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A B S T R A C T   

Inborn errors of metabolism, also known as inherited metabolic diseases (IMDs), are related to genetic mutations 
and cause corresponding biochemical metabolic disorder of newborns and even sudden infant death. Timely 
detection and diagnosis of IMDs are of great significance for improving survival of newborns. Here we propose a 
strategy for simultaneously detecting six types of IMDs via combining GC-MS technique with the random forest 
algorithm (RF). Clinical urine samples from IMD and healthy patients are analyzed using GC-MS for acquiring 
metabolomics data. Then, the RF model is established as a multi-classification tool for the GC-MS data. Compared 
with the models built by artificial neural network and support vector machine, the results demonstrated the RF 
model has superior performance of high specificity, sensitivity, precision, accuracy, and matthews correlation 
coefficients on identifying all six types of IMDs and normal samples. The proposed strategy can afford a useful 
method for reliable and effective identification of multiple IMDs in clinical diagnosis.   

1. Introduction 

Inborn errors of metabolism (IEMs), known as inherited metabolic 
diseases (IMDs), are a special group of rare diseases in newborns. Such 
diseases can threaten multiple systems of children’s body, including the 
nervous system, digestive system, circulatory system, metabolic system 
and so on. Most of the pathophysiological changes of IMDs can affect 
human organs directly or indirectly, especially the development and 
function of the brain [1,2]. They may lead to disability and even sudden 
infant death. IMDs are very urgent and the clinical manifestations are 
mostly nonspecific at the beginning [3]. The body has been irreversibly 
damaged when symptoms appear. For IMDs, the earlier we start the 
treatment, the smaller the damage to the body. Timely detection and 
diagnosis of IMDs are of great significance for newborns [4–6]. 

In the 1960s, the concept of newborn screening was introduced when 
Dr. Guthrie conducted bacterial inhibition assay for phenylketonuria 
[7–9]. Over time, newborn screening has been developed from a bac-
terial inhibition assay to some complex methods. Nowadays, it refers to 

the screening of some congenital and genetic diseases, which endanger 
children’s lives and cause children’s physical and intellectual develop-
ment obstacles, to make early diagnosis using fast, simple and sensitive 
testing methods. Laboratory diagnosis methods for IMDs include 
enzyme analysis, metabolite determination, gene microarray and 
high-throughput sequencing [10,11]. Due to the high cost of genetic 
testing and the high-quality requirements of specimens for enzyme 
analysis, the most commonly used screening methods in clinical practice 
are developed on gas chromatography-mass spectrometry (GC-MS) or 
chromatography-tandem mass spectrometry (GC-MS/MS) [12]. Among 
them, GC-MS is the most sensitive technique for the diagnosis of organic 
aciduria. With the development of urease pretreatment technology, 
GC-MS detection is not limited to organic aciduria, but also widely 
applied for diagnosing abnormal amino acid metabolism. The GC-MS 
technology has been to as an important method for screening complex 
organic aciduria and abnormal amino acid metabolism [13–16]. 

The metabolomics data generated using GC-MS is generally too 
complex for the treatment of traditional statistical methods [17]. There 
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are a large number of endogenous small molecules with physiological 
effects and functions in organisms. Biomarkers and functional sub-
stances with specific research significance are only a few specific ob-
jects. In the context of the entire incident, a small number of functional 
objects will be relatively severely interfered by useless objects, resulting 
in high noise in the metabolomics data. Generally speaking, the number 
of metabolites detected by non-targeted metabolome is much greater 
than the number of samples. So, traditional statistical methods cannot be 
used to process metabolomics data having such a feature of high 
dimensionality. There are also various factors making it difficult to 
identify and qualitatively analyze metabolomics data, such as isomers, 
metabolites with similar physical and chemical properties, liquid phase 
system and so on. Moreover, the distribution of metabolomics data is 
very irregular, and there may be many zero values in the data, which 
requires more complex and reasonable statistical analysis strategies to 
reveal the hidden complex data relationships. Therefore, it becomes 
critical in metabolomics research upon how to extract valuable infor-
mation from metabolomics data and construct reasonable data models 
[18,19]. 

Here we propose combining GC-MS with an ensemble learning al-
gorithm of random forest (RF) for identifying multiple types of IMDs 
from complex metabolomics data. Ensemble learning is a strategy that 
integrates multiple models to circumvent the inherent defects and lim-
itations of single model by letting the models learn from each other and 
enhance the performance. As a typical ensemble learning algorithm, RF 
is a combination of a set of tree predictors, of which each tree grows 
depending on randomly selected samples and random combinations of 
vectors, and unbiased estimate is used for generalization error. Over-
fitting is a common issue in most of classifiers and regressors that de-
creases their generalization ability severely, especially when modeling 
high-dimensional data [20–26]. On contrast, the nature of randomness 
makes RF the trait of anti-overfitting for data with numerous variables. 
Dimensionality reduction is not necessary. Trees in RF are built inde-
pendently with no branch pruning and easily parallelized, which further 
let RF be a simple and high-efficient modeling strategy. Additionally, RF 
gives useful internal estimates of error, importance and correlation of 
variables. These advantages make RF a desirable tool for predicting the 
attributes and categories of unknown samples [27–32]. In this study, we 
explore the potential of RF for modeling GC-MS metabolomics data of 
clinical urine samples for identifying six types of IMDs and normal ones 
simultaneously. The six types are methylmalonic acidemia (MMA), 
glutaric aciduria type I (GA I), propionic acidemia (PA), citrin deficiency 
(CD), isovaleric aciduria (IVA), and multiple acyl-CoA dehydrogenase 
deficiency (MADD). GC-MS metabolomics data are acquired for 447 
urine samples from the newborns with different types of IMDs and 84 
normal samples. Besides the RF algorithm, the artificial neural network 
(ANN) and support vector machine (SVM) are also used to modeling the 
same GC-MS data for comparison. The results have demonstrated that 
the proposed strategy affords highly sensitive and specific classification 
of all types of IMDs with high precision and accuracy, enabling 
high-efficient, robust and reliable identification of multiple IMDs for 
clinical diagnosis. 

2. Experimental procedures 

2.1. Equipment and reagents 

Data were acquired on a gas chromatograph tandem a quadrupole 
mass spectrometer (GC-MS-QP2010, Shimadzu, Japan) equipped with 
an auto-sampler (GL 221–34618), an open split injector and helium as 
carrier gas. 

The derivatizing reagents, BSTFA +1% TMCS (N, O-bis (trime-
thylsilyl) trifluoroacetamide with 1% trimethylchlorosilane) were pur-
chased from ANPEL (Shanghai, China). Urease, margaric acid (MGA), 
sodium hydroxide and hydroxylammonium chloride were commercially 
obtained from Sigma-Aldrich company (St. Louis, MO, USA). Ethyl 

acetate, hydrochloric acid and picric acid were purchased from ANPEL 
(Shanghai, China), KAIXIN (Hunan, China) and Xiya (Chengdu, China), 
respectively. The solution of margaric acid (0.5 mg/mL) was used as 
internal standard, whose solvent was ethyl acetate. 

2.2. Sample collection 

The urine samples provided by Shenzhen Aone Medical Laboratory 
Co. Ltd. (Shenzhen, China) were collected from 447 patients (born 
within 28 days) diagnosed using genetic tests and 84 matched healthy 
controls. The positive samples were further divided into six groups, the 
MMA group of 257 instances, the GA I group of 30, the PA group of 40, 
the CD group of 50, the IVA group of 25 and the MADD group of 45. The 
collected urine samples were stored at − 20 ◦C without the addition of 
any other reagents. 

2.3. Sample preparation 

The concentration of urinary creatinine was determined by picric 
acid method, and the volume of urine injected into GC-MS was adjusted 
to the same amount of creatinine in order to avoid measurement errors 
[33]. We added 20 μL of urease to the urine sample containing 0.2 mg 
creatinine. Next the sample was incubated at 37 ◦C for 30 min and then 
mixed with 0.02 mg internal standard solution. Then the mixture was 
diluted with distilled water to adjust the final volume to 2 mL. We added 
1 mL of hydroxylammonium chloride (5%) and 400 μL of sodium hy-
droxide (20%) to the mixture, then it was left at room temperature for 
60 min. The pH of the mixture was adjusted to 2–4 by adding 550 μL HCl 
(37%) and the solution was then shaken for about 3 min in a vortex 
mixer. Organic acids in the urine sample were extracted twice by adding 
3 mL of ethyl acetate and fully mixed in a vortex mixer. The mixture was 
centrifuged for 5 min (4000 r/min). Two organic layers after centri-
fuging were transferred to a clean centrifuge tube and evaporated and 
dried under nitrogen at 60 ◦C. Finally, 100 μL of BSTFA: TMCS (99:1 in 
volume) was added to the tube and incubated at 70 ◦C for 30 min. After 
that, 1 μL of the final mixture was injected into the GC-MS apparatus. 

2.4. Gas chromatography-mass spectrometry conditions 

Chromatographic separation was performed on Shimadzu quadru-
pole mass spectrometer with a deactivated fused silica capillary column 
(Agilent DB-5, 30 m × 0.25 mm × 1 μm). The temperature was pro-
grammed from 100 ◦C to 280 ◦C at a rate of 4 ◦C/min. The temperatures 
of the injector, the transfer line and the ion source were set to be 280 ◦C, 
280 ◦C and 200 ◦C. The mass spectrometer was performed under elec-
tron impact (EI) mode with ionization energy of 70 eV. And it was 
operated in a full scan mode with m/z range from 50 to 500 at the rate of 
1000 Da/s. 

2.5. Data preprocessing and statistical analysis 

Generally, preprocessing of the raw data acquired from GC-MS is in 
order to provide a suitable format for later data analysis. Here, all GC- 
MS raw data of urine were processed using GC-MS solution software 
and the mass spectral database including mass spectral and retention 
index data of the metabolites (Shimadzu, Japan). 

In this study, the concentrations of 132 metabolites in urine sample 
were identified. They were taken for the main endogenous metabolites 
closely related to about 40 kinds of organic acidurias. The contents of 
urinary metabolites were measured using internal standard method. The 
peak areas of the metabolites to be measured were compared with that 
of the internal standard to calculate their concentrations. Then the data 
matrix, including 257 MMA patients, 30 GA I patients, 40 PA patients, 
50 CD patients, 25 IVA patients, 45 MADD patients and 84 healthy 
controls, was obtained. Within this matrix, the columns and rows indi-
cated concentrations and samples, respectively. The matrix was used as 
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the response matrix for RF modeling. 
The entire data set was divided into two parts, a training set con-

taining 265 samples and a test set containing 266 samples. The training 
set were composed of 128 samples taken randomly from the MMA 
group, 15 from the GA I group, 20 from the PA group, 25 from the CD 
group, 12 from the IVA group, 23 the MADD group and 42 from the 
control group. The remaining samples made up the test set. 

3. Theory and algorithm 

3.1. Random forest 

The RF algorithm proposed by Breiman in 2001 is a superior algo-
rithm for solving regression or multi-classification problems [34]. RF 
relies on two machine learning strategies, bagging and random variable 
selection [35]. Bagging is developed based on bootstrap sampling and 
has become the representative of parallel ensemble learning methods. 
Given a training set containing m samples, bootstrap sampling is per-
formed for m times to give a sampling set containing m samples. Some 
samples in the training set may repeatedly present in the sampling set 
and some may not present after m times of sampling. In this manner, T 
sampling sets that each contains m training samples are generated. 
Learning machines can be trained based on each sampling set and then 
all the T learning machines are combined. RF is a variation of Bagging, 
composed a series of classification and regression trees (CARTs) as 
classifiers or regressors. The independent random vectors with identical 
distribution used in each classifier determine the growth of the decision 
tree. The majority vote of all the trees determines the output. In the 
training process, RF uses bootstrap sampling to generate multiple 
sub-training sets from the input training set and train multiple decision 
trees to improve the performance of the model. The constructive process 
of a decision tree is depicted in Fig. 1. In this process, each variable is 
selected from the subspace composed by a random combination of 
variables. For the decision tree grown on the sub-training set, out-of-bag 
(OOB) samples are used as the test set of the tree. with the increasing 
number of decision trees, RF gives an unbiased estimate of test set error 
according to the OOB data. In addition, OOB data can also be used to 
assess the importance of variables. OOB error and variable importance 
are two chief parameters of decision tree. The CART uses Gini index to 

evaluate variable importance to obtain the optimal variables and 
determine the optimal binary cut point of the variable. For the problem 
of multi-classification, assuming there are K categories and the proba-
bility of the k-th category is pk, the Gini index expression of the distri-
bution of probability is: 

Gini(p)=
∑K

k=1
pk(1 − pk) = 1 −

∑K

k=1
pk2 (1) 

For a given sample set D, its Gini index is: 

Gini(D) = 1 −
∑K

k=1

(
|Ck|
|D|

)2

(2) 

Here, Ck is the subset of samples belonging to the k-th class in D. 
There are mainly three characteristics of RF: (1) The subset of 

training samples is randomly selected; (2) The subset of variables is 
randomly selected; (3) All the decision trees are left to grow without 
pruning. The implementation of random forest algorithm is summarized 
as follows (as shown in Fig. 2): 

Step 1. Selection of the sample set 
Since the sample numbers of the six types of IMDs were distributed 

unevenly, we optimized the sampling strategy in RF to avoid poor 
generalization error due to uneven distribution of samples. We per-
formed bootstrap sampling on the training sets of six types of IMDs and 
healthy samples one by one. The bootstrap sampling was performed a 
total of ntree (ntree = 200) times that is the number of classification trees. 
The data after bootstrap sampling of each time of all types were 
collected to form a bootstrap training data set. Therefore, 200 training 
data sets were formed to grow 200 classification trees. The final training 
set contained two thirds of the original data, and the other containing 
one third of original data were employed as OOB samples. The OOB 
samples were then used to conduct internal validation of RF model. 

Step 2. The generation of classification trees 
For each bootstrap data set, the algorithm grew a classification tree 

which was unpruned and modified as follows: At each node of the 
classification tree, mtry variables were randomly selected and the best 
splits among these variables were determined instead of choosing the 
best splits among all the variables. Bagging was considered as a special 
case of random forest when mtry = n (the total number of variables, n was 
132 in this study). Generally, mtry was a positive integer between 1 and 
n. The default value of mtry was the square root of n, so we set mtry to be 
12 in this study. 

Step 3. Combination of the trees 
Since the ntree classification trees were constructed based on random 

combination of variables and samples, these trees were independent 
from each other. Therefore, the trees were equal on their importance. 
When they were combined, their weights were not need to be consid-
ered, or it could be considered having the same weight for every tree. 
The final output was determined by the votes of the trees. Then the 
sample could be predicted by aggregating the prediction results of the 
ntree classification trees. 

3.2. Evaluation of the model 

The performance of the established classification model can be 
evaluated using the following indicators [36,37], 

Specificity=
TN
N

(3)  

Sensitivity=Recall =
TP
P

(4)  

Precision=
TP

TP + FP
(5) 

Fig. 1. The construction process of a decision tree.  
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Accuracy=
TP + TN

P + N
(6)  

MCC=
TP × TN − FP × FN

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(TP + FP) × (TP + FN) × (TN + FP) × (TN + FN)

√ (7)  

where P is the number of positive samples, N is the number of negative 
samples, TP is the number of true positive samples, TN is the number of 
true negative samples, FP is the number of false positive samples, FN is 
the number of false negative samples. The specificity measures the ability 
to identify negative samples. The sensitivity is equal to the recall, 
measuring the ability to identify the positive samples. The precision re-
fers to the proportion of true positive samples that identified accurately 
by the model. The accuracy is the discrimination accuracy of the model 
for both the positive and negative samples. The matthews correlation 
coefficient (MCC) is used to assess the predictive ability of classification 
models. In this study, although RF performs as a multi-classification 
strategy, one type of IMDs is taken as a positive sample and the rest 
are taken as negative samples while evaluating the performance of the 
model on classifying each category. 

4. Results and discussion 

4.1. GC-MS metabolomics data 

Typical total ion current (TIC) chromatograms of urinary metabolites 
for healthy sample and six disease types of IMDs are shown in Fig. 3. The 
peaks of urinary metabolites distributed across a wide range of retention 
times from 5 min to 60 min. The abundant peaks suggested GC-MS an 

effective technology for the assays of human urinary metabolites. The 
intensities of some peaks were different for varying types of IMDs, which 
made the patterns of TICs not the same. However, no obvious features 
could be found for accurately identifying these six types of IMDs and 
healthy ones from each other, due to the complex relationships between 
the detectable metabolites. The results of traditional statistical analysis 
also did not reveal obvious evidences for multi-classification. To guar-
antee a high accuracy for classification, a more effective modeling 
technique that could extract and utilize the correlation of variables of 
GC-MS data was required. 

4.2. Determination of the number of trees in RF 

Considering the ability of RF in estimating the importance and cor-
relation of variables of high-dimensional data, we tried RF for modeling 
GC-MS metabolomics data of IMDs. In the process of training the RF 
model, we first tried to determine the number of classification trees of 
RF. We estimated the trend of out-of-bag (OOB) classification errors 
with growing number of the trees built for RF reaching up to 200. As 
shown in Fig. 4, with the increasing numbers of trees, the OOB classi-
fication errors rapidly reduced in the beginning, and then entering a 
phase of gentle change. When the number of the grown trees was more 
than 80, the OOB classification errors reached to a minimum without 
any change until the tree number of 200. It implied the increasing 
number of trees more than 80 would not help improve the OOB classi-
fication error of the RF model. In this study, we set 100 as the optimized 
number of trees for establishing RF. 

Fig. 2. The scheme of the processing of RF: starting from the original input training set (on the top), generating ntree random sub-training sets (by bootstrap 
resampling) and training corresponding decision trees and voting, outputting the final class of samples. 
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4.3. Confusion matrix 

Confusion matrix was a visualization tool, especially for supervised 
learning. We used it to display the classification performance of a RF 
model on its test set (Fig. 5). Each row of the confusion matrix repre-
sented a prediction category, the total number of each row indicated the 
number of samples predicted as the corresponding category. Each col-
umn represented the true attribution of categories of the samples. The 
sum of each column is the total number of samples that actually 
belonging to the corresponding category. The green boxes on the diag-
onal of the confusion matrix indicated the prediction performance of the 
RF model for each category. For the number in each green box, the closer 
of its value to the sum of the numbers in its corresponding column, the 
better the prediction performance of the category corresponding to the 
column. It could be used as a measurement of the consistency between 
the prediction category and the actual one of the samples in each cate-
gory. The percentage in each green box exhibited the portion of accu-
rately predicted sample from a corresponding category to the total 
number of predicted samples from all categories. Otherwise, the red 

boxes indicated the inconsistency between the prediction categories and 
the actual ones of the samples. Therefore, the smaller values of the 
number and the percentage in each red box was, the better prediction 
performance of the RF model was each category of IMDs. As shown in 
the first column of the confusion matrix, 127 MMA samples were 
correctly identified out of 129 MMA samples in the test set. Two MMA 
samples were assigned into other categories, one for CD and the other for 
normal (healthy sample). Therefore, the sensitivity of the RF model in 
predicting MMA samples was estimated as 98.4%. Accordingly, the 
sensitivities of the model for predicting GA I, PA, CD, IVA, MADD and 
healthy samples were estimated to be 93.3%, 100%, 96.0%, 92.3%, 
95.5% and 90.5%, respectively. Overall, 256 samples out of 266 samples 
in the test set were correctly assigned into their corresponding cate-
gories, which gave an overall sensitivity of 96.2% for the RF model. It 
thus suggested the desirable generalization performance of the RF model 
in multi-classification of GC-MS metabolomics data of IMDs. It was 
worth noting that, in practice for the GC-MS data with significant noise, 
a pretreatment procedure should be conduct in order to decrease the 
impact of the noise on the generalization ability of the RF model. Also, 

Fig. 3. Total ion current (TIC) chromatograms of urinary metabolites for healthy sample and six disease types of IMDs (MMA, GA I, PA, CD, IVA and MADD).  
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attention should be paid on the consistence between the training and 
predicting sets generated using different GC-MS instruments. 

4.4. Comparison with other modeling methods 

ANN and SVM were commonly used machine learning methods for 
building classification models. For comparison, we also used these two 
methods for modeling the GC-MS metabolomics data of IMDs. A set of 
indicators including specificity, sensitivity, precision, accuracy, and MCC 
for each category were calculated, as listed in Table 1. The ANN model 
was built with 10 nodes in the hidden layer and trained using back-
propagation (BP) strategy. Sigmoid function was used as an activation 
function for the artificial neurons. To reduce the risk of ANN overfitting 

the training set, 15% of samples in the training set were randomly 
picked up and used as a calibration set for optimizing the network. The 
SVM model was built with sigmoid function for the kernel trans-
formation. The results revealed that the ANN and SVM models both had 
acceptable specificity on identifying the samples those not belonging to 
corresponding categories, but showed poor sensitivity on identifying 
their true categories. Although the ANN model gave 94.74% of sensi-
tivity for MMA and 100% for CD, that for the rest categories was lower 
than 80% and as low as 20% for IVA. The SVM model gave the best 
sensitivity of 92.19% for MMA, then 80% for CD, but also showed a poor 
sensitivity of 23.08% for IVA. Accordingly, the ANN and SVM models 
both gave the poorest precision to IVA as low as 25% and 30%, 
respectively. The highest MCC obtained using the ANN model was 1 for 

Fig. 4. The variation trend of OOB error along with the number of classification trees.  

Fig. 5. The confusion matrix for RF model in prediction (D1, D2, D3, D4, D5, D6 and N represented the category of MMA, GA I, PA, CD, IVA, MADD and normal 
controls, respectively). 
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CD, but for the rest categories the MCCs were lower than 0.8885 with the 
poorest performance of just 0.1777 for IVA. The SVM model also gave 
the highest MCC of 0.8177 for CD and the lowest MCC of 0.2302 for IVA. 
Overall, the ANN and SVM models both showed unsatisfied performance 
on modeling the current GC-MS metabolomics data of IMDs. 

For the model of RF, it had the specificity for each category ranging 
from 98.76% to 100%, and the sensitivity was equally higher than 
90.48% and reaching to 100% for PA. The precision of the RF model was 
100% for MMA and MADD, and the lowest was 85.71% for IVA. The 
accuracy for each category was higher than 98.12% and the MCCs were 
ranging from 0.8837 to 0.9851. The classification performance on each 
category had been greatly improved compared with those of the ANN 
and SVM models, suggesting the better generalization ability of the RF 
model than the ANN and SVM models. These results implied the promise 
of the RF strategy for robust and reliable classification of multiple IMDs 
based on GC-MS metabolomics data for clinical diagnosis. 

5. Conclusion 

We proposed a strategy for identifying multiple IMDs by combining 
the GC-MS technique for metabolomics data acquisition with RF algo-
rithm for multi-classification. GC-MS is a cost- and time-effective tech-
nique for acquiring complex metabolomics data of urine samples. With 
the nature of anti-overfitting, the RF enabled a simple, high-effective 
and robust approach for modeling the high-dimensional GC-MS data. 
In total, 531 urine samples of newborns were collected and GC-MS 
analysis was performed to acquire the metabolomics data for building 
the RF model. The results revealed the RF model had quite desirable 
performance on multi-classification of IMDs with high specificity, 
sensitivity, precision, accuracy, and MCCs for all six types of IMDs and 
normal samples. It, therefore, afforded the proposed strategy of great 
promise in reliable and effective identification of multiple IMDs to serve 
clinical diagnosis. 
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