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A B S T R A C T

Iron overload due to repeated blood transfusions in β-thalassemia patients or in predisposed diseases like he-
mochromatosis may prove lethal. Regulation and deposition of iron is a significant process, which is been ex-
plored extensively in the past decade. Iron deposition in the body can cause cellular dysregulation, including
neuronal damage. Significant research has been conducted in understanding how iron accumulation in the brain
leads to neurodegeneration. Iron chelators have been tested pre-clinically and are in clinical trials for de-
termining their potential role in the treatment of neurodegenerative diseases like Alzheimerös (AD) and
Parkinsonös (PD). It has been reported that iron chelators show promising effects pre-clinically in the ameli-
oration of neurodegenerative disorders. In the clinical setup, the main challenge for any drug is to penetrate the
blood brain barrier (BBB) and to show therapeutic action. Smaller anti-oxidant molecules that cross BBB, can be
expended for the treatment of neurodegenerative disorders. This review exclusively presents an assessment of
original research articles published from year 2017–2019. It also addresses the mechanism of brain iron accu-
mulation focusing more on AD and PD, their genetic predispositions, the detrimental effects of iron overload
leading to neurodegeneration, iron-induced neuronal apoptosis and treatment strategies for the same.

1. Introduction

Atypical iron accumulation in the brain has been detected in various
neurodegenerative disorders. The mechanism of neurodegeneration
caused by iron overload remains partially unclear. The diseases which
are caused by genes responsible for iron overload are cumulatively
termed as “neurodegeneration with brain iron accumulation' (NBIA)
diseases” (Rouault, 2016). However, some reports claim that, diseases
like AD and PD also have iron accumulation as one of the causative
factors for pathogenesis (Nikseresht et al., 2019; Qu et al., 2019).

Recent studies have displayed the postmortem MRI reports of patients
with early or late-onset AD to demonstrate the presence of iron in the
amyloid plaques and cortical region of the brain (Bulk et al., 2018;
Chen et al., 2018; Gong et al., 2019). Also, a study on parkinsonian
patients suggests the severity of the disease associating it with high iron
content in the motor-related subcortical nuclei and nigral iron content
with dopaminergic neurodegeneration (Martin-Bastida et al., 2017).
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1.1. Manifestations of Iron overload

As the metabolic rate in the brain is high, it has abundant non-heme
iron. Iron in the brain is majorly concentrated in the basal ganglia and
substantia nigra. The iron content in these areas, is almost equal to the
level of iron in the liver (Haacke et al., 2005). If there is a systemic iron
imbalance, the BBB protects the brain from the same. Therefore, the
brain is least affected if there is systemic iron imbalance. As the BBB is
made up of tight junctions, the transfer of iron to the brain is mediated
by Transferrin, Divalent metal transporter 1 and Ferroportin (Fpn) re-
ceptor pathways. Fe2+ which is released by Fpn at the endothelial tight
junction of BBB, is oxidized by Cerruloplasmin. This is then taken up by
transferrin which circulates in the brain. The iron in the brain is cir-
culated and transported via molecules like ATP, ascorbate and citrate
(Ke and Qian, 2007).

The pathologies that are known for AD are mitochondrial dysfunc-
tion, Brain metal overload, compromised glial cell function, neuroin-
flammation, and oxidative stress (Von Bernhardi and Eugenin, 2012).
These mechanisms likely have intersecting pathways. Interestingly, iron
is found to be playing a role in all the pathways responsible for the
pathogenesis of AD. The levels of iron in the brain increase with the
increasing age. This proves the increased levels of iron in the brain of
AD patients. The accumulated iron contributes to the formation of Aβ
plaques or is bound to ferritin which is located in the glial cells (Smith
et al., 2007). Also, iron accumulation leads to the formation of Neu-
rofibrillary tangles in turn causing lipid peroxidation and oxidation of
proteins and DNA. The increased oxidative stress damage the neurons,
as they are highly vulnerable to oxidative stress. (Smith et al., 1997).
Aβ has a high affinity to iron. Also, due to accumulated iron, the fer-
roxidase activity of APP is impaired leading to the formation of Aβ
peptides. Therefore, this is a vicious cycle which leads to the formation
of Aβ in outsized amount (Huang et al., 2004; Duce et al., 2010). Many
studies suggest that Aβ is synthesized under normal physiological
process. The Aβ toxicity occurs due to iron which binds to histidine
residue N-terminal domain at 6, 13, and 14. Also, there is a reduction
reaction of iron by methionine located at residue 35, which leads to an
increase in oxidative stress. (Butterfield and Kanski, 2001)

Iron plays a critical role in various brain functions, as it can gain and
lose electrons easily. At the cellular level, iron significantly assists in
cell growth. However, its accumulation in the cells can induce oxidative
stress and can cause dysfunction of the cellular physiology (Fillebeen
et al., 1999). Blood brain barrier (BBB) limits the entry of extra iron in
the brain via highly regulated transport systems. In the case of iron
overload, the BBB can disrupt to facilitate the excess entry of iron in the
brain (Hentze et al., 2004). Increased iron levels in the brain can cause
severe neurodegeneration. The ability of Iron to donate electrons to
oxygen can lead to increased levels of hydroxyl anions and free radicals.
Peroxyl/alkoxyl radicals are also generated due to Fe2+-mediated lipid
peroxidation. The generation of these reactive oxygen species (ROS)
can impair the cellular organelles and macromolecules such as DNA,
proteins and lipid matrix. In the normal conditions, these ROS are
eliminated by several antioxidant defense mechanisms to avoid the
impairment.

However, when the levels of iron increase beyond the antioxidant
defense systems, the oxidative stress is induced. This, in turn, exacer-
bates the positive feedback mechanism which releases more iron bound
to ferritin (Ft), iron-sulfur (Fe-S) clusters and heme proteins (Gammella
et al., 2017; Li et al., 2018). This causes iron overload and thus accel-
erating the neurodegeneration. In neurological diseases like AD, PD and
Huntington’s disease; iron accumulates in various parts of the brain
such as the hippocampus, cortex, basal ganglia, substantia nigra etc.
Also, iron accumulation has been reported in the neurons and neuronal
organelles (Stankiewicz and Brass, 2009).

Numerous researchers are experimenting to bring down the iron
deposits in the brain. The pathological hallmarks of AD include amyloid
β peptide (Aβ) plaques, neurofibrillary tangles of tau (NFT)/ tau

phosphorylation, and brain iron overload (Sohre and Moosmann,
2018). It has been reported that the Aβ aggregation in the brain is
triggered by excessive exposure to metals such as iron, zinc and copper
(Kim et al., 2018). Several preclinical studies have implied the role of
these metals in the activation of CDK5/p25 complex and GSK-3β ki-
nase, thus leading to phosphorylation of tau (Kitazawa et al., 2009; Sun
et al., 2012; Guo et al., 2013). As iron is responsible for the formation of
Aβ plaques and Aβ plaques are responsible for the propagation of AD, it
can be postulated that iron is one of the responsible factors for stimu-
lating AD (Atwood et al., 1999). Some preclinical studies have de-
monstrated the role of iron in the formation of Aβ plaques
(Meadowcroft et al., 2009). Also, oxidative stress caused by iron
overload exaggerates the formation of senile plaques and NFT, thus
increasing the cognitive decline. A study has also demonstrated that
iron not only promotes the formation of Aβ plaques but also regulates
its production from amyloid precursor protein (APP) (Quintana et al.,
2006). Aβ peptides are formed when APP is cleaved by β- and γ-se-
cretases in the amyloid genesis. These Aβ peptides aggregate and form
Aβ plaques in the vicinity of iron. The translation of APP for the for-
mation of Aβ plaques is also regulated by intracellular iron via IRE RNA
stem loop present in the 5′-UTR of the APP transcript. This APP IRE
binds with IRP2 in the neurons to increase the expression of APP, in
turn increasing the Aβ plaques (Liu et al., 2018; Uranga and Salvador,
2018). A recent study has reported the role of mitochondrial ferritin in
the depletion of the labile iron pool. In Aβ25-35 exposed neurons,
overexpression of mitochondrial ferritin decreased oxidative stress and
averted cytochrome c release from mitochondria by activation of mi-
togen-activated protein kinase (MAPK) pathway. The reduction in
oxidative stress and cytochrome c expression aided in inhibition of
neuronal apoptosis (Yang et al., 2015).

The current drugs therapies which are available for the treatment of
AD and PD do not modify the disease but only give symptomatic relief.
Also, there are other hindrances like; Lesser drug reaching the brain due
to the presence of Blood Brain Barrier (BBB), reduced bioavailability of
the drug due to first-pass metabolism, extensive side-effects due to site
non-specificity, toxicity of drugs etc. (Tonda-Turo et al., 2018). There is
an unmet need for discovering potential drug candidates to ameliorate
neurodegeneration. The current drugs for AD are developed on the
basis of conventional pathology of neurodegeneration, therefore this
review investigates manifestations of iron overload leading to neuro-
degeneration and proposes therapeutic interventions based on same
mechanism.

2. Oxidative stress due to iron overload in the brain

All the metabolic processes in the body lead to the generation of
ROS. However, various repair/detoxifying mechanisms attenuate the
generation of ROS and undertake a repair mechanism for the normal-
ization of the damage caused by the same. If the threshold of the ROS
formation is breached, then it becomes difficult to mitigate the damage
caused due to oxidative stress and further impair the intracellular
molecules like DNA, nucleic acids, proteins, lipids etc. (Fig. 1)
(Gutteridge and Halliwell, 2018). Oxidative stress is reported to play an
important role in the damage caused in the brain leading to the pa-
thogenesis of neurodegeneration. Diseases like AD and PD are reported
to be caused due to increase in oxidative stress (Thawkar and Kaur,
2019). The typical hallmarks in these diseases like neurofibrillary tan-
gles, Aβ plaques have zinc, copper and iron as metal components. These
are responsible for the generation of ROS and thus induce damage
(Cheignon et al., 2018). Iron is the main component in the formation of
Aβ plaques. A recent study performed using 2D NMR obtained for the
conjugation of iron with Aβ has suggested that the carboxylate group
and the terminal amine of Asp1, Asp1-Ala2, His6-Asp7 (carbonyl
bonds), His6 (imidazole ring), His13 and His14 are involved in the
conjugation (Bousejra-Elgarah et al., 2011).

The colloidal form of iron, which is obtained from ferritin is present
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in the amyloid plaques. It is also reported that Fe+3-Aβ complex is not
stable, therefore it is converted to Fe+3(HO)3 and precipitate is formed.
However, the Fe+2-Aβ complex is stable and thus leads to ROS pro-
duction (Smith et al., 1997). Anti-oxidants which can cross the Blood
brain barrier (BBB) can be utilized for alleviating the oxidative stress
caused by iron overload. Natural antioxidants like curcumin, capsaicin,
epigallocatechin gallate, S-allyl cysteine etc. can be beneficial in the

reduction of oxidative stress (Table 1).
Recent research has demonstrated the anti-oxidant effects of cap-

saicin, curcumin and S-allyl cysteine in rat brain homogenate. Ferrozine
assay and electrochemistry were employed for testing the Fe+2 and
Fe+3 chelation respectively. It was studied that; these compounds were
effective in mitigating the lipid peroxidation induced by Fe+2 (Dairam
et al., 2008). These compounds can be further tested for the treatment

Fig. 1. Intracellular damage caused by Reactive oxygen species. (Gutteridge and Halliwell, 2018; Cheignon et al., 2018). Abbreviations: NTBI-Non-transferrin-bound
serum iron; LPI: Labile plasma iron; ROS: Reactive oxygen species.

Table 1
Natural Anti-oxidants reducing brain iron.

Natural Anti-oxidants Chemical structure Oxidation
potential

Fe+2 Chelating
activity (%) in brain

Role in Brain References

Curcumin 0.41 39 Curcumin has shown to decrease oxidative stress in
rat brain induced by sodium fluoride

(Kiran Kumar et al.,
2018)

Capsaicin 0.37 29 Capsaicin has shown reduction in oxidative stress and
increase in dopamine in drosophila model of
Parkinson’s disease

(Siddique et al.,
2018)

S-allylcysteine ___ 17 Low temperature-aged garlic extract has shown
positive effects in oxidative stress response in brain

(Hwang et al., 2019)

EDTA ___ 78 EDTA chelation therapy has ameliorated
neurotoxicity

(Alessandro and
Elena, 2019)

Glutathione 0.60 ____ Glutathione has shown to bind with copper ions thus
reducing cytotoxicity and oxidative stress

(Saporito-Magriñá
et al., 2018)

Melatonin 0.64 ____ Melatonin has alleviated secondary brain injury
induced by intracerebral haemorrhage via
suppressing oxidative stress and inflammation

(Wang et al., 2018)
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of neurodegenerative disorders.

3. Aggravation of apoptotic pathway by Iron overload

Toxicity led by iron in the brain can cause the generation of reactive
oxygen species, which in turn damages the mitochondria. Due to iron
accumulation, there is a decrease in the Fe-S cluster synthesis, FPN1
expression, glutathione levels and an increase in activation of DMT1,
TfR1 expression, ROS. Due to an increase in oxidative stress and de-
crease in glutathione levels, the complex 1 of mitochondria is blocked.
Also, levels of inflammatory cytokines increase, which in turn induce
mitochondrial dysfunction and iron accumulation. Thus, increase in
overall oxidative damage irreversibly results in apoptotic death.
Mitochondrial complex I dysfunction through a positive feedback loop
triggers the apoptotic pathway leading to the production of pro-in-
flammatory cytokines. These cytokines (lL6, IL-1β and, TNF-α) in ex-
cess cause further damage and aggravate the apoptotic pathway
(Urrutia et al., 2014). A recent study has shown anti-apoptotic effect of
Dexmedetomidine (Dex), a highly selective α-2-adrenoceptor agonist
on FeCl2-treated SH-SY5Y cells. 20 μM Dex has exhibited down-
regulation of pro-apoptotic proteins, activation of Caspase 3 and an
increase in the levels of the anti-apoptotic proteins (Hu et al., 2019).
Therefore, further research has to be conducted on compounds like Dex
for the prohibition of neuronal apoptosis. This will, in turn, decrease
neuronal death and prevent neurodegeneration.

Latest preclinical research utilized “Cannabidiol (CBD)” as a po-
tential drug for the reversal of iron-induced neurodegenerative effects
in neonatal and adult rats. Iron overload increased the levels of Caspase
3, Caspase 9, Apoptotic peptidase activating factor 1 (APAF1),
Cytochrome c and cleaved poly ADP ribose polymerase (PARP). It was
found that CBD withdrew iron-induced effects by recovering the levels
of Caspase 3, Caspase 9, APAF1 and cleaved PARP as compared to the
negative control group (da Silva et al., 2018). PI3K/AKT/mTOR
pathway was found to be inactivated by iron overload. Compounds like
Icariin have been tested, and have proved to attenuate PI3K/AKT/
mTOR pathway which was inactivated by iron overload. It was stated
that 1 μM Icariin was able to attenuate the elevated levels of Caspase-3
and BAX protein, induced by ferric ammonium citrate Guo and Ye,
2019.

Therefore, iron overload plays an important role in the maintenance
of the apoptotic pathway. Increased levels of iron can cause dysregu-
lation of apoptosis, in turn causing neuronal death.

4. Mitochondrial damage due to iron overload in brain

Mitochondrial respiratory chain which is located in the inner mi-
tochondrial membrane is the main functional part of the mitochondria.
This respiratory chain is responsible to carry out many metabolic ac-
tivities. The complexes I-V present in the mitochondria are responsible
for the phosphorylation of ADP to ATP by electron transfer mechanism
(Bhat et al., 2015). Under normal physiologic processes, less than 5 %
of ROS is generated mostly by the mitochondria. The ROS in the mi-
tochondria are produced in the electron-transport chain at NADH
complex and ubiquinone-cytochrome c reductase complex Nissanka and
Moraes, 2018. The latter being main site for the production of ROS,
these ROS produced in the mitochondria can damage the macro-
molecules like DNA, proteins, lipids etc. (Islam, 2017). Once the ROS
damages the mitochondrial DNA, it becomes target for oxidative da-
mage thus decreasing the expressions of specific proteins which are
important for electron transport chain. Due to this, there is damage
produced to the cell organelles, thus forming a vicious cycle and leading
to cell apoptosis. Excessive oxidative stress on the mitochondria can
also lead to disruption of Fe–S clusters thus subsequently lowering the
mitochondrial energy production (Ghezzi and Zeviani, 2012).

Mitochondrial dysfunction plays an important role in the patho-
genesis of neurodegenerative disorders like Alzheimer’s disease,Ta
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Parkinson’s disease, amyotrophic lateral sclerosis and Huntington’s
disease (Franco-Iborra et al., 2018). Pathological iron overload in the
mitochondria can cause various diseases ranging from sideroblastic
anemia to genetic defects such as mitochondrial protein translation.
The Fe-S clusters in the mitochondria are responsible for various cel-
lular functions for almost all cell types (Table 2). The iron levels in the
cytosol are highly regulated by the iron regulatory proteins IRP1 and
IRP2 (Angelova and Abramov, 2018). These proteins regulate the iron
by sensing the levels of iron in the cell and binding to mRNA, to carry
out metabolism of iron. An iron storage heteropolymer; ferritin and iron
uptake protein; transferrin receptor 1, help in the regulation of iron.
Mitochondria expresses mitoferrins which are iron uptake proteins
belonging to mitochondrial carrier family.

MFRN1 is the mitoferrin responsible for the iron uptake in the mi-
tochondria of erythroidal cells whereas, MFRN2 accounts for the iron
uptake in the non-erythroidal cells [42]. Frataxin which is present in
the mitochondria plays a role in the regulation of Fe-S cluster synthesis
(Puccio et al., 2001). Mitochondrial dysfunction due to disruption of
frataxin is also responsible to cause a disease called as Friedreich’s
ataxia. In the brain, it can affect the deep cerebellar nuclei adversely. A
recent study on downregulation of mitoferrin expression in the Droso-
phila model decreased mitochondrial iron accumulation and reversal in
neurodegeneration (Navarro et al., 2015). Iron chelators are being
studied for its action on reduction in the mitochondrial iron. Mi-
tochondria is the center of iron accumulation with the ability to gen-
erate free radical species by Fenton reaction. Iron chelators assist in
chelation of accumulated iron and decrease the labile iron pool (Nuñez
and Chana-Cuevas, 2018).

Therefore, iron chelators can be conjugated with the molecules
having mitochondrial affinity to give a site-specific action. A recent
study on the conjugate of Triphenylphosphonium (TPP) and desfer-
rioxamine (DFO) has shown good iron chelation and anti-oxidant ac-
tivity in comparison to DFO alone. TPP is a lipophilic cation with mi-
tochondrial affinity which assists DFO, an iron chelator for achieving
mitochondrial iron reduction (Alta et al., 2017). Similar strategy can be
applied by conducting a comparative study between TPP and various
iron chelators to evaluate which conjugate displays better action with
less toxic effects.

5. Neurodegeneration with brain iron accumulation disorders
(NBIA)

NBIA are neurodegenerative diseases which are genetically predis-
posed by the accumulation of iron deposition in the brain (Gregory and
Hayflick, 1993). The targeted regions are mainly in the basal ganglia,
like substantia nigra and globus pallidus (Arber et al., 2016). Also,
other brain regions such as cortex and cerebellum can have iron de-
posits. NBIA are typically autosomal recessive, X-linked or autosomal
dominant. The extrapyramidal symptoms include cognitive impair-
ment, parkinsonism, dystonia, spasticity, neuropsychiatric abnormal-
ities and retinal degeneration. NBIA causing genes are 15 in number,
out of which 2 genes are exclusively carry out iron homeostasis, the
other 13 genes are involved in subsequent metabolic pathways (Levi
and Tiranti, 2019).

Aceruloplasminemia caused by alteration in the ceruloplasmin (CP)
gene is the first ever disease to be discovered to cause neurodegen-
eration due to alteration in the iron regulation (Mukhopadhyay et al.,
1998). It is an autosomal recessive disease affective 1 in 2,000,000
people. Aceruloplasminemia can be caused due to 50–51 different
mutations in the CP gene. The location of CP gene is at chromosome no.
3q21-24 which encodes CP, functioning as a cellular iron exporter
mediated by ferroportin (Kono and Miyajima, 2014). This disease is
characterized by its typical hallmark of very low, undetectable levels of
CP and high levels of serum ferritin (Gonzalez-Cuyar et al., 2008). Iron
accumulation in neuronal and glial cells has been demonstrated in some
neuropathological investigations (Kaneko et al., 2012). A recent clinical

case report of a neurological patient in his 50 s diagnosed with acer-
uloplasminemia is suspected to have a novel homozygous mutation of
the CP gene at exon 6 (c.1192-1196del, p.Leu398Serfs). Brain magnetic
resonance imaging showed accumulation of iron in the basal ganglia,
cortex, thalami and dentate nuclei. Laboratory tests showed low levels
of haemoglobin, CP, transferrin and iron. Plasma ferritin levels were
elevated beyond normal (Stelten et al., 2019). CP is responsible to
regulate iron levels in the brain and prevents damage due to free ra-
dicals (Patel et al., 2002). Enzyme replacement therapy with CP is a
recent strategy been researched for the treatment of acer-
uloplasminemia.

A preclinical research on CP-/- mice was conducted by adminis-
tration of human CP to the mice. It was observed that, the essential
proteins in the brain were restored leading to reduction in cerebral iron
and improvement in motor co-ordination. This suggests that, enzyme
replacement therapy can be a novel strategy for the treatment of
aceruloplasminemia (Zanardi et al., 2018). The other genes with their
potential role in the human brain is given is Table 3.

6. Role of Iron chelators for the treatment of iron overload
induced neurodegeneration

Over the past decade, the use of iron chelators for the treatment of
neurodegenerative diseases has gained attention. The mechanism of
iron chelators is to chelate/bind iron and remove excess iron from the
body. Therefore, same mechanism is applied in brain by keeping iron
overload induced neurodegeneration into consideration. The iron che-
lators desferrioxamine, deferiprone and desferasirox which have been
approved for its clinical use in β-thalassaemia are been expended for
the treatment of neurodegeneration (Ward et al., 2015). There are
several preclinical and clinical studies (Table 4), which have expended
these iron chelators for the treatment of neurodegeneration. The dose of
iron chelators should be minimum, so that it does not affect the iron
levels in the other body tissues. The brain iron level should be mon-
itored with the help of T2* MRI technique, while treating with iron
chelators (Schenck et al., 2006). The iron chelators which are used,
should have ability to cross the BBB, should be target specific to the site
of iron accumulation and also should be capable of transferring the iron
to biological proteins like transferrin.

7. Future implications

The mechanisms of iron mediated neurodegeneration in disease like
AD needs to be explored further. Iron accumulation in the brain might
be responsible for the induction of cognitive impairment, but the levels
of iron in the brain do not typically rise to the levels observed in NBIAs.
Ayton et al. describes that, there is a faster decline in cognition in AD
brains with relatively higher iron levels but within normal ranges
(Ayton et al., 2019). Therefore, in depth research has to be performed
for finding the role of iron in the prognosis of neurodegeneration. Iron
chelators have been utilised currently for the amelioration of accumu-
lated iron (Alcalde et al., 2018). Good pre-clinical results are displayed
for the same, but there are many drawbacks like non-specificity and
excessive depletion of brain iron. Iron chelators can be conjugated with
the compounds which can cross the blood brain barrier, so as to ease
the entry of the drug in the brain. Also, mitochondrial specific cations
like TPP can be conjugated with iron chelators to attain mitochondrial
specific activity (Alta et al., 2017). As discussed previously, TPP and
DFO conjugated molecule has shown good results in brain mitochon-
drial iron chelation as compared to DFO alone. TPP can be conjugated
with naturally occurring low molecular weight which act as iron che-
lators as well as anti-oxidants, viz. flavonoids (Genistein, Flavan-3-ol),
quinoline derivatives (8-Hydroxyquinoline, menadiol) etc.
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8. Conclusion

Iron accumulation has become a significant contributing factor
leading to neurodegeneration. The factors include genetic and patho-
logical predispositions which contribute to cognitive impairment.
Treatment for the diseases like Alzheimer’s and Parkinson’s are now
strategically implied by keeping iron chelation into consideration.
Several preclinical models have been tested on these diseases, by
keeping iron chelation into consideration.

The research on finding the treatment for Alzheimer disease is now
not only limited to the hallmarks of Alzheimer’s i.e Amyloid β plaques
and Neurofibrillary tangles but, the newly emerging strategies include;
mitochondrial regulation, anti-oxidant therapy, GSK3β inhibition, and
iron chelation strategies etc. As, iron overload is also responsible for α-
synuclein aggregation in parkinsonism, molecules like Rosmarinic acid,
Hesperidin and nicotine are being tested positive for depletion of these
aggregations (Getachew et al., 2019; Pinto et al., 2018; Swerdlow,
2018)

Gene targeted therapies can also be utilised for the amelioration of
brain accumulated iron. Gene replacement or gene transfer approaches
can be applied for targeted treatment approach (Hayflick et al.,
2018).Gene silencing can be done by using novel drug delivery system
methodology. Newer strategies like oral siRNA-encapsulated nano-
particles-in-microspheres can be tested for silencing the genes re-
sponsible for iron overload (Attarwala et al., 2018).

Immense research is being carried out for the amelioration of iron
accumulation in the brain to treat neurodegeneration. Surprisingly,
there are only handful of strategies that have successfully transitioned
to clinical studies. Novel and clinically reliable approaches are neces-
sary for the fruitful advancement in this area.
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