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Abstract 

Hereditary hemochromatosis (HH) is mostly caused by mutations in the iron-regulatory gene HFE. 
The disease is associated with iron overload, resulting in liver cirrhosis/cancer, cardiomegaly, 
kidney dysfunction, diabetes, and arthritis. Fe2+-induced oxidative damage is suspected in the 
etiology of these symptoms. Here we examined, using Hfe-/- mice, whether disruption of uric acid 
(UA) homeostasis plays any role in HH-associated arthritis. We detected elevated levels of UA in 
serum and intestine in Hfe-/- mice compared to controls. Though the expression of xanthine 
oxidase, which generates UA, was not different in liver and intestine between wild type and Hfe-/- 
mice, the enzymatic activity was higher in Hfe-/- mice. We then examined various transporters 
involved in UA absorption/excretion. Glut9 expression did not change; however, there was an 
increase in Mrp4 and a decrease in Abcg2 in Hfe-/- mice. As ABCG2 mediates intestinal excretion 
of UA and mutations in ABCG2 cause hyperuricemia, we examined the potential connection 
between iron and ABCG2. We found p53-responsive elements in hABCG2 promoter and 
confirmed with chromatin immunoprecipitation that p53 binds to this promoter. p53 protein was 
reduced in Hfe-/- mouse intestine. p53 is a heme-binding protein and p53-heme complex is 
subjected to proteasomal degradation. We conclude that iron/heme overload in HH increases 
xanthine oxidase activity and also promotes p53 degradation resulting in decreased ABCG2 
expression. As a result, systemic UA production is increased and intestinal excretion of UA via 
ABCG2 is decreased, causing serum and tissue accumulation of UA, a potential factor in the 
etiology of HH-associated arthritis. 

 

Key Words: Hemochromatosis, Hfe-null mouse, iron/heme overload, tumor suppressor p53, 
ABCG2, hyperuricemia 

 

Short title: Hyperuricemia in hemochromatosis via iron/heme-p53-ABCG2 axis 

 

Summary Statement 

Deletion of the iron-regulatory gene Hfe leads to hyperuricemia via heme-induced degradation of 
p53 and consequent silencing of ABCG2 expression; these findings have relevance to the etiology 
of arthropathy, a common symptom in patients with the iron-overload disease hemochromatosis.     
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Introduction 

Uric acid (UA), the ubiquitous end-product of purine catabolism, is an intriguing molecule whose 
biochemical and pathological effects are dictated by its concentration and the surrounding 
microenvironment. UA is one of the major endogenous antioxidants whose action is directed 
towards prevention of lipid peroxidation and inactivation of nitric oxide synthase [1]. In addition, 
UA is a potent iron chelator; it minimizes iron-mediated redox reactions and generation of reactive 
oxygen species (ROS) [2]. However, this is true only when UA is present in physiologic 
concentrations, which is 3.5 – 7.2 mg/dL in adult males and postmenopausal females and 2.6 – 6.0 
mg/dL in premenopausal women [3]. However, the antioxidant capacity of UA is overshadowed 
by detrimental effects when its concentration exceeds its maximal solubility (6-7 mg/dL) [4]. In 
this scenario, UA precipitates and crystalizes as monosodium urate (MSU), which gets deposited 
in joints, leading to inflammation and gouty arthritis [5]. Since there is an overlap in UA 
concentrations that define hyperuricemia and that dictate MSU crystal formation, and both have 
pathological implications, recent discussions continue to emphasize the need for reduction of this 
“healthy” UA range [3].  

Origin of inflammation caused by MSU crystals is multifactorial. MSU crystals in synovium are 
engulfed by neutrophils/monocytes where they initiate ROS production and cell death [5]. In 
addition, they communicate with resident macrophages; upon encounter, MSU crystals trigger the 
assembly of NLRP3-inflammasome in macrophages and stimulate production and secretion of the 
proinflammatory cytokine interleukin-1β [5]. Ultimately, the proinflammatory cytokine storm, 
accumulation of ROS, and acute (later chronic) flares and excruciating joint pain constitute the 
pathophysiology of gout [4]. The levels of UA in circulation are dictated by the balance between 
the rate of its production and the rate of its excretion, and genetics is an important determinant in 
this phenomenon. Recently we reviewed the genetic defects in various transporters that play a 
critical role in UA homeostasis, consequently leading to either hypouricemia or hyperuricemia [6]. 

An additional risk factor for arthritis is iron [7] because free iron participates in redox reactions by 
acting as an electron donor and receptor, ultimately leading to production of hydroxyl radicals and 
oxidative damage [8]. If that occurs in synovium, arthritis-like symptoms appear [9]. Hereditary 
hemochromatosis (HH) is considered to be the most prevalent disease associated with iron 
overload; it affects 1 in 250 individuals in certain populations [11]. It is usually referred to as a 
“silent disease” because iron loading and iron-elicited damages occur gradually, and detrimental 
symptoms appear only at 50-60 years of age [12]. In about 80% of cases, HH is caused by 
autosomal recessive mutations in HFE gene, with C282Y being the most prevalent mutation [13]. 
HFE, a major histocompatibility class-I-like plasma membrane protein [14], is a critical 
component of iron-sensing and iron homeostasis-regulatory complex. Its action is mediated by 
promotion of the synthesis of hepcidin, a hepatic hormone that regulates the amount of iron that 
enters circulation from diet and tissue-resident macrophages [15]. Missense mutations in HFE 
disrupt the iron-sensing complex and leads to ablation of hepcidin production [16]; this causes 
systemic iron overload and iron deposition in multiple organs [17]. As a result of iron deposition 
and iron-induced oxidative damage, the disease manifests with dysfunction of multiple organs, 
causing liver cirrhosis and liver cancer, nephropathy, cardiomegaly, diabetes, and pituitary 
insufficiency.  
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Arthropathy is commonly seen in patients with HH [18-23]. Iron accumulation and consequent 
oxidative damage are believed to be the principal cause of joint damage in HH. Calcium 
pyrophosphate dihydrate crystals are found in affected joints, imitating pseudogout [24] and free 
iron reduces the clearance of these deposits from joints [25]. There are no published reports linking 
HH to dysregulation of UA homeostasis; this is intriguing given the well-established role of excess 
UA in arthritis. This critical knowledge gap renders our current understanding of arthropathy in 
HH incomplete.  Therefore, we examined UA status in HH using a mouse model of HH, namely 
Hfe-/- mouse. These studies demonstrate that Hfe-/- mice have hyperuricemia and that decreased 
excretion of UA in the intestine via down-regulation of the UA exporter ABCG2 is likely to be the 
principal contributor to this phenomenon. 

Materials and Methods 

Animals 

Hfe-/- mice on C57BL/6 background were purchased from Jackson Laboratory (Bar Harbor, ME, 
USA) and C57BL/6 Abcg2-/- mice were purchased from University of California Davis Knockout 
Mouse Project (KOMP) Repository (Davis, CA, USA). The mice were maintained at the animal 
facility of Texas Tech University Health Sciences Center (TTUHSC) in a temperature- and light-
controlled environment, with water and laboratory rodent diet provided ad-libitum. Male and 
female mice older than 7 months were used in this study. The control mice matched the background 
strain, age and gender of the experimental groups. All experimental procedures were approved by 
the TTUHSC Institutional Animal Care and Use Committee (IACUC – protocol number 18005) 
and the Institutional Review Board (IRB). For tissue collection, mice were killed by cervical 
dislocation under CO2 anesthesia in accordance with the guidelines from the American Veterinary 
Medical Association. 

Cell Culture 

Normal human colonic epithelial cell line, CCD841, was purchased from American Type Culture 
Collection (ATCC, Manassas, VA, USA). The cell line was cultured in RPMI 1640 (Corning, 
Corning, NY, USA) supplemented with 10% FBS (Fisher Scientific, Pittsburgh, PA, USA) and 
1% penicillin/streptomycin (Corning, Corning, NY, USA). Viral packaging cell line, HEK293FT, 
was purchased from ATTC (Manassas, VA, USA) and maintained in DMEM 4.5 g/L glucose, L-
glutamine, sodium pyruvate (Corning, Corning, NY, USA) supplemented with 10% FBS and 1% 
penicillin/streptomycin. HEK293FT cells were used for transient transfection experiments where 
they were cultured for three passages in the presence and absence of excess iron in the form of 
ferric ammonium citrate (FAC) (Sigma, St. Louis, MO, USA) [26] and then used for ectopic 
expression of p53.  

Antibodies 

Anti-ABCG2 (D5V2K XP®, #42078) and anti-p53 (1C12, #2524) monoclonal antibodies were 
purchased from Cell Signaling Technology (Danvers, MA, USA). Anti-β-actin (C4, sc-47778) and 
anti-β-tubulin (D-10, sc-5274) monoclonal antibodies were purchased from Santa Cruz 
Biotechnology (Dallas, TX, USA). Anti-xanthine oxidase monoclonal antibody (EPR4605, 
ab109235) was purchased from Abcam (Cambridge, MA, USA) and anti-GLUT9 polyclonal 
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antibody (PA5-22966) was purchased from Thermo Fisher Scientific (Waltham, MA, USA). 
Horseradish peroxidase-conjugated goat anti-rabbit (#1706515) and goat anti-mouse (#1706516) 
were purchased from Bio-Rad Laboratories (Hercules, CA, USA).  

Measurement of UA 

The UA content of the intestinal tissue and serum was measured by the fluorimetry-based Uric 
Acid Assay Kit (Abcam, Cambridge, MA, USA), as described by the manufacturer. The UA 
concentration of the tissue was recorded as nmol of UA per milligram of protein, while the serum 
concentration was recorded as nmol of UA per ml of serum. 

Measurement of serum creatinine 

Creatinine concentration in serum was measured by the fluorimetry-based Creatinine Assay Kit 
(Biovision, Milpitas, CA, USA) as per manufacturer’s protocol. The creatinine concentration was 
recorded as mg/dl of serum.  

Measurement of uricase activity 

Uricase activity in liver and colon was measured by the fluorimetry-based Amplex® Red Uric 
Acid/Uricase Assay Kit (Thermo Fisher Scientific, Waltham, MA, USA) as per manufacturer’s 
protocol. Uricase activity was recorded as mU/mg protein. One unit is defined as the amount of 
enzyme that will convert 1 µmole of uric acid to allantoin per min at pH 8.5 and 25  ̊C. 

Measurement of XO activity 

XO activity in liver and jejunum was measured by fluorimetry-based XO Activity Assay Kit 
(Sigma, St. Louis, MO, USA) as per manufacturer’s protocol. XO activity was recorded as nmol 
of H2O2 generated per minute per milligram of protein. 

RNA isolation and quantitative PCR 

Total RNA from animal tissues and cultured cells was extracted using TRIzol reagent (Thermo 
Fisher Scientific, Waltham, MA, USA). RNA purity and concentration were quantified using 
NanoDrop Spectrophotometer 2000 (Thermo Fisher Scientific, Waltham, MA, USA). 2 µg of 
RNA was reverse transcribed into cDNA using the SuperScript III First-Strand cDNA synthesis 
kit (Thermo Fisher Scientific, Waltham, MA, USA). Relative mRNA levels were measured with 
StepOne Plus real-time PCR system (Applied Biosystems, Foster City, CA, USA) using the 
SYBR® Green supermix (Bio-Rad Laboratories, Hercules, CA, USA), and were normalized to the 
housekeeping gene HGPRT (hypoxanthine/guanine phosphoribosyl transferase). The PCR primer 
sequences are given in Supplementary Table S1.  

Protein isolation and western blot 

For whole tissue/cell extract preparation, tissues and cells were lysed in Pierce™ RIPA buffer 
(Thermo Fisher Scientific, Waltham, MA, USA) supplemented with Halt™ Protease and 
Phosphatase Inhibitor Cocktail (Thermo Fisher Scientific, Waltham, MA, USA). Homogenates 
were centrifuged, and supernatants were used for protein measurement via Pierce™ BCA Protein 
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Assay Kit (Thermo Fisher Scientific, Waltham, MA, USA). Western blot samples were prepared 
in Laemmli Sample Buffer (Bio-Rad Laboratories, Hercules, CA, USA). They were loaded onto a 
10% SDS-polyacrylamide gel electrophoresis (SDS-PAGE) gel and transferred onto a PVDF 
membrane (Bio-Rad Laboratories, Hercules, CA, USA). The membrane was blocked, and 
antibodies diluted in 5% nonfat dry milk (Bio-Rad Laboratories, Hercules, CA, USA) or in 5% 
bovine serum albumin (Irvine Scientific, Santa Ana, CA, USA) were used. Protein bands were 
visualized using Pierce™ ECL Western Blotting Substrate (Thermo Fisher Scientific, Waltham, 
MA, USA) and developed on the autoradiography film (Santa Cruz, Dallas, TX, USA). 

Isolation of ileal and colonic mucosal epithelial cells 

Ileum and colon were cut open longitudinally, washed with ice-cold phosphate-buffered saline and 
placed on an ice-cold glass surface with the lumen side facing up. The epithelium was 
mechanically detached and collected by scraping with the glass slide. Samples were centrifuged 
and the pellet was used for further analysis.  

Lentiviral transfection 

Construct for shRNA to degrade p53 mRNA (pLKO-p53-shRNA-427; Addgene plasmid # 25636) 
was created by Todd Waldman laboratory and purchased from Addgene plasmid repository 
(Watertown, MA, USA) [27]. pLKO.1 empty vector was used as a control. To generate transient 
virus stock, HEK293FT cells were plated in 10-cm dish and allowed to reach 100% confluency. 
7.5 µg of control, shRNA vector, and packaging plasmids (PLP1, PLP2, and VSVG) were 
delivered to the cells using Lipofectamine-2000 reagent (Thermo Fisher Scientific, Waltham, MA, 
USA). 48 h after transient transfection, the virus-containing medium was harvested, centrifuged 
and filtered to generate virus stock. CCD841 cells were seeded in 6-well plates; they were at 50% 
confluency on the day of the infection. Virus stock contained 8 µg/ml of polybrene to increase the 
transduction efficacy. 48 h after infection, desired clones were selected by administration of 
puromycin (1 µg/ml).   

Chromatin immunoprecipitation assay  

ChIP assays were performed using EZ-Magna ChIP A/G kit (Millipore, Burlington, MA, USA) 
according to the manufacturer’s instructions. Briefly, cells were cross-linked with 1% 
formaldehyde, collected in phosphate-buffered saline supplemented with Halt™ Protease and 
Phosphatase Inhibitor Cocktail (Thermo Fisher Scientific, Waltham, MA, USA) and lysed in 
nuclear lysis buffer. The lysate was then sonicated using BioRuptor Plus (Diagenode, Denville, 
NJ, USA) to shear DNA into fragments of approximately 200-1,000 base pairs. DNA 
concentration was measured using NanoDrop Spectrophotometer 2000 (Thermo Fisher Scientific, 
Waltham, MA) and 25 µg of DNA was used for immunoprecipitation with anti-p53 antibody or 
normal mouse IgG. Before immunoprecipitation, 1% of the supernatant was removed as an input. 
DNA was isolated on the column and relative enrichment of p53 on hABCG2 gene promoter was 
assessed via real-time quantitative PCR. The PCR primer sequences are provided in 
Supplementary Table S1.  
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Transient transfection 

Construct for wild type p53 (pcDNA3 p53 WT; Addgene plasmid # 69003) was purchased from 
Addgene plasmid repository (Watertown, MA, USA) [28]. pcDNA3 empty vector was used as a 
control. HEK293FT cells were cultured first for three passages in the absence or presence of FAC 
(250 µg/ml) and then used for transient ectopic expression of p53. Control and iron-overloaded 
cells  were plated in 6-well plates and allowed to reach 80-90% confluency. 2.5 µg of control and 
p53 WT plasmids were delivered to the cells using Lipofectamine-3000 reagent (Thermo Fisher 
Scientific, Waltham, MA, USA). Ferric ammonium citrate was absent during the transfection step, 
but was added to the culture medium after that step. 48 h later, RNA and protein lysates were 
prepared. 

Statistical analysis 

Experiments were repeated at least three times. The data shown are representative results of the 
means ± SEM. Statistical analyses and graphing were performed using GraphPad Prism 7.01 
software. Statistical differences between control and experimental groups were analyzed by a two-
tailed, unpaired Student’s t-test for single comparison. Differences were judged statistically 
significant when the p value < 0.05.  

Results 

Hfe-/- mouse exhibits hyperuricemia  

To assess if HH leads to the development of hyperuricemia, we measured systemic and organ-
specific UA concentration in Hfe-/- mice. We found that, when compared to the wild type, Hfe-/- 

mice had elevated UA in the circulation (Figure 1A). As the large intestine and mid-to-distal parts 
of the small intestine are involved in UA homeostasis, contributing to at least 40% to total UA 
excretion, we monitored UA levels in Hfe-/- intestine. Compared to the control, Hfe-/- ileum (Figure 
1B) and colon (Figure 1C) had a significantly higher accumulation of UA.  

Besides the intestinal tract, UA is excreted by the kidneys [29]; as such, renal dysfunction is also 
a significant determinant of circulating levels of UA. Therefore, we investigated if the observed 
UA accumulation in serum was due to the impaired glomerular filtration in HH. We estimated the 
glomerular filtration rate in wild type mice and Hfe-/- mice in an indirect manner by measuring the 
concentration of creatinine in circulation. If the body weight is comparable between the two 
groups, creatinine levels in blood serve as a surrogate for glomerular filtration rate.  For this, we 
used only male mice; mice in both genotype groups had comparable body weight (Supplementary 
Figure S1A). We found that the serum creatinine levels did not differ between the two groups 
(Supplementary Figure S1B), suggesting that there is no difference in glomerular filtration rate 
between wild type and Hfe-/- mice (males, 7-month-old).  

Uricase expression and activity in wild type and Hfe-/- mice 

The hyperuricemia in Hfe-/- mice can be due to overproduction, degradation, or underexcretion of 
UA, or a combination of some or all. To discern the underlying mechanism of UA elevation, we 
first investigated the expression and activity of uricase (also called urate oxidase), an enzyme that 
oxidizes UA into allantoin in rodents, but is absent in humans and other higher primates due to the 

D
ow

nloaded from
 https://portlandpress.com

/biochem
j/article-pdf/doi/10.1042/BC

J20190873/870882/bcj-2019-0873.pdf by Shanghai Jiaotong U
niversity user on 06 April 2020

Biochem
ical Journal. This is an Accepted M

anuscript. You are encouraged to use the Version of R
ecord that, w

hen published, w
ill replace this version. The m

ost up-to-date-version is available at https://doi.org/10.1042/BC
J20190873



8 
 

non-functional pseudogene [30]. Quantitative PCR analyses showed no significant difference in 
the mRNA expression of uricase between two genotypes (Supplementary Figure S2A). In addition, 
deletion of Hfe gene did not alter uricase activity (Supplementary Figure S2B).  

Increased enzymatic activity of xanthine oxidase in Hfe-/- mouse 

Next, we investigated the expression levels and the activity of xanthine oxidase (XO), the enzyme 
that catalyzes the terminal reaction in UA synthesis [31]. XO is expressed in mouse liver and small 
intestine, with the highest levels present in jejunum (Figure 2A). On the protein level, however, 
XO was most abundant in liver; its levels were much less in the intestinal tract and it decreased 
aborally (Figure 2B). This expression pattern did not differ between wild type and Hfe-/- mice, 
except for liver, where XO mRNA decreased in Hfe-/- mice (Figure 2C, D). Since XO active site 
contains molybdenum and iron as cofactors [32], we pondered whether excess iron alters XO 
enzyme activity. We measured XO enzymatic activity in liver and jejunum of wild type and Hfe-/- 

mice. We found a significant increase in XO activity in Hfe-/- liver and jejunum (Figure 2E).  

Glut9 and Mrp4 expression in Hfe-/- mouse 

We then monitored the expression levels of the transporters that are involved in absorption and 
excretion of UA in liver and intestine in wild type and Hfe-/- mice.  We first focused on two 
transporters: a passive, bidirectional UA carrier GLUT9 (also known as SLC2A9) and an ATP-
dependent unidirectional UA exporter MRP4 (ABCC4). These transporters are expressed on apical 
and basolateral membranes in hepatocytes and enterocytes [33]. Glut9 mRNA expression was 
comparable between liver and jejunum of the wild type mice, but it was significantly lower in 
ileum and colon (Figure 3A). On the contrary, protein levels differed significantly, with Glut9 
primarily detectable in the intestinal tract (Figure 3B). More relevant to the current study is the 
finding that deletion of Hfe did not influence the levels of Glut9 mRNA or protein (Figure 3C, D). 
Mrp4 was expressed highly in liver and colon; its expression increased aborally in the intestinal 
tract (Figure 3E). When compared to wild type mice, Mrp4 mRNA levels were lower in the liver, 
but significantly higher in the jejunum and colon of Hfe-/- mice (Figure 3F).  

Abcg2 expression in wild type mouse and impact of Abcg2 deletion on UA in circulation 

UA is a substrate for the ATP-dependent export pump ABCG2 [34]; the transporter is responsible 
for most of intestinal excretion of UA. Abcg2 mRNA was found in kidney, liver and intestinal 
tract, highest level of expression noted in jejunum and ileum (Figure 4A). Abcg2 protein was 
highest in jejunum, and it decreased in the intestinal tract aborally (Figure 4B). In a genome-wide 
association study, Woodward et al. [35] identified multiple SNPs in ABCG2 to be associated with 
hyperuricemia and gout. The Q141K mutation decreases the transport function of ABCG2 by 
~50% [35]. This phenomenon is phenocopied in Abcg2-/- mice, where complete deletion of Abcg2 
gene resulted in elevated UA levels in circulation (Figure 4C).  

Downregulation of Abcg2 in the intestinal tract of Hfe-/- mice 

As hyperuricemia was found in Hfe-/- mice as well as in Abcg2-/- mice, we became curious about a 
possible connection between HFE and ABCG2. We hypothesized that Abcg2 expression is 
decreased in HH, thus providing a molecular basis of hyperuricemia in Hfe-/- mice. To test this 
hypothesis, we monitored the expression levels of Abcg2 mRNA and protein in ileum and colon 
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between wild type and Hfe-/- mice, specifically in the mucosal epithelium. Abcg2 mRNA was 
significantly lower in Hfe-/- colon (Figure 5A). The Abcg2 protein levels were also lower in ileum 
and colon in Hfe-/- mice (Figure 5B-D).  The decrease was ~5-fold in ileum and ~3-fold in colon.  

p53-mediated transcriptional regulation of ABCG2 

The follow-up question that needed to be answered was: what is the mechanism underlying the 
Abcg2 downregulation in HH mouse? 5’-UTR of hABCG2 and mAbcg2 is located in exon1 and is 
alternatively spliced to translation start site in exon 2. There are at least 3 splice variants found in 
both species, which results from alternative promoter usage [36]. Colon hABCG2 expresses all 
three isoforms [37], while mAbcg2 variants are primarily investigated in hematopoietic stem cells 
[38]. Analysis of the 5’-UTRs of human ABCG2 and mouse Abcg2 5’ revealed binding sites for 
p53 (Figure 6A). To test if the interaction between ABCG2 promoter and p53 occurs in cells, we 
performed ChIP assay. Experiment was conducted in the normal human colonic epithelial cell line, 
CCD841. We generated lentiviral transfectants to silence p53 via shRNA, while empty vector was 
used as a control; we noted a marked decrease in ABCG2 protein levels when p53 was silenced 
(Figure 6B). If p53 binds to ABCG2 promoter, the contact between the protein and the promoter 
would be lower in the shRNA-silenced cell line. We used a specific antibody to pull down p53, 
and performed quantitative PCR using primers specific for the hABCG2 promoter with p53 
pulldown. This analysis revealed significant enrichment of ABCG2 promoter in the p53 pulldown. 
The opposite trend was observed in the shRNA-silenced cell line. When p53 protein levels were 
lowered, the enrichment was significantly reduced (Figure 6B). The validity and dependability of 
the method were supported by observations that the pulldown of the p21 and GADD45A, the 
prototypical targets for p53, was also decreased in cells where p53 was silenced (Figure 6B).    

Recent studies have shown that p53 is a heme-binding protein and that p53-heme complex is 
exported out of nucleus for subsequent proteasomal degradation [39]. This suggested that heme 
accumulation as occurs in HH might lead to downregulation of p53 in Hfe-/- mice.  Therefore, we 
hypothesized that decreased expression of p53 is responsible for decreased expression of Abcg2 
in Hfe-/- mice. We collected ileal and colonic mucosa of wild type and Hfe-/- mice and performed 
western blot to compare p53 protein levels between two genotypes. We found that p53 protein was 
significantly lower in Hfe-/- ileum than in wild type controls (Figure 7A); the reduction was ~4-
fold compared to the control (Figure 7B). The same was true in Hfe-/- colon (Figure 7C, D). 

Effect of p53 reconstitution on FAC-induced decrease in ABCG2 expression  

Our studies show that chronic exposure to iron in colonic epithelial cells decreases p53 protein 
with subsequent decrease in ABCG2 mRNA. To confirm these findings further, we reconstituted 
p53 in FAC-exposed cells via ectopic expression to see if it would restore ABCG2 mRNA levels. 
Initial experiments with FAC-exposed CCD841 cells for ectopic expression of p53 failed due to 
low transfection efficiency. Therefore, we used HEK293FT cells, which exhibit robust transfection 
efficiency. We first exposed these cells to FAC (250 µg/ml) for three passages. Control and FAC-
exposed cells were then used for transient ectopic expression of p53. FAC was omitted during 
transfection. We then monitored p53 protein levels (Western blot) and ABCG2 mRNA levels 
(qRT-PCR) in control and FAC-exposed cells with and without ectopic expression of p53. We 
observed decreased p53 protein in FAC-exposed cells compared to control cells (Supplementary 
Figure S3A). Under these conditions, we also observed the downregulation of ABCG2 mRNA 
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(Supplementary Figure S3B). Ectopic expression of p53 reconstituted this protein, both in control 
and FAC-exposed cells (Supplementary Figure S3A), which led to a significant recovery of 
ABCG2 mRNA in FAC-exposed cells (Supplementary Figure S3B). These data confirm that the 
decrease in ABCG2 mRNA in FAC-exposed cells is indeed due to decreased levels of p53 protein.  

Discussion 

In the present study, we focused on the relationship between hereditary hemochromatosis (HH) 
and uric acid (UA) homeostasis. The findings and implications of the present study can be 
summarized as follows (Figure 8). Deletion of the iron-regulatory protein Hfe causes 
hyperuricemia, and its origin is multifactorial. Under conditions of iron overload as occurs in HH, 
xanthine oxidase, which generates UA as the final step in the catabolism of purine bases, becomes 
more active, possibly leading to increased production of UA. In addition, the expression of the UA 
transporter repertoire changes significantly in the liver and intestinal tract, likely altering 
transmembrane transport of UA involved in removal of UA from the cells and excretion of UA 
into intestinal lumen.  In our opinion, the most significant finding of the present study is the marked 
decrease in the expression of the UA exporter Abcg2 in the intestinal tract in HH. This transporter 
is known to be responsible for ~40% excretion of UA from the body; as such, the decreased 
expression of this transporter in HH is probably the major contributor to HH-associated 
hyperuricemia. Based on this conclusion, we investigated the molecular events underlying the 
downregulation of ABCG2 in HH. We showed that ABCG2 is a direct target for the tumor 
suppressor p53 and that the protein levels of p53 are profoundly decreased in HH. We have 
established the regulation of ABCG2 expression by p53 via ChIP that showed binding of p53 to 
hABCG2 gene promoter. We also showed that HH is associated with increased accumulation of 
heme in epithelial cells lining the ileum and colon; this is relevant to the decrease in p53 protein 
levels in HH. Studies by others have shown that p53 is a heme-binding protein and that p53-heme 
complex is a substrate for proteasomal degradation [39]. There is however some discordance 
between Abcg2 mRNA levels and Abcg2 protein levels in the Hfe-/- intestine; the decrease in 
mRNA is much less pronounced than the decrease in protein. Even though this could be explained 
by the often observed finding that mRNA levels do not always correspond to protein levels, the 
possibility of additional transcriptional control of Abcg2 in HH by factors other than p53 cannot 
be excluded. The transcription factor Nrf2 is a likely candidate; Nrf2 is known to induce hABCG2 
transcription [6], and the activity of this transcription factor is increased by oxidative stress as 
occurs under iron-overload conditions such as HH. Taken collectively, the results of the present 
study show that hemochromatosis is associated with elevated levels of UA and the iron/heme-p53-
ABCG2 axis plays a critical role in this phenomenon. As arthritis is a common pathological 
symptom in patients with HH, the findings of the current study have profound clinical implications 
because they underscore the potential involvement of hyperuricemia in the pathogenesis of HH-
associated arthropathy.        

In contrast to the findings in our study which showed p53 as an inducer of ABCG2 expression, 
Wang et al. [40] have reported that p53 is a suppressor of ABCG2 expression, not directly but 
indirectly by decreasing the levels of NFκB. Our studies have shown a direct effect of p53 on 
ABCG2 expression as documented by the binding of p53 on hABCG2 gene promoter. The 
discrepancy between the two studies is most likely related to potential differences in the expression 
levels and activity status of NFκB in tissues and cell lines employed. 
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MRP4 has been shown to be an ATP-dependent urate exporter in a heterologous expression system 
using HEK293 cells [41]; however, the extent of its involvement in the maintenance of UA 
homeostasis in vivo in humans is not known. Although in experimental animals, knockdown of 
Mrp4 in kidneys cause reduction in urate export [42], there is no significant association between 
the MRP4 gene polymorphism and hyperuricemia and gout occurrence in humans [43]. The only 
study reported in the literature on any potential association between MRP4 and UA homeostasis 
is that by Tanner et al. [44]. This study analyzed MRP4 gene polymorphism in the settings of 
hyperuricemia and gout. It was found that amongst the 39 MRP4 SNPs, only rs4148500 correlated 
with the hyperuricemia and gout; however, the molecular mechanism for the correlation was not 
explored. In the present study, we found a dramatic increase of Mrp4 mRNA levels in Hfe-/- mouse 
intestine, but the significance of this finding remains to be investigated. It is possible that the 
increase in the expression of MRP4 represents an attempt to maintain UA homeostasis as a 
feedback response to the downregulation of ABCG2 and the resultant increase UA levels.   

To the best of our knowledge, studies by Flais et al. [45] is the only report in published literature 
that addressed hyperuricemia in HH. These investigators found that in a large cohort of patients 
who harbored C282Y mutation in HFE, hyperferritinemia (an evidence for iron overload) was 
associated with hyperuricemia occurrence. Our results are also consistent with the cross-sectional 
studies conducted in patients with excessive iron accumulation and hyperferritinemia where iron 
overload was not of a genetic origin as in HH. In these studies, increase in serum ferritin 
concentrations correlated positively with the increase in UA levels, and the association was 
independent of gender, race, age, body mass index, and alcohol consumption [46]. The same trend 
was seen amongst obese adolescents, irrespective of their body mass index [47]. However, these 
reports did not focus on the causal relationship between iron overload and hyperuricemia. In this 
regard, the present study is novel, because besides directly demonstrating elevated UA levels in 
the Hfe-/- mouse model of HH, it provides a molecular mechanism for hyperuricemia in HH.  

Does the elevation in UA in HH have a beneficial effect or pathological effect? This question arises 
because of the dual role of UA, functioning both as an antioxidant and a pro-inflammatory agent. 
We opine that hyperuricemia in HH is detrimental because of the co-occurrence of free iron. UA 
is a chelator of iron, and free iron facilitates crystallization of monosodium urate (MSU) [48].   
Besides its deposition in joints, triggering excruciating acute and chronic flares characterized in 
gout, MSU crystallization is associated with the development of metabolic syndrome [49], 
cardiovascular diseases [50], liver failure [51], and kidney failure [52]. Occurrence of these 
maladies is common in HH patients; therefore, our study suggests a plausible connection between 
hyperuricemia and the afore-mentioned broad-spectrum of organ dysfunction in HH. 

In conclusion, circulating levels of UA are increased significantly in HH, potentially contributing 
to the known increased incidence of arthritis in this genetic disorder. Our studies uncover at least 
two molecular mechanisms for this HH-associated hyperuricemia, namely increased generation of 
UA due to increased enzymatic activity of xanthine oxidase in the liver and intestine, and decreased 
intestinal excretion of UA due to decreased expression of the UA exporter Abcg2 in the intestinal 
tract. 
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Figure legends 

Figure 1. Systemic and organ-specific accumulation of UA in Hfe-/- mice. UA concentration 
was measured in (A) serum, (B) ileum, and (C) colon in Hfe-/- mice and their wild type counterparts 
using UA Assay Kit. Mice used in the study were 14-months old. Data show mean values of three 
mice per group ± SEM. **P < 0.01, ***P < 0.001. 

Figure 2. Activity of XO, but not its expression, is significantly increased in Hfe-/- mouse liver 
and small intestine. (A) Quantitative PCR analysis of XO mRNA in liver and intestinal segments 
of wild type mouse. Data show mean values ± SEM relative to liver, which is taken as 1. ****P < 
0.0001; ns, not significant. (B) Western blot for XO protein levels in liver and intestinal segments 
of wild type mouse. Western blot band intensities were estimated using ImageJ software and the 
band intensities were normalized to the respective β-tubulin band intensities. Please see 
Supplementary Figures S4 and S5 for full blot images. (C) Quantitative PCR analysis of XO 
mRNA in liver, jejunum, ileum, and colon of Hfe-/- mice and wild type mice. Data show mean 
values of three mice per group ± SEM relative to control mice. *P < 0.05. (D) Western blot for 
XO protein levels in Hfe-/- and wild type liver and jejunum. Western blot band intensities were 
estimated using ImageJ software and the band intensities were normalized to the respective β-actin 
band intensities.  Please see Supplementary Figure S6, S7, S8, and S9 for full blot images. (E) XO 
activity in wild type and Hfe-/- mice. Data show the mean of three mice per group ± SEM. **P < 
0.01; ***P < 0.001.  

Figure 3. Expression of Glut9 and MRP4 in wild type and Hfe-/- mouse liver and intestinal 
tract. (A) Quantitative PCR analysis of Glut9 mRNA in liver and intestinal segments of wild type 
mouse. Data show mean values ± SEM relative to liver, which is taken as 1. *P < 0.05; ***P < 
0.001. (B) Western blot for Glut9 protein levels in liver and intestinal segments of the wild type 
mouse. Western blot band intensities were estimated using ImageJ software and the band 
intensities were normalized to the respective β-tubulin band intensities. Please see Supplementary 
Figures S5 and S10 for full blot images. (C) Quantitative PCR of Glut9 mRNA in liver, jejunum, 
ileum, and colon of Hfe-/- mice and wild type mice. Data show mean values of three mice per group 
± SEM relative to control mice. (D) Western blot for Glut9 protein levels in Hfe-/- mouse and wild 
type mouse liver, jejunum, ileum, and colon. Western blot band intensities were estimated using 
ImageJ software and the band intensities were normalized to the respective β-actin band intensities. 
Please see Supplementary Figures S8, S9, and S11 for full blot images. (E) Quantitative PCR 
analysis of Mrp4 mRNA in liver and intestinal segments of wild type mouse. Data show mean 
values ± SEM relative to liver, which is taken as 1. *P < 0.05; ***P < 0.001. (F) Quantitative PCR 
analysis of Mrp4 mRNA in liver, jejunum, ileum, and colon of Hfe-/- mice and wild type mice. 
Data show mean values of three mice per group ± SEM relative to control mice. **P < 0.01. 

Figure 4. Abcg2 is robustly expressed in mouse intestine. (A) Quantitative PCR analysis of 
Abcg2 mRNA in kidney, liver, and intestinal segments of wild type mouse. Data show mean values 
± SEM relative to kidney, which is taken as 1. ****P < 0.0001. (B) Western blot for Abcg2 protein 
levels in intestinal segments of wild type mouse. Western blot band intensities were estimated 
using ImageJ software and the band intensities were normalized to the respective β-actin band 
intensities. Please see Supplementary Figure S12 for a full blot image. (C) UA was measured in 
serum of Abcg2-/- mice and wild type mice. Mice used in the study were 7-months old. Data show 
mean values of three mice per group ± SEM. *P < 0.05. 
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Figure 5. Abcg2 is downregulated in Hfe-/- mouse intestine. (A) Quantitative PCR analysis of 
Abcg2 mRNA in colon epithelium of Hfe-/- mice and wild type mice. Data show mean values of 
three mice per group ± SEM relative to control mice. **P < 0.01. (B) Western blot for Abcg2 
protein levels in ileal and colonic epithelium from wild type and Hfe-/- mice. Please see 
Supplementary Figures S13 and S14 for full blot images. Western blot band intensities were 
estimated using ImageJ software and the band intensities that correspond to the Abcg2 protein 
were normalized to the respective β-actin levels in (C) ileal epithelium and (D) colonic epithelium. 
Data represent mean values of three mice per group ± SEM. **P < 0.01.  

Figure 6. ChIP analysis of p53 binding to human ABCG2 gene promoter. (A) p53 consensus 
sequences in hABCG2 and mAbcg2 gene promoters as assessed with JASPAR software. A putative 
transcription start site (+1) was recognized at the start of the exon 1. Chromosomal locations for 
this transcription start site and also for p53 consensus sequences are shown. E1A or E1a, E1B or 
E1b, and E1C or E1c depict the transcript splice variants found in human ABCG2 gene or mouse 
Abcg2 gene, which result from the alternative promoter usage. (B) ChIP analysis for binding of 
p53 to the hABCG2 promoter. Experiment was performed in normal human epithelial cell line 
CCD841 transfected with either empty vector (pLKO.1) or a vector containing shRNA that targets 
p53 mRNA. shRNA efficiency was estimated by observing p53 protein levels via western blot. 
Please see Supplementary Figures S15, S16, S17, S18, S19, S20, and S21 for full blot and agarose 
gel images. Data show the mean values of three independent experiments ± SEM. *P < 0.05; **P 
< 0.01.   

Figure 7.  p53 protein levels are significantly decreased in Hfe-/- mouse ileum and colonic 
epithelium. Western blot for p53 protein in (A) ileal and (C) colonic epithelium of wild type and 
Hfe-/- mice. Please see Supplementary Figures S13 and S14 for full blot images. Western blot band 
intensities were estimated using ImageJ software and the band intensities that correspond to p53 
protein were normalized to β-actin levels in (B) ileal epithelium and (D) colonic epithelium. Data 
represent mean values of three mice per group ± SEM. **P < 0.01.  

Figure 8. Schematic illustration of the differences in intestinal handling of uric acid between 
wild type and Hfe-/- enterocytes.   
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