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Abstract
This study aims to identify neuropsychiatric manifestations in neurological Wilson disease (NWD), and their correlation 
with MRI changes and glutamate excitotoxicity. Forty-three consecutive patients with NWD from a tertiary care teaching 
hospital were evaluated prospectively who fulfilled the inclusion criteria. The neuropsychiatric evaluation was done using 
Neuropsychiatric Inventory (NPI) battery that assesses 12 domains including delusion, hallucination, agitation/aggression, 
dysphoria/depression, anxiety, euphoria, apathy, disinhibition, irritability, aberrant motor activity, appetite change, and abnor-
mal nighttime behavior. Cranial MRI was done using a 3 T machine, and locations of signal changes were noted including 
the total number of MRI lesions. Serum glutamate level was measured by a fluorescence microplate reader. Abnormal NPI in 
various domains and total NPI scores were correlated with MRI lesions, serum and urinary copper, and glutamate level. The 
median age of the patients was 16 years. Forty-one (48.8%) patients had cognitive impairment and 37 (86%) had movement 
disorder. Neurobehavioral abnormality was detected in all—commonest being agitation (90.7%) followed by appetite change 
(81.4%), elation (74.4%), irritability (69.8%), anxiety (67.4%), depression (65.1%), apathy (44.2%), night time abnormal 
behavior (32.6%), aberrant motor behavior (20.9%), delusions (16.3%), and hallucination (18.6%). The thalamic lesion was 
associated with depression, globus pallidus with depression and anxiety, caudate with anxiety and agitation, brainstem with 
irritability, and frontal cortex with apathy. Serum glutamate level was higher in NWD. NPI sum score correlated with MRI 
load and glutamate level. Varying severity of neurobehavioral abnormalities are common in the patients with NWD and 
correlate with the location of MRI lesion and glutamate level.
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Abbreviations
ADL	� Activity of daily living
BFM	� Burke-Fahn-Marsden
CNS	� Central nervous system
Cu	� Copper
MRI	� Magnetic resonance imaging
MMSE	� Mini-Mental State Examination
NPI	� Neuropsychiatric Inventory

NMDA	� N-methyl-D-aspartate
WD	� Wilson disease

Introduction

Wilson disease (WD) is an autosomal recessive copper 
(Cu) metabolism disorder due to ATP7B gene muta-
tion in chromosome 13q14.3 that codes Cu transporting 
ATPase protein. This Cu-transporting ATPase is essential 
for the excretion of Cu into the bile and delivering Cu 
to the synthesis of ceruloplasmin [1, 2]. The absence of 
this transporter leads to excessive accumulation of Cu in 
the liver; later Cu is spilled over to the circulation and 
is deposited in multiple organs including cornea, ocular 
lens, brain, liver, heart, and bone. WD is a rare disease, 
and its worldwide prevalence is 1:30,000–1:50,000 popu-
lation [3, 4]. About 40–60% of WD patients present with 
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hepatic, 40–50% neurological, and 10–25% psychiatric 
symptoms [4, 5]. Nearly 95% of symptomatic neurologi-
cal WD (NWD) patients have Kayser–Fleischer (KF) rings 
[5, 6]. During disease, almost all have hepatic, neurologi-
cal, and psychiatric involvement [7–9]. Neuropsychiatric 
symptoms are although an important manifestation of WD, 
but till 2018, there were only 91 articles including 57 case 
reports, 12 cohort studies, 3 case-cohort studies, and 4 
case series [7]. None of these studies comprehensively 
evaluated the correlation of neuropsychiatric manifestation 
with MRI changes. In NWD, the involvement of caudate 
(30–65%), putamen (45–85%), and thalamus (30–60%) is 
quite common, and 90–100% of patients had abnormal 
MRI [10–13]. These anatomical structures are linked to 
the limbic system and frontal network and have been eval-
uated as an anatomical substrate for various neuropsychi-
atric manifestations in Huntington’s disease, Parkinson’s 
disease, caudate hemorrhage, and subacute combined 
degeneration [14]. Excess of free Cu in WD has been 
reported to induce oxidative stress, cytokine release, and 
glutamate excitotoxicity [15, 16]. In an experimental study 
on the rat model, memory impairment has been linked 
to glutamate and its receptors. The rats were fed 100 mg 
of CuSO4 for a period of 30 to 90 days and Y-maze was 
performed for memory and learning. Immunohistochem-
istry of hippocampus and frontal cortex revealed higher 
expression of the glial fibrillary acidic protein (GFAP) and 
caspase-3 in CuSO4-fed rats compared to the controls. The 
glutamate level was higher in the hippocampus and frontal 
cortex, and expression of N-methyl-D-aspartate receptors 
(NMDARs) was lower in the hippocampus in the exposed 
group compared to the controls. These changes correlated 
with tissue copper, oxidative stress, and Y-maze attention 
score [17]. Higher expression of GFAP and caspase-3 
has also been reported in the corpus striatum of CuSO4 
exposed rats [18]. In this communication, we report neu-
ropsychiatric abnormality in a cohort of NWD and cor-
relate these with MRI findings and serum glutamate level.

Subjects and Methods

Inclusion Criteria

The consecutive patients with NWD whose NPI scores and 
laboratory and MRI findings were available for review were 
included from a prospectively maintained NWD registry. 
These patients were managed by us during 2010–2019. 
Some of these patients have been included in our earlier pub-
lications [10, 16, 19]. The diagnosis was based on clinical 
features, KF ring on slit-lamp examination, low ceruloplas-
min (< 20 mg/dl), and high urinary Cu (> 40 µg/24 h) [4, 5].

Exclusion Criteria

Patients with only hepatic WD, neurologic WD with hepatic 
encephalopathy, kidney failure, family history of major psy-
chiatric disorder, malignancy, pregnancy, and those on psy-
chotropic drugs were excluded.

Clinical Evaluation

A detailed medical history including age, gender, duration 
of illness, and presenting symptoms was noted. A pedigree 
chart was drawn of the indexed patient. History of jaundice 
and hemolysis in the past was enquired, and past medical 
records were evaluated. Presenting symptoms and signs were 
also noted. Movement disorders including dystonia, chorea, 
athetosis, myoclonus, or tremor were noted. The severity of 
dystonia was rated using Burke-Fahn-Marsden (BFM) score 
[20]. The neurological severity was categorized as grade 
0-III based on 5 signs [dysarthria, ataxia, tremor, rigidity/
bradykinesia, chorea/dystonia, and activity of daily living 
ADL]. Each sign is given a score of 0–3 (0 = none, 1 = mild, 
2 = moderate, 3 = severe). The neurological disability is con-
sidered grade 0 (sum score 0, no disability); grade I (sum 
score 1, mild disability), grade II (sum score 2–7, moderate 
disability but independent for the activity of daily living), 
and grade III (sum score > 7, dependent for the activity of 
daily living) [21–24]. The other movement disorders were 
also graded on a 0–3 scale.

Neuropsychiatric Evaluation

Neuropsychiatric evaluation was done using Neuropsychi-
atric Inventory which provides a comprehensive assessment 
of psychopathology in dementia. Twelve behavioral domains 
including delusion, hallucination, agitation/aggression, dys-
phoria/depression, anxiety, euphorbia, apathy, disinhibition, 
irritability, aberrant motor activity, change in appetite, and 
night time behavior changes were evaluated. A screening 
questionnaire is used for each sub-area and if the response 
was no, a further question was not asked. If the response 
was yes, then the sub-questions were asked to record the 
frequency and severity. Based on the response, the frequency 
was categorized as 1 = occasionally, 2 = often, 3 = frequent, 
and 4 = very frequent. The severity was graded as mild = 1, 
moderate = 2, and severe = 3. The composite score was 
calculated by multiplying severity and frequency rating. 
The depression score > 6, disinhibition score > 4, irritabil-
ity score > 4, and any score in the remaining domains are 
considered abnormal [25, 26]. Neuropsychiatric Inven-
tory was used before the initiation of treatment in 34 and 
after a median duration of 14 months (6–30 months) of 
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penicillamine and zinc therapy in 8 and only zinc therapy in 
1 patient. None of the patients was on dopamine, and those 
receiving anticholinergic and or dopamine antagonists were 
advised to stop for a week before the NPI evaluation.

Investigation

Blood counts, hemoglobin, blood glucose, serum creatinine, 
lactate dehydrogenase, transaminases, bilirubin, alkaline 
phosphatase, albumin, sodium, potassium, Cu, and cerulo-
plasmin were measured. A coagulation profile was done. 
Twenty-four-hour urinary Cu was measured by atomic 
absorption spectroscopy. Slit-lamp examination was done for 
KF ring and ultrasound abdomen for liver echotexture, portal 
vein diameter, splenomegaly, and ascites. Cranial MRI was 
done using a 3 T MRI machine (Signa GE Medical System, 
Wisconsin, USA). Axial images were obtained in T1, T2, 
FLAIR, and DW sequences. The anatomical locations of 
abnormal signal changes were noted. For calculating MRI 
load, 1 point was given to each lesion and a summation of 
these points was considered as MRI load.

Glutamate Assay

Serum glutamate level was measured by a fluorescence 
microplate reader using excitation at 530 ± 12.5 nm and 
fluorescence detection at 590 ± 17.5 nm (Thermo Fisher, 
USA). Briefly, 50 µL of the serum sample was collected in 
each well and mixed with 50 μL of a reaction buffer con-
taining amplex red, glutamate oxidase, glutamate pyruvate 
transaminase, alanine, and horseradish peroxidase. After 
incubation at 37 °C, the fluorescence of the reaction mixture 
was detected by a fluorescence microplate reader. Serum 
glutamate was measured in 33 WD and 35 age (18.33 vs. 
20.08 years; p = 0.169) and gender (male: female 28/5 vs. 
27/8; p = 0.54) matched healthy controls. The control sam-
ples were collected from the attending personal of admitted 
patients in our ward or the hospital employee.

Statistical Analysis

The normality of all parameters was evaluated by the Sha-
piro–Wilk test. Categorical variables were expressed as the 
percentages and number of cases. Continuous variables were 
expressed as mean and standard deviation for normally dis-
tributed data, and median and inter-quartiles for non-nor-
mally distributed data. Nominal or dichotomous variables 
were compared using the Chi-square test or Fisher’s exact 
test. Normally distributed continuous variables were com-
pared using the independent-sample t-test, and non-normally 
distributed variables were compared with the Mann–Whit-
ney U test. The abnormal features in the different domains of 
NPI were compared with MRI findings using the Chi-square 

test. To derive the best predicting MRI lesion for various 
domains of NPI, a multivariate logistic regression analysis 
was done including the different locations of MRI lesions. 
The sum score of NPI was correlated with age, duration 
of illness, neurological severity, BFM score, biochemical 
parameters, and MRI load using the Karl-Pearson or Spear-
man rank correlation test. Serum glutamate level was com-
pared with abnormal NPI in different domains using an inde-
pendent t-test. Glutamate levels were also correlated with 
the total NPI score and MRI load. These analyses were run 
using SPSS version 25.0 (SPSS Inc., Chicago IL, USA), and 
graphs were prepared by GraphPad Prism-5. A two-tailed 
statistical significance was accepted when exact p < 0.05.

Results

There were 43 patients with neurological WD, and their ages 
ranged between 11 and 34 years (median 16 years). Thirty-
five patients were males, and 15 (34.9%) had a family history 
of WD. The median duration of neurological manifestation 
was 18 (6–60) months, and their median age of onset was 13 
(9–31) years. History of jaundice was present in 11 (25.6%). 
The mean serum bilirubin was 0.98 ± 0.43 mg/dl (> 1.2 mg/
dl in 13), glutamic pyruvate transaminase 41.35 ± 19.46 U/L 
(> 60 U/L in 12), albumin 4.00 ± 0.68 gm/dl (< 3.5 gm/dl in 
9), and none had INR > 1.4. None had clinical or biochemi-
cal evidence of hepatic encephalopathy. Abdominal ultra-
sound revealed abnormal hepatic echotexture in 27 (62.8%), 
splenomegaly in 17 (39.5%), increased hepatic vein diam-
eter in 9 (20.9%), and none had ascites. Thirty-seven (86%) 
patients had movement disorders and included dystonia in 
31 (72.1%), chorea in 14 (32.6%), athetosis in 9 (20.9%), 
myoclonus in 5 (11.6%), and tremor in 16 (37.2%). Only 
7 (16.3%) patients had a seizure. Cranial MRI was done 
in 36 and was abnormal in 35 patients. The abnormalities 
included involvement of caudate in 26 (60.5%), putamen in 
28 (65.1%), globus pallidus in 28 (65.1%), thalamus in 27 
(62.8%), brainstem in 15 (34.9%), cerebellum in 5 (11.6%), 
cerebral cortex in 9 (20.9%), subcortical white matter in 8 
(frontal in 6 and parieto-occipital 2), and cortical atrophy in 
7 (16.3%) patients. The details are present in Table 1.

Neurobehavioral Abnormality

Based on NPI, the neurobehavioral abnormality was detected 
in all—the commonest being agitation in 39 (90.7%) fol-
lowed by appetite change in 35 (81.4%), elation in 32 
(74.4%), irritability in 30 (69.8%), anxiety in 29 (67.4%), 
depression in 28 (65.1%), apathy in 19 (44.2%), disinhibition 
in 17 (39.5%), night time abnormal behavior in 14 (32.6%), 
aberrant motor behavior in 9 (20.9%), hallucinations in 8 
(18.6%), and delusion in 7 (16.3%) patients. In 8 patients, the 



	 Molecular Neurobiology

1 3

NPI was significant to prescribe quetiapine. In each patient, 
multiple domains of NPI were abnormal with varying sever-
ity (Fig. 1).

Correlation of NPI with MRI Changes

Thalamic lesion on MRI is associated with depression 
(p = 0.019), globus pallidus with depression (p = 0.046) 
and anxiety (p = 0.036), and caudate lesion with anxiety 
(p = 0.026) and agitation (p = 0.028). Brainstem lesion is 
associated with irritability (p = 0.011) and frontal cortical 
lesion with apathy (p = 0.019) and hallucination (p = 0.050) 
(Fig. 2). Cerebellar and subcortical lesions were not associ-
ated with any abnormal domain of NPI. The sum score of 
NPI correlated to MRI lesion score (r = 0.397; p = 0.017; 
Fig. 3). On univariate regression analysis, agitation was 
predicted by the putaminal lesion (OR = 0.062, 95% 
CI = 0.005–0.720, p = 0.026), hallucination by the corti-
cal lesion (OR = 6.40, 95% CI = 1.08–37.96, p = 0.041), 
irritability by the brainstem lesion (OR = 12.73, 95% 
CI = 1.41–115.11, p = 0.024), and apathy by the cortical 
lesion (OR = 0.019, 95% CI = 1.41–49.06, p = 0.19). On uni-
variate regression analysis, depression was predicted by the 
thalamus, globus pallidus and putaminal lesion and anxiety 
was predicted by the globus pallidus, caudate, and putami-
nal lesion. On multivariate analysis, thalamus involvement 
(OR = 0.15595% CI = 0.024–0.983, p = 0.048) was inde-
pendent predictors of depression after adjusting for puta-
men lesions on MRI. The details of univariate analysis are 
presented in Table 2.

Correlation of NPI with Clinical Findings

The sum score of NPI correlated with age (r = 0.424; 
p = 0.005), neurological severity grade (p = 0.003), 
BFM score (r = 0.497; p = 0.001), urinary Cu (r = 0.371; 
p = 0.031), and reticulocyte count (r = 0.509; p = 0.004). 
NPI score however did not correlate with duration of illness, 
MMSE score, liver enzymes, serum bilirubin, prothrombin 

time, evidence of chronic liver disease, and ceruloplasmin. 
The variables having significant correlation with NPI are 
presented in Fig. 3.

Glutamate and its Correlation with NPI

Serum glutamate was measured in 33 WD patients and 
35 controls. The glutamate level was higher in NWD 
patients compared to the controls (24.25 ± 3.37 vs. 
21.11 ± 2.28 µmol/L, p = 0.001). The sum score of NPI cor-
related with glutamate level (r = 0.57; p = 0.001). Analysis 
of glutamate with the different domains of abnormal NPI 
revealed a significant association with all the domains of 
NPI (Fig. 4). The serum glutamate level in 6 patients who 
needed quetiapine was 26.66 ± 3.08 µmol/L and in those not 
needed was 23.71 ± 3.20 µmol/L (p = 0.049).

Discussion

Neurobehavioral abnormalities were detected in almost all 
the patients with NWD with varying frequency and sever-
ity. The common NPI abnormalities are agitation, irritabil-
ity, elation, anxiety, appetite change, and depression. Mul-
tiple neurobehavioral abnormalities were seen in the same 
patient. In univariate analysis, depression was associated 
with the thalamus, globus pallidus, or putamen involve-
ment; anxiety with caudate, putamen, or globus pallidus; 
irritability with the brain stem; and apathy with frontal 
cortex involvement. On multivariate analysis, depression 
was predicted by thalamic lesion after adjusting for puta-
meninal lesion. NPI sum score correlated with MRI lesion 
load, glutamate level, neurological severity, and urinary 
Cu. Although there are few studies on neuropsychiatric 
abnormalities in WD [7–9, 27–30], there is a paucity of 
information about the association of neuropsychiatric 
symptoms with glutamate and MRI changes. In a study on 
50 WD patients with the hepatic or neuropsychiatric pres-
entation, 18% had one neuropsychiatric abnormality, 14% 

Table 1   Clinical characteristics 
and MRI findings

# Median (range); NPI, neuropsychiatric inventory

Parameter Number (%) MRI Number (%)

No. of patients 43 Caudate 26 (60.5%)
Age (years)# 16 (11–34) Putamen 28 (65.1%)
Gender (Male/Female) 35/8 Globus pallidus 28 (65.1%)
History of jaundice 11 (25.6%) Thalamus 27 (62.8%)
Age at onset (years)# 13 (6–34) Brainstem 15 (34.9%)
NPI total score# 24 (4–115) Cerebellum 5 (11.6%)
Severity Severity I 9 (20.9%) Cerebral Cortex 9 (20.9%)

Severity II 23 (53.5%) MMSE# 25.11 (16–30)
Severity III 11 (25.6%) MMSE abnormal 21 (48.8%)
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had 2, and 40% had 3 or more symptoms. The common-
est symptom was anxiety (62%) followed by depression 
(36%), irritability (26%), and disinhibition (24%) [29]. The 
neuropsychiatric manifestation may be a presenting fea-
ture or may develop during treatment [7, 28, 31]. Denning 
and Berrios have reported psychiatric manifestation in a 
longitudinal follow-up of WD at two different time points. 
The commonest psychiatric abnormalities in both the fol-
low up were incongruous behavior, irritability, depression, 

and cognitive impairments. The incongruous behavior 
and cognitive impairment improved in the second follow-
up. Patients with dysarthria, incongruous behavior, and 
hepatic symptoms had lesser improvement [27]. In various 
studies, neurobehavioral abnormalities have been reported 
in 46–71% of patients with WD, common manifestations 
being irritability, aggression, and anti-social behavior [27, 
30, 32, 33]. We have also found irritability, aggression, 
and anxiety more frequently.

Fig. 1   Heatmap shows various 
neuropsychiatric manifestations 
and their severity in patients 
with neurological Wilson 
disease
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Neurobehavioral abnormalities in WD have been cat-
egorized into (a) behavior and personality disorder (anti-
social — aggression, substance abuse, poor school, and work 
performance; personality change — impulsiveness, lack of 
judgment, irresponsibility, and irritability), (b) disorder of 
affect (emotional liabilities, suicidal ideation, mania, major 
depression), (c) cognitive disorder (bradyphrenia, retrieval 
memory impairment), and (d) delusion (putative associa-
tion with WD) [27]. In our patients, some of the above-
mentioned features were present in different frequencies, 
but agitation and irritability were more frequent suggest-
ing abnormal behavior and personality disorder. Lesser fre-
quency of delusion and hallucination in our study may be 
due to less frequent cortical lesions. In a review of 650 WD 
patients, neuropsychiatric symptoms were reported in 200 
patients (30.8%), and the abnormalities were in the domains 
of affective, behavioral/personalities, schizophrenia-like, and 
cognitive [34]. Disorders in affect and behavior were the 
commonest [7, 30, 31]. The common occurrence of affect 
and behavior in NWD may be due to the commonest involve-
ment of the corpus striatum, which receives massive input 
from the cortex especially from the frontal cortex [35]. Simi-
lar neuropsychiatric abnormalities have also been reported in 
Huntington’s disease [36–38], Parkinson’s disease [39, 40], 
progressive supranuclear palsy [41, 42], Fahr’s disease [43], 
Tourette syndrome [44], vitamin B12 deficiency neurologi-
cal syndrome [14], and Creutzfeldt-Jakob disease [45, 46].

Serotonin and dopamine dysregulation has been asso-
ciated with various neuropsychiatric abnormality. Dorsal 
and medial Raphe nuclei and neurons in the brainstem 
reticular formation are mainly serotonergic, and these 
neurons have widespread projections to different regions 
of the brain including the thalamus, hypothalamus, cor-
pus striatum, habenula, substantia nigra, hippocampus, 

amygdala, and prefrontal cortex. These areas are involved 
in determining mood, behavior, sleep, learning, memory, 
and many other neuropsychiatric functions [47]. Dopamine 
is mainly synthesized in substantia nigra and is the princi-
pal neurotransmitter of several CNS pathways, which regu-
lates motor activity, motivation, and learning. The classi-
cal example of dopamine deficiency in Parkinson’s disease 
and dopamine overactivity is schizophrenia [48]. In NWD, 
both the production and distribution sites are involved as 
evidenced by MRI involvement of corpus striatum, thala-
mus, brainstem, and frontal cortex. This may explain the 
high frequency of neuropsychiatric symptoms and move-
ment disorders in NWD. Neuropsychiatric manifestation 
may also occur in WD due to hepatic encephalopathy. We, 
however, excluded WD patients with primary hepatic man-
ifestation and NWD with hepatic encephalopathy.

We have used conventional MRI sequences for associa-
tion studies with NPI and glutamate levels. Conventional 
MRI sequences reveal deep-seated gray matter abnormal-
ity more frequently in NWD, but there may be a functional 
abnormality in the other parts of the brain, which may 
be detected by MR spectroscopy, diffusion tensor MRI, 
single-photon emission computed tomography, or posi-
tron emission tomography (Li et al. 2019). A study on 36 
patients with WD revealed decreased N-acetyl aspartate 
to creatine ratio in basal ganglia, parieto-occipital cortex, 
and frontal white matter compared with controls. Myo-
inositol to creatine ratio was increased in basal ganglia 
[49]. Another study has also reported reduced N-acetyl 
aspartate/creatine (Cr) and choline (Cho)/Cr ratio in WD 
patients as compared with controls [50]. Subtle gray mat-
ter atrophy may not be revealing in conventional MRI, in 
which a T1W volumetric MRI study may be helpful. In 
a study on 10 patients with WD, widespread gray matter 

Fig. 2   Cranial MRI of patient # 
2 shows A T2 hyper-intensity of 
caudate, putamen, and thalamus 
bilaterally; and B midbrain 
tegmentum. He had a neurobe-
havioral abnormality in multiple 
domains
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involvement was noted, which correlated with duration of 
illness and serum Cu level [51].

In our study, serum glutamate correlated with NPI sum 
score, various domains of NPI, and MRI load. Glutamate 
is the major excitatory neurotransmitter in more than 80% 
of central nervous system synapses. It plays a key role in 
regulating neuroplasticity, learning, and memory. It is syn-
thesized in the presynaptic terminal by glutamine deamina-
tion or via the tricarboxylic acid cycle. Depolarization of 
the presynaptic membrane mediated by N-type and P-type 
calcium channels releases glutamate to the synaptic cleft. In 
a normal situation, synaptic glutamate causes stimulation. 
Synaptic glutamate may rise to 1 mM, but within a millisec-
ond, it is cleared either by binding to a postsynaptic recep-
tor or by reuptake by astrocyte in which it is broken down 

into glutamine for re-utilization [52–56]. In the Cu toxicity 
rat model, there was an increased expression of GFAP and 
caspase, suggesting inflammation and apoptosis resulting 
in impaired clearance of glutamate from the site [17, 18]. 
Basal ganglia and substantia nigra have higher metabolic 
demands renderings them vulnerable to oxidative stress 
and excitotoxic injury [18, 57]. Free Cu is highly reactive, 
and an increased expression of oxidative stress, cytokines, 
ER stress, and apoptosis markers in WD patients has been 
reported [16, 58–60]. MRI study in NWD has also shown 
the greater vulnerability of these brain structures (basal gan-
glia, thalamus, substantia nigra) [10, 12, 13]. The correlation 
of glutamate with MRI load and NPI sum score suggests 
their link in the pathogenesis and phenotypic expression. 
Therefore, both movement disorder and neuropsychiatric 

Fig. 3   Relationship of sig-
nificant clinical and laboratory 
parameters with Neuropsychiat-
ric Inventory (NPI) score
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abnormality are dominant neurological phenotypic expres-
sions. The role of glutamate has also been reported in vari-
ous psychiatric conditions including schizophrenia [61, 62], 
depression [63], and attention deficit [64]. In a study on 
mood disorder, glutamate level was elevated in the dorsome-
dial and dorso-anterolateral prefrontal cortex in H1 MRI [65, 
66]. Glutamate antagonist, NMDR agonist, and extracellu-
lar glutamate modulator (N-acetyl cysteine) are explored as 
treatment options in various psychiatric disorders [67, 68]. A 
meta-analysis of MR spectroscopy findings in schizophrenia 
has reported increased glutamate levels in the basal gan-
glia compared to the controls [69]. MR spectroscopy also 
revealed increased glutamate in the anterior cingulate cortex 
in the patients with the first episode of psychosis who were 
treatment naïve [69]. In the patients with depression, PET 
scan revealed improved glucose metabolism of the right ven-
tral striatum and basal ganglia following injection of keta-
mine, an NMDA antagonist [70]. These findings suggest a 
role of glutamate in neuropsychiatric manifestations.

Limitation

We have not studied glutamate receptors and functional 
MRI. Glutamate level was not measured in CSF which might 
have been more specific for central nervous system changes. 
WD affects multiple organs; therefore, serum glutamate may 
reflect a global change. Lumbar puncture is an invasive pro-
cedure and was not found ethically appropriate.

Conclusion

Neuropsychiatric abnormality is a consistent feature of 
NWD especially in more severely affected NWD and if 
evaluated using an objective method. It correlates with the 

location of the MRI lesion, MRI lesion load, and glutamate 
level.
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