations that are commonly nearly neutral (benign) and are the cause of the 

current controversy on disease prevalence. Gao et al.26 use broad screening approaches (including 

text search and meta analysis) to maximize completeness at the expense of confidence in the 

assignment of pathogenicity. The new data thus contain many computational estimates of 

pathogenicity; these estimates emerged mainly during the last decade and in the case of WD, after 

the WD database was complete. We find that the WD database, by minimizing recent computational 

and low-confidence screening results, is optimal for the analysis that we conduct here, where we 
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specifically want to avoid pollution by computational screening estimates in the benchmark data. 

We discuss the insensitivity of our findings to reasonable variations in data set later in this paper. 

The WD dataset includes 722 and 172 entries for pathogenic and non-pathogenic variants, 

respectively; of these, 291 variants are unique missense mutations studied in the present work. 

Clinical effects from loss of function studies (class 2) provide the best evidence for these mutations44. 

Since WD is a loss-of-function disease, functional studies provide a strong support for pathogenicity 

in particular in combination with control data for normal people (class 4). We estimate that, 

compared to the classification by Richards et al.38, which was not available and thus not used in the 

WD database, the loss-of-function feature makes the confidence of pathogenicity approximately 

strong (PS), which is the best possible situation as statistical critical mass of data points is still 

required. Among the 291 missense mutations studied, there are 267 pathogenic mutations and 24 

non-pathogenic mutations. In addition, 15 phenotypic mutations were reported as both pathogenic 

and non-pathogenic; these mutations were not included in our dataset as their pathogenicity is 

variable or debated. Details of the used mutation data set are shown in Table S1.

Studying mutations by computational mutagenesis using structure-based methods

Since the full ATP7B protein structure is not available, homology models will be unreliable, 

although additional (e.g. evolutionary) constraints can improve models, and work towards larger 

more reliable models of ATP7B is thus ongoing52. We used here the available NMR structures of 

several domains to perform structure-based mutation analysis where possible. A major issue is the 

quality of the protein structure input and its relevance to the real pathogenic process. As shown 

previously29,31,53,54 the ΔΔG (the change in stability caused by point mutation) is very structure-

dependent for some stability-prediction methods but less so for others, and this means that more 

methods and structures should be compared whenever possible. Five structures were used with the 

Protein Data Bank (PDB) IDs 2N7Y, 2LQB, 2ROP, 2EW9 and 2ARF corresponding to metal-
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binding domains 1 (2N7Y), 2 (2LQB), 3 and 4 (2ROP), 5 and 6 (2EW9), and the ATP binding 

domain (2ARF), respectively.55–59 

For FoldX (version 5),60 the structures were first repaired using the RepairPDB function, and 

then the BuildModel function was applied to the repaired structures to obtain ΔΔG values from five 

independent runs. The final reported ΔΔG values were the averages of these five independent runs 

for each mutation. For Rosetta (2019.07.60616 weekly release version), the structures were relaxed 

to produce 20 optimized structures. The structure with the lowest score was then applied in the 

Cartesian version of the Rosetta protocol with three iterations.61,62 The final ΔΔG values were 

calculated based on the difference in total scores averaged over three rounds for the mutant and wild 

type structures. For I-mutant (version 2.0),63 the secondary structure of the different domains was 

calculated using the DSSP algorithm.64 For mCSM,65 SDM,66 and DUET,67 the web server versions 

of the programs were used with default settings for calculating the ΔΔG values using the original 

NMR ensemble as input. Four mutations (S291A, S291I, S291Q and M573H) could not be 

computed by SDM and DUET and were thus not included in the final SDM and DUET results.  For 

POPMUSIC,68 HOTMUSIC,69 and SNPMUSIC,70 the calculations were performed using the 

DEZYME (http://www.dezyme.com) platform using the original NMR ensemble as input. 

As different ΔΔG sign conventions are used for labeling the stabilizing and destabilizing 

mutations, the sign was adjusted (ΔΔG < 0 stabilizing, ΔΔG > 0 destabilizing) in the present study 

in order to enable clear comparison. Only the values for the mutants relative to wild-type are of 

interest, as the absolute values are not very meaningful. A short summary of the used structure-

based methods is given in Table S2. 

Mutation analysis using sequence-based methods

The ATP7B protein sequence was obtained from Uniprot (ID P35670 ATP7B_HUMAN). The 

obtained sequence was then used to perform saturated mutagenesis with several state-of-the-art 

sequence-based disease-prediction methods, EASE-MM,71 PolyPhen-2,30 SIFT,72 Envision,73 
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PROVEAN,74 SNAP.2,75 and FATHMM32, using the corresponding default settings. For all the 

sequence-based methods, only the final scores were collected and used for analysis. A short 

summary of the used sequence-based methods is also given in Table S2.

Identifying disease causing mutations using ATP7B protein conservation analysis

The degree of evolutionary conservation of an amino acid in a protein reflects a balance between its 

natural tendency to mutate and the overall need to retain the structural integrity and function of the 

macromolecule. Conservation analysis was performed using the ConSurf server designed for 

estimating the evolutionary conservation of amino/nucleic acid positions in a protein/DNA/RNA 

molecule based on comparison to homologous sequences.76 The HMMER method was used for 

homology search with an E-value cutoff of 0.0001against the UNIREF-90 protein database.77 The 

homologs were selected for analysis based on the ConSurf server default criteria, and the resulting 

allowed amino acid variation at each position was used in the mutation pathogenicity analysis. In 

addition, the residue classification (buried/exposed) was also calculated by ConSurf since the 

complete ATP7B structure is unknown and the available structures represent different smaller parts 

that interact in unknown ways, producing many sites that are not exposed in the full protein. Solvent 

exposure dependencies of the classifications may provide insight not available from the total set of 

mutations, the typical example being disruptive mutations being more hydrophilic inside the protein 

but more hydrophobic on the protein surface.

Co-variation analysis using GREMLIN

In order to analyze the functional effects of the mutations in ATP7B, we also built a global statistical 

model based on the ATP7B multiple sequence alignment to estimate the log-likelihood of any given 

ATP7B variant. The multiple sequence alignment was established using HHblits in HHsuite with 

an E-value cutoff of 10-10 and four iterations against the uniclust30_2018_08 database.78 The 

obtained multiple sequence alignment was further filtered by removing the sequences (rows) that 
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have more than 50% gap, resulting in 767 homologs. The global statistical model was established 

based on the obtained ATP7B multiple sequence alignment using the GREMLIN (Beta version 2.1) 

algorithm implemented in Tensorflow kindly provided by Dr. Sergey Ovchinnikov (FAS Center for 

Systems Biology, Harvard University).79–81 GREMLIN enables the production of statistical models 

based on both coevolution and conservation data of homologs, which reveals residue contacts and 

can thus be a powerful estimator of structural-function impacts of amino acid mutations. Please note 

that the pseudo likelihood optimization in Tensorflow was performed with Adam optimizer because 

the "LBFGS" optimizer in the original Matlab version of GREMLIN is slow in Tensorflow. The 

difference in log-likelihood between the wild type and mutant variant allows us to explore the 

variant pathogenicity considering both site conservation and pairwise co-varying positions, which 

in general has better accuracy than analyzing each site independently. Similar methods have been 

previously successfully applied to identify disease-causing mutations.82
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MPEQERQITA REGASRKILS KLSLPTRAWE PAMKKSFAFD NVGYEGGLDG LGPSSQVATS TVRILGMTCQ 

SCVKSIEDRI SNLKGIISMK VSLEQGSATV KYVPSVVCLQ QVCHQIGDMG FEASIAEGKA ASWPSRSLPA 

QEAVVKLRVE GMTCQSCVSS IEGKVRKLQG VVRVKVSLSN QEAVITYQPY LIQPEDLRDH VNDMGFEAAI 

KSKVAPLSLG PIDIERLQST NPKRPLSSAN QNFNNSETLG HQGSHVVTLQ LRIDGMHCKS CVLNIEENIG 

QLLGVQSIQV SLENKTAQVK YDPSCTSPVA LQRAIEALPP GNFKVSLPDG AEGSGTDHRS SSSHSPGSPP 

RNQVQGTCST TLIAIAGMTC ASCVHSIEGM ISQLEGVQQI SVSLAEGTAT VLYNPSVISP EELRAAIEDM 

GFEASVVSES CSTNPLGNHS AGNSMVQTTD GTPTSVQEVA PHTGRLPANH APDILAKSPQ STRAVAPQKC 

FLQIKGMTCA SCVSNIERNL QKEAGVLSVL VALMAGKAEI KYDPEVIQPL EIAQFIQDLG FEAAVMEDYA 

GSDGNIELTI TGMTCASCVH NIESKLTRTN GITYASVALA TSKALVKFDP EIIGPRDIIK IIEEIGFHAS 

LAQRNPNAHH LDHKMEIKQW KKSFLCSLVF GIPVMALMIY MLIPSNEPHQ SMVLDHNIIP GLSILNLIFF 

ILCTFVQLLG GWYFYVQAYK SLRHRSANMD VLIVLATSIA YVYSLVILVV AVAEKAERSP VTFFDTPPML 

FVFIALGRWL EHLAKSKTSE ALAKLMSLQA TEATVVTLGE DNLIIREEQV PMELVQRGDI VKVVPGGKFP

VDGKVLEGNT MADESLITGE AMPVTKKPGS TVIAGSINAH GSVLIKATHV GNDTTLAQIV KLVEEAQMSK 

APIQQLADRF SGYFVPFIII MSTLTLVVWI VIGFIDFGVV QRYFPNPNKH ISQTEVIIRF AFQTSITVLC

IACPCSLGLA TPTAVMVGTG VAAQNGILIK GGKPLEMAHK IKTVMFDKTG TITHGVPRVM RVLLLGDVAT 

LPLRKVLAVV GTAEASSEHP LGVAVTKYCK EELGTETLGY CTDFQAVPGC GIGCKVSNVE GILAHSERPL 

SAPASHLNEA GSLPAEKDAV PQTFSVLIGN REWLRRNGLT ISSDVSDAMT DHEMKGQTAI LVAIDGVLCG 

MIAIADAVKQ EAALAVHTLQ SMGVDVVLIT GDNRKTARAI ATQVGINKVF AEVLPSHKVA KVQELQNKGK 

KVAMVGDGVN DSPALAQADM GVAIGTGTDV AIEAADVVLI RNDLLDVVAS IHLSKRTVRR IRINLVLALI 

YNLVGIPIAA GVFMPIGIVL QPWMGSAAMA ASSVSVVLSS LQLKCYKKPD LERYEAQAHG HMKPLTASQV 

SVHIGMDDRW RDSPRATPWD QVSYVSQVSL SSLTSDKPSR HSAAADDDGD KWSLLLNGRD EEQYI

BA

Figure 1. Example structure and full sequence used for in this study. (A) The NMR structural model 

of ATP binding domain (PDB ID 2ARF) as example of used NMR structures of different ATP7B 

protein domains with pathogenic mutations marked in red and non-pathogenic mutations marked in 

green. (B) The used canonical sequence of ATP7B obtained from Uniprot (ID P35670, 

ATP7B_HUMAN) with pathogenic mutations shown in red and non pathogenic mutations in green.
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Results and Discussion

Structure- and sequence-based estimation of ATP7B variant pathogenicity

The missense ATP7B mutations could potentially exert pathogenicity in many ways and only in 

some relevant structural contexts. They may directly impair the ATP7B copper transport or the ATP 

binding or hydrolysis activity by mutation in the respective binding sites, but could also generally 

destabilize the membrane protein, partly dissociate it from the membrane or disrupt the trafficking 

of the protein to the membrane. Random missense mutations are more likely to reduce the 

thermochemical stability and typically impair the free energy of folding by 1 kcal/mol compared to 

the wild type, because the protein stability represents an optimized system.31,83–86 Thus, loss of 

protein stability leading to excessive protein degradation and loss of functional copies of ATP7B 

protein available for copper transporting is a likely mechanism for WD. 

To distinguish between different pathogenic mechanisms, we employed a wide range of both 

structure-based stability estimation methods and sequence-based disease prediction methods to 

estimate the consequence of mutations in ATP7B, and studied a broad range of chemical properties 

potentially affected by mutation. The relevant biological context where the mutations impair the 

protein may be very hard to model and as such the amino acid properties, which are context-

independent, serve as important supplementary test cases. We used five available NMR structures 

of different ATP7B protein domains, with the partial structure of the important ATP binding domain 

shown for illustration in Figure 1A. To ensure a valid control test data set, we used the method of 

exhaustive control mutagenesis87 by introducing all possible single-site amino acid substitutions 

into the wild type sequence, and using the distribution of scores as a control set in an analysis of 

variance (ANOVA), since properties of pathogenic mutations are meaningless by themselves if not 

compared to a random or non-pathogenic control set. Our exhaustive mutation control dataset for 

structure-based methods comprised 11,305 different ATP7B mutations after mapping to the original 

sequence numbering shown in Figure 1B (Uniprot P35670). 
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The computed values for all methods are shown in Figure 2 with positive ΔΔG values indicating 

a destabilizing effect on the protein (signs were aligned for all ΔΔG methods to enable comparison). 

As seen from Figure 2, most of the pathogenic mutations destabilize the protein structure. However, 

the non-pathogenic mutations have similar effects, as expected for randomly introduced mutations,88 

clearly showing why conclusions cannot be drawn from a set of pathogenic mutations without a 

proper control. According to the ANOVA summarized in Table S3, the destabilization of the non-

pathogenic and pathogenic mutations is not significantly different. 

Current protein stability calculators are not expected to be as accurate for membrane proteins as 

for soluble proteins according to previous benchmarks, since the membrane environment 

contributes to the stability effect of the mutation;89 the fact that ATP7B is a membrane protein could 

by itself affect the reliability of methods recently used to argue for very high WD prevalences15,26,27. 

Furthermore, some of these methods are structure-dependent and the structural input thus affects 

outcome substantially, with many snapshot structures required to generate an ensemble in agreement 

with experiment.53,54,90 Accordingly, we also tested the sequence-based protein stability predictor 

EASE-MM, which does not rely on structure and thus is not impaired by potential weaknesses in 

the NMR structures. However, as seen from Figure 2 and Table S3, it also produced insignificant 

differences in destabilization of pathogenic and control groups. We conclude that pathogenic 

ATP7B mutations destabilize the protein broadly, but the mutations are not more destabilizing than 

random mutations in the same protein. This does not rule out that destabilization can contribute to 

disease as it is a consistent feature of the mutations.

As an alternative to the hypothesis that thermodynamic destabilization of the folded state drives 

pathogenicity, we also tested whether sequence-based disease predictors using evolutionary 

conservation information (likelihood of substitution) can better describe pathogenicity. These tools 

capture important disruptive effects of mutations on the functional folded protein by considering the 

magnitude of the chemical perturbation and have the advantage of being applicable to all 

proteins32,33 and several of them describe pathogenicity well in independent benchmarks.29 Because 
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such computational methods are error-prone, using only one or two of them is not appropriate as 

conclusions may reflect the specific choice of methods. 

We selected six methods (PolyPhen-2, SIFT, PROVEAN, Envision, SNAP.2 and FATHMM) to 

study the ATP7B variants. The resulting scores in Figure 2 for non-pathogenic and pathogenic 

mutations are well-separated for all six methods except FATHMM. However, such conclusions can 

be deceptive due to biases in the thresholds, and thus one cannot conclude anything without 

statistical significance tests. If clinically confirmed non-pathogenic mutations are available at 

substantial count (> 10) they serve as a relevant test data set in a t-test or ANOVA. Since many data 

sets do not effectively separate non-pathogenic (benign) variants from confirmed pathogenic 

variants, we have advocated the use of exhaustive computational mutagenesis as a control data set 

for t-tests and ANOVA87 to test whether a chemical property is significantly different for pathogenic 

and randomly occurring mutations. Such tests are easily performed using computational methods 

and provide a statistical quality that is hard to obtain experimentally, due to the cost of functional 

assaying of thousands of possible mutants. The ANOVA results (Table S3) show that the mean 

values of the obtained scores differ significantly between non-pathogenic and pathogenic categories 

at the 99% confidence level (p < 0.01) except for the FATHMM method. 
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Figure 2. The ΔΔG values/scores for structure-based methods (FoldX, Rosetta, I-mutant, mCSM, 

SDM, DUET, POPMUSIC, HOTMUSIC, and SNPMUSIC) and sequence-based methods (EASE-

MM, Polyphen-2, SIFT, PROVEAN, Envision, SNAP.2, and FATHMM) applied to 291 missense 

ATP7B mutations. The background dots with jitter function represent the obtained values. The black 

lines represent the distribution of values. Black dots represent the mean values. The stability 

methods have signs aligned, whereas the sequence-based methods show pathogenicity relative to 

their default ranges.
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Figure 3. The ROC analysis of methods applied to 291 missense ATP7B mutations. (A) The ROC 

plot of the benchmarked methods for identifying the pathogenicity of the ATP7B protein mutations. 

(B) The identification accuracy of the used methods obtained from ROC analysis. 

In order to test the ability of the methods to distinguish non-pathogenic and pathogenic ATP7B 

mutations, we performed a receiver operating characteristic analysis (Figure 3A). In agreement with 

ANOVA results, the top-5 methods were all sequence-based methods. PolyPhen-2 and PROVEAN 

produced the highest area under curve (AUC) values of 0.88. Combined with the accuracy results 

in Figure 3B, PROVEAN was slightly (but insignificantly) more accurate than PolyPhen-2. Other 

properties of the ROC analysis are shown in Table S4. Notably, bootstrap analysis (95% confidence 

level, 2000 bootstrap replicates) shows that the optimized thresholds are generally robust to 

reasonable data variations, with the best-performing methods such as PROVEAN, Polyphen, and 

SIFT also well-determined optimized thresholds; whereas the thresholds of some other methods are 

very sensitive to data variations (Table S4). 

The more accurate methods also predict well the pathogenicity of membrane protein mutations, 

indicating their value when structures are elusive.29 One of the most important findings however is 
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that the optimized threshold values for distinguishing pathogenic and non-pathogenic mutations 

differ widely from the default values of the methods (Table 1). This shows that these widely used 

methods need to use thresholds optimized toward the specific protein of interest, or a class of 

proteins of related structures and diseases. 

Correlations between clinical pathogenicity, amino acid properties, and allele frequency

In order to understand how ATP7B mutations confer pathogenicity and to identify valid semi-

quantitative prediction tools of ATP7B variant pathogenicity, we analyzed the relationship between 

the clinically established pathogenicity and changes in 48 amino acid properties previously analyzed 

in similar work91 (summarized in Table S5). We calculated the mutation-induced change in property 

using the equation ΔP = Pmut - Pwt for both non-pathogenic and pathogenic mutations. Representative 

results are shown in Figure 4, with remaining results shown in Figure S1. As illustrated in Figure 

4 and Figure S1, most of these properties show no significant separation between non-pathogenic 

and pathogenic mutations. Based on the ANOVA (Table S6) only changes in amino acid bulkiness 

(B1 in Figure 4), the ratio of the side chain volume to its length, differed significantly (95% 

confidence) for the two categories of mutations, with the pathogenic mutations displaying larger 

changes in amino acid bulkiness. Hydrophobicity changes, which relate to aggregation propensity 

and drive the pathogenicity of some other disease-causing mutations87,92–96 were not important for 

the ATP7B variants.
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Figure 4. Amino acid property changes for 291 missense ATP7B non-pathogenic and pathogenic 

ATP7B mutations. Thick bars indicate the medians; the edges of the color-filled rectangles represent 

the 25th and 75th percentiles. The black dots represent outliers of the range covered by the black 

bars. *** for B1 indicates a p-value < 0.05. K: compressibility; Ht: thermodynamic transfer 

hydrophobicity; Hp: surrounding hydrophobicity; P: polarity; pHi: isoelectric point; pK: 

equilibrium constant for ionizing COOH; Mw: molecular weight; B1: bulkiness; Rf: 

chromatographic index; u: refractive index; Hnc: consensus hydrophobicity; Esm: short- and 

medium-range non-bonded energy; El: long-range non-bonded energy; Et: total non-bonded energy 
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(Esm + El); Pa, Pb, Pt, and Pc are α-helix, β-strand, turn, and coil tendencies; Ca: helical contact 

area; F: fluctuation displacement; Br: buriedness; Ra: solvent-accessible surface reduction; Ns: 

average number of surrounding residues; an: empirical tendency of the amino acid to be N-terminal.

These findings point towards two very general types of molecular pathogenicity; one that 

manifests in soluble proteins subject to aggregation toxicity, and one that manifests in membrane 

proteins and some soluble allosteric proteins by conformation changes affecting function. Previous 

work suggests that the amino acids bulkiness defines the local conformation and dynamics of 

natively folded proteins relevant to normal and pathological processes.97 Mutation at position 653 

of ATP7B indicated that bulky or charged amino acids mimic the phenotype of WD mutations, 

while small neutral substitutions do not, suggesting that the bulky substitutions distort the ATP7B 

protein conformation and thereby its function.98 Our quantified changes in bulkiness significantly 

separate pathogenic and non-pathogenic ATP7B mutations for our large data set, suggesting that 

this hypothesis98 is valid for the ATP7B mutations broadly and not just in single cases. 

The database tool gnomAD99 estimates the combined allele frequency of ATP7B variants in 

general populations and thus enables an analysis of the likely natural selection on missense ATP7B 

mutations across the allele frequency spectrum. The allele frequency is commonly used for clinical 

diagnostic filtration because disease-causing mutations are, all-else being equal, expected to be 

selected against. To understand the relationship between pathogenicity and allele frequency for WD 

mutations, the correlations between screening scores (PolyPhen-2, PROVEAN, Envision, and 

SNAP.2) and allele frequency for the ATP7B missense mutations found in gnomAD were analyzed. 

The results in Figure 5 show that mutations with very high allele frequency are more likely to be 

benign as correctly predicted by these four methods. Moreover, some non-pathogenic mutations that 

are misidentified by these methods are relatively frequent, suggesting that incorporation of this 

information could improve the prediction of the pathogenicity of ATP7B variants. 
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Figure 5. The correlation between PolyPhen, PROVEAN, Envision, and SNAP.2 scores and allele 

frequency. The plots on the left side in each category are the density plots of the scores. The inset 

plots on the right side are the zoom-in correlation plots with the allele frequency lower than 0.009. 

The red, green and blue dots represent the ATP7B protein mutations with unknown pathogenicity, 

non-pathogenic mutations, and pathogenic mutations, respectively.

 

Conservation and co-variation analysis

As we have shown above, several computational methods are capable of predicting the 

pathogenicity of ATP7B variants at a promising level of accuracy, but only after optimization of 

their thresholds against a clinically confirmed data set. These sequence-based methods all use 

evolutionary conservation information. To understand the contribution of this feature in more detail, 

we analyzed the evolutionary conservation of amino acid positions in ATP7B based on comparison 

to known ATP7B protein homologs. We extracted the allowed amino acid variations at each position 

and used this information as a predictor to identify pathogenicity. Figure 6 shows the results. Simply 

using the evolutionary conservation information enables good performance with an AUC value of 
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0.86. This result clearly indicates that conservation information captures an important part of the 

pathogenic effect on ATP7B protein function. 

Previous studies have indicated that most pathogenic mutations occur in buried sites of proteins 

or in surface-sites involved in molecular interactions.100–105 It is thus of interest to know the 

performance of the computational methods for different types of sites. To explore this, we collected 

the residue classification information (buried/exposed) based on the evolutionary conservation 

analysis and divided the ATP7B protein residues into buried and exposed. We note that the structural 

assignment of exposure is uncertain because there is no complete ATP7B structure, and each NMR 

structure only reflects a small domain of the total membrane protein, and thus, many parts of the 

domains are exposed to other domains rather than water. We performed the ROC analysis for all the 

used methods for each residue category. As shown in Figure 7, it is very clear that most methods 

perform better for buried residues in agreement with our previous study.29 Interestingly, we also 

found that most non-pathogenic mutations are variable and thus predicted to be exposed, consistent 

with a neutral effect on protein function.

We also analyzed the amino acid property changes for both residue categories using ANOVA 

(Table S7). The difference in the change of amino acid bulkiness for non-pathogenic and pathogenic 

mutations is only significant for exposed residues, but this may be due to the fact that most of the 

non-pathogenic mutations are exposed, making the test more assertive for this category. We also 

find that the β-strand tendency change is significantly different for non-pathogenic and pathogenic 

mutations but less clearly so than the amino acids bulkiness. Changes in β-strand tendency upon 

mutation has been shown to correlate with protein stability change in some proteins91 and contribute 

to the aggregation propensity of some proteins.106 
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Figure 6. Conservation analysis and co-variation analysis used to identify pathogenic ATP7B 

mutations. (A) The allowed amino acid variation at each position and variation distributions for 

different categories. The dots in the background represent the obtained allowed variation; the black 

lines represent the variation distribution. The black dots represent the mean values in each category, 

and the error bars represent the standard errors in each category. (B) The co-variation scores 

obtained from GREMLIN and score distributions for different categories. (C) The ROC plot for 

conservation analysis and co-variation analysis with the final AUC value labeled.
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Figure 7. ROC analysis for buried and exposed residues. (A) ROC plot of the used structure-based 

and sequence-based methods applied to predict the pathogenicity of mutations in buried (b) and 

exposed (e) sites. (B) Identification accuracy of the used methods obtained from ROC analysis. The 

red and green colors represent the accuracy for buried and exposed residues, respectively.

Since PROVEAN displayed good ability to distinguish the non-pathogenic and pathogenic 

ATP7B mutations, we investigated this method further. We divided the 20 amino acids into nine 

groups:  Hydrophobic amino acids (AVILM), polar amino acids (SCTQN), aromatic amino acids 

(FWY), negatively charged (DE), positively charged (HKR), phosphorylatable (STY), small 

(AGST), proline (P), and glycine (G). Then PROVEAN scores were calculated for each group and 

residue category (buried/exposed) as shown in Figure S2. For buried residues, the mutations related 

to aromatic amino acids were more likely to be pathogenic. According to the mutation data set 

shown in Table S1, most of the identified pathogenic mutations related to aromatic amino acids 

substitution were buried and there were no non-pathogenic mutations involving aromatic amino acid 

substitutions. This result largely supports the bulkiness change identified in the ANOVA analysis.  

In addition, a previous study indicated that some aromatic amino acids are highly conserved and 
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these positions had to be aromatic amino acids and of a precise size to maintain copper transport 

function.107 For exposed residues, we did not find any systematic tendencies.  

So far, our analysis has considered each site independently, neglecting the potentially important 

interactions between residues during substitution. Higher-order statistical models which consider 

both conservation at individual sites and pairwise coevolution positions may be appropriate to 

handle this.28,80,108,109 These approaches require larger numbers of homologous sequences to build 

global sequence models.79,81 We applied this method to investigate if such models improve the 

identification of pathogenic ATP7B variants, as shown in Figure 6. We did not see a markedly 

better performance as indicated by an AUC value of 0.85, suggesting that the interactions between 

pairs of residues is not critical in driving pathogenicity of ATP7B mutations. When analyzing the 

conservation and co-variation together, the two methods agree indicating that conservation is the 

major factor rather than co-variation in the global statistical model.

As shown in Figure S3, the ATP binding domain harbors most of the non-pathogenic and 

pathogenic mutations. The 3D structure of this domain is well defined (PDB ID 2ARF). The 

relatively small importance of co-variation led us to analyze the structure-based methods again only 

using the ATP binding domain (Figure S4). As seen from the resulting ROC analysis, the AUC 

value for the best predictor, FoldX, increased to 0.8 indicating that loss of the stability is a relevant 

driver of disease for the mutations within the ATP binding domain, and thus the failure to identify 

stability above may be due to poor structural information. The two pathogenic mutations E1064A 

and H1069Q lower the stability of the ATP binding domain rather than impair ATP binding directly, 

suggesting a stability rather than functional effect in some of these mutations.86 

To use our identified drivers in a best-possible combination, we combined the methods to create 

a two-dimensional representation for the mutations in the ATP binding domain, as shown in Figure 

S5. The individual threshold obtained from ROC analysis is shown as the vertical and horizontal 

dash lines.  Using a two-dimensional representation improves the accuracy of identifying 

pathogenic mutations but is still not perfect, and assumptions on the pathogenicity of new variants 
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will clearly be error-prone. Thus, we recommend using the combination of the structure-based 

approach and conservation analysis to identify the pathogenic ATP7B variants as this two-

dimensional representation could greatly improve the accuracy, by e.g. plotting the structure-based 

output against the sequence-based co-variation data, and optimizing the threshold. 

Sensitivity of findings to data set 

Our main finding in this work is that there are major variations in optimal thresholds of the many 

computational methods, which greatly affect pathogenicity estimates. As argued in the Method 

section, the WD data is ideal for our purpose as it avoids pollution from computational estimates of 

the last decade while being nearly complete in confidently assigned mutations (“PS”-type using the 

Richards et al. classification38). To test whether our findings are affected by the inclusion of recently 

identified variants, we extracted the missense mutations from the Gao et al. data set from 201926 

with likely pathogenicity and performed all the analysis done above also for this data set. 

The results in Figures S6-S12 and Tables S8-S9 show that all main findings are unaffected 

by using the newer data, as also supported by the intra-data bootstrapping analysis (Table S4). In 

particular, our finding that the computational methods overestimate pathogenicity of ATP7B 

mutations is unaffected mainly because the confidently assigned missense mutations are similar. In 

contrast, the total number of reported variants with computationally estimated pathogenicity have 

increased dramatically the last decade, but were not included in order to avoid computational self-

reference in the benchmarking. The sequence-based methods again showed better performance for 

identifying the pathogenic variants. Furthermore, according to Figure S8 and Table S9, the only 

significant changes in amino acid properties affecting pathogenicity were again related to amino 

acid volume or size. For the best-performing sequence-based method PolyPhen and SIFT (those 

with the highest AUC values), substitutions involving aromatic amino acids tend to confer 

pathogenicity, consistent with the importance of volume changes inside the membrane protein.
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Implications for estimates of disease prevalence

The true prevalence of WD has been a longstanding matter of debate: The long-accepted estimate 

of 1:30,000 rests on a 30-year old publication, whereas recent genetic studies in large 

populations15,26,27 have  suggested that the true prevalence is in fact four times higher. These new 

estimates would imply severe consequences for the large number of undiagnosed patients. The new 

estimates were based on computer evaluations of likely pathogenicity of the discovered variants in 

genetic samples. Thus missense mutations were analyzed by Polyphen-2, PhyloP, CADD and 

MutationTaster in the French study27, SIFT and PolyPhen2 in the British study15, and SIFT and 

Polyphen in the global study26. Since these authors did not have access to our present evaluation of 

these methods, we think that they may have overestimated the prevalence by including benign 

variants. Specifically, the thresholds required to accurately discriminate pathogenic from benign 

variants is likely to be very protein-dependent, and unless corrections for this weakness are 

developed by e.g. using protein-class specific threshold categories in the methods, each protein and 

disease case requires a specific optimization against known clinical data to set the threshold properly 

in order to estimate disease prevalence. Our study shows how to select the best possible model for 

predicting mutation pathogenicity and use an optimized threshold (Table 1), which will change the 

genetically estimated prevalence of WD. For most methods in Table 1, including Polyphen and 

SIFT used in the studies mentioned above, the number of estimated pathogenic variants will be 

substantially smaller when using optimized rather than default thresholds, thereby lowering the 

inferred prevalence WD, although the actual error made depends on the specific variant frequencies. 

Using these accurate thresholds may also enable a first step towards quantifying variants with low 

penetrance, which is crucial for a correct prediction of the number of undiagnosed patients with 

WD. 

Better knowledge of the performance of the computer prediction will also affect the diagnostic 

work up in patients with suspected WD. According to the Leipzig Criteria,16 two disease causing 

mutations is sufficient for diagnosis which was earlier based on clinical criteria. In such cases it is 
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absolutely important to avoid false diagnoses caused by erroneous computer evaluation of a given 

variant, a problem that easily arises if thresholds are not optimized as we show here. Considering 

the likely prevalence of many nearly neutral natural variants, which will probably be clinically 

benign38, we question whether the identification of two mutations is sufficient for diagnosis of WD 

without assessment of disturbances in copper metabolism. A similar concern relates to the use of 

genetic testing as mean for neonatal screening for WD, the value of which will heavily depend on 

the validity of the computer prediction. Our findings regarding the accuracy and thresholds of the 

applied methods should be important in all of these contexts.

Conclusions

We have benchmarked state-of-the-art available computational disease prediction methods against 

a well-known and clinically confirmed data set of pathogenic and non-pathogenic ATP7B variants. 

The data presented suggest that structure-based analysis of the variants does not effectively separate 

non-pathogenic from pathogenic WD variants whereas sequence-based methods that account for the 

evolutionary conservation are more effective, but only if their thresholds for distinction are 

optimized. 

Our findings are consistent with a view that proteins (and diseases) differ much more than a 

default generic threshold a single method can reasonably represent. Thus, different proteins, because 

of their diversity, have very different thresholds for pathogenicity of an arising mutation, and thus, 

each method applied should be optimized against real clinical data if possible. As discussed above, 

this can affect both diagnosis and the estimation of the real prevalence of diseases. Our results show 

that prevalence estimates based on these methods are not reliable as they tend to overestimate the 

pathogenicity of ATP7B mutations. Our finding explains why meta analysis and text search 

methods26,27, which include many computational estimates, have concluded higher prevalence of 

WD than clinically observed.
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Interestingly, once optimized, the best methods were more effective for buried rather than 

exposed sites and pointing towards an important role of the bulkiness of the specific amino acid 

change. The ATP7B protein includes a large transmembrane domain that mediates the transport of 

copper across the membrane, and buried sites may be those who most likely to affect the transport 

of copper; our finding that the side-chain volume of buried residues is an important correlator of 

pathogenicity may be the first structural-functional clue to future more quantitative genotype-

phenotype relationships and more accurate prevalence estimates of WD.      
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Table 1. Optimized and default threshold for pathogenicity assignment and the number of 

the pathogenic and non-pathogenic mutations based on the applied threshold.

Method
Threshold 

(ROC)
Non 

Pathogenic Pathogenic
Threshold 
(Default)

Non 
Pathogenic Pathogenic

DUET 1.465 9596 1705 0 3238 8063 

EASE-MM 0.115 6703 21132 0 5093 22742 

Envision 0.864 16415 11420 1 2952 24883 

FATHMM -3.945 19980 7855 -1.5 1567 26268 

FoldX -0.154 2885 8420 0 3570 7735 

HOTMUSIC 2.965 7869 3436 0 1721 9584 

I-mutant 1.180 6607 4698 0 1447 9858 

mCSM 0.163 2553 8752 0 1632 9673 

PolyPhen 0.872 10827 17008 0.5 8430 19405 

POPMUSIC 1.155 8444 2861 0 1920 9385 

PROVEAN -2.795 10151 17684 -2.5 8782 19053 

Rosetta 3.976 8488 2790 0 4368 6910 

SDM 0.650 6900 4401 0 4034 7267 

SIFT 0.0245 11312 16523 0.05 9227 18608 

SNAP.2 5.50 13757 14078 0 12949 14886 

SNPMUSIC 0.185 6745 4560 0 4988 6317
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