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ABSTRACT

Background & Aims: Alagille syndrome (ALGS) is a rare, autosomal dominant disorder with high phenotypic heterogeneity.
Disease-causing variants are primarily identified in Jaggedl (JAGI), with fewer reported in NOTCH2. JAGI variants cause dis-
ease through a mechanism of haploinsufficiency, but the mechanism for NOTCH2 variants is not completely understood, making
classification of variants more challenging. Using a large, international patient cohort acquired through the Global ALagille
Alliance (GALA) study, we sought to improve classification of NOTCH2 variants and study phenotypic differences between
NOTCH2- and JAGI-related disease.
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Methods: Clinical and molecular data from 952 individuals with ALGS in GALA were analysed and disease features compared
between those with JAGI (n=902) and NOTCH2 (n=34) variants. Previously reported and newly identified NOTCH2 variants
were reinterpreted based on disease-specific modifications to the American College of Medical Genetics and Genomics (ACMG)
guidelines. The Kaplan-Meier method was utilised to assess native liver survival (NLS) and overall survival (OS) and gene com-
parisons were made with the log-rank test.

Results: Thirty NOTCH?2 variants, including 18 novel variants, were identified and classified in our GALA cohort.
Phenotypic analyses revealed a significantly lower incidence of characteristic facies, posterior embryotoxon, cardiac involve-
ment and butterfly vertebrae in individuals with NOTCH?2 variants compared to those with JAGI variants (p <0.001). No
differences were identified in NLS or OS. Review of 61 previously reported NOTCH2 variants resulted in the re-classification
of 19 likely pathogenic or pathogenic to VOUS (31.1%) with less than half retaining their originally published classification
(34.4%; n=21).

Conclusions: We report on a large global study on NOTCH2 genetics and phenotype, which increases the number of reported
NOTCH2 variants by 30%. All variants were reclassified using current guidelines, and comparison of the JAGI and NOTCH2
cohorts demonstrates clear phenotypic divergence between these groups. These data suggest that reliance on classical clinical

phenotyping may miss patients with NOTCH2-related disease and supports an inclusive approach to genetic testing.

1 | Introduction

Alagille syndrome (ALGS) is an autosomal dominant, multi-
system disorder that is the most common inherited cause of
neonatal cholestasis, with an overall incidence of 1:30000 [1].
Additional clinical features include characteristic facies, car-
diac, skeletal, renal, vascular and ocular involvement [2-6].
The molecular aetiology of ALGS stems from dysfunctional
Notch signalling caused by pathogenic variants in either the
Notch pathway ligand Jaggedl (JAGI) or the Notch receptor,
NOTCH2, which account for 94.3% and 2.5% of cases, respec-
tively [7]. A clinical diagnosis of ALGS relies on the presence
of at least three disease features or the presence of one disease
feature and either a family history in a first degree relative or a
confirmed pathogenic/likely pathogenic variant identified in
JAGI or NOTCH2.

JAGI-related ALGS has been well-characterised with over 700
variants described in the Human Gene Mutation Database
(HGMD) [8]. The majority of JAGI variants (including full gene
deletions) result in loss-of-function (LoF) of the JAG1 protein,
implicating haploinsufficiency as the underlying disease mech-
anism [4, 9]. In ALGS, there is remarkable variability in both
disease severity and organ involvement including among fam-
ily members harbouring the same pathogenic variant [3, 10-14].
The mechanisms underlying variable expressivity remain un-
known but likely involve the contribution of genetic modifiers
[15-18]. Consequently, cohort-based studies have failed to es-
tablish a genotype-phenotype association among patients with
ALGS [19-21].

The functional consequences of variants in NOTCH?2 are less
well understood, with only 35 variants reported in HGMD [8].
Given the paucity of supportive functional data and the low
number of individuals with a NOTCH2 variant, variant of un-
certain significance (VOUS) rates for NOTCH2 are high. A re-
cent study reporting sequencing results from a cholestatic gene
panel published a VOUS rate of 91.7% for NOTCH2 in a large co-
hort of patients with cholestasis [1]. This uncertainty is reduced
within cohorts meeting clinical diagnostic guidelines for ALGS
(64% in ClinVar, a database of DNA variants and their associated

phenotypes), but remains substantial [22]. Phenotypic differ-
ences between NOTCH2- and JAGI-related ALGS have been
noted, including a reduced incidence of cardiac, skeletal and fa-
cial features, although these findings were drawn from a small
cohort of only eight individuals with NOTCH2 variants, inhibit-
ing definitive conclusions [23]. NOTCH2 variants have also been
shown to be a cause of Hajdu-Cheney syndrome, which includes
a spectrum of disorders, such as Serpentine fibula-polycystic
kidney syndrome, that primarily affect skeletal formation,
among other features. Variants associated with Hajdu-Cheney
and related syndromes are distinct in both their location within
NOTCH2, with all occurring within a specific region in the
last exon of the gene, and pathomechanism (gain-of-function)
[24, 25].

The Global ALagille Alliance (GALA) study is an international
initiative aimed to chronicle clinical and genetic data from indi-
viduals with ALGS. We have curated a large and geographically
diverse cohort of 952 individuals, allowing us to reclassify pre-
viously reported NOTCH2 and JAGI variants, offering disease-
specific variant interpretation guidelines. This study presents
the largest NOTCH2 cohort described to date. Additionally, we
carried out deep clinical phenotyping and genotype interpre-
tation to identify phenotypic differences between JAGI- and
NOTCH2-associated ALGS.

2 | Patients and Methods
2.1 | GALA Patient Cohort

The GALA Study Group was established in 2018 and consists
of 89 medical institutions from 35 countries [26]. The study pro-
tocol and its implementation across participating global centres
is described in detail elsewhere [26]. This observational cohort
study followed the Strengthening the Reporting of Observational
Studies in Epidemiology (STROBE) guidelines [27]. For this anal-
ysis, we ascertained individuals who underwent genetic testing
for JAGI and/or NOTCH2 (Table S1). Genetic testing strategies
varied by institution, but could include: JAGI and NOTCH2 sin-
gle gene or panel sequencing and deletion/duplication analysis,
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Summary

« We studied a large, international cohort of individu-
als with Alagille syndrome (ALGS) and describe the
largest group of patients with changes in the gene
NOTCH2 described to date.

Comparison of individuals with NOTCH?2 variants to
individuals with the more commonly identified JAG1
variants showed clear differences in how the disorder
manifests.

This suggests that relying only on typical signs and
symptoms may miss cases of ALGS due to NOTCH2
variants and supports broader genetic testing in indi-
viduals who do not meet the classic clinical phenotype.

exome sequencing and genome sequencing. The study was ap-
proved by the ethics committee at each participating centre or
an exemption from ethics approval was granted in accordance
with institutional regulations.

2.2 | Classification of NOTCH2 and Missense JAG1
Variants

American College of Medical Genetics and Genomics (ACMG)
guidelines were used to classify all NOTCH2 variants and all mis-
sense JAGI variants identified within the GALA cohort, as well
as all NOTCH2 variants previously reported in the literature [28].
These guidelines provide a list of criteria that can be used as evi-
dence to support either benignity or pathogenicity. Each criterion
is given a specified weight, with some providing stronger support
of pathogenicity than others, and the collective evidence for a vari-
ant is used to guide classification. Modifications of these guide-
lines were applied based on updated recommendations and our
expertise in ALGS genetics (Table S2) [29]. Minor allele frequency
(MAF) cut-offs for both JAGI (3.33E-05) and NOTCH2 (8.33E-
07) were established based on the frequency of causative variants
identified in each gene and were used to guide utilisation of popu-
lation databases (gnomAD v.2.2.1 and v.3.1.2).

2.3 | Curation of Previously Reported NOTCH2
Variants (External to GALA)

Previously reported NOTCH?2 variants were identified from
the Human Gene Mutation Database (HGMD) (v.2024.3)
where variants were filtered to include only those that were
reported to be disease-causing (DM) or likely disease-causing
(DM?) and that were associated with ALGS [8]. NOTCH?2 vari-
ants were also identified from ClinVar (last queried on March
11, 2024) and were filtered to include only those reported as
‘pathogenic’ or ‘likely pathogenic’ and that listed ‘Alagille syn-
drome’ as the associated condition [22]. Additionally, a liter-
ature search on PubMed for NOTCH2 was performed with a
last check on 11 March 2024. Results from all queries were
reviewed, and NOTCH2 variants were excluded if (1) variants
were reported with bi-allelic inheritance, (2) variants did not
segregate in affected individuals, (3) variants were identified
in individuals in whom a pathogenic variant in JAGI was also

detected and (4) protein-truncating variants were identified
in the PEST domain (associated with Hajdu-Cheney syn-
drome) [25].

2.4 | Statistical Analysis

Summary statistics are presented using medians and interquar-
tile ranges (IQR), and categorical variables are reported as counts
and percentages. Demographic and clinical characteristics were
compared between genotype groups using the Chi-square test
or Fisher's exact test, as appropriate. Native liver survival (NLS)
and overall survival (OS) were calculated utilising the Kaplan-
Meier method, with group comparisons carried out using the
log-rank test. Data were censored at the last known follow-up,
upon reaching 18years of age or on 31 August 2019, whichever
occurred first.

To investigate genotype-phenotype correlations in ALGS-
related genes, individuals harbouring pathogenic/likely
pathogenic or VOUS in NOTCH2 were compared to those with
a JAGI pathogenic/likely pathogenic or VOUS. For NOTCH?2,
individuals were further divided into three groups: (1) protein-
truncating (frameshift and nonsense), (2) splice site and (3)
non-protein-truncating (missense) for intergenotype compar-
isons. Similarly, for JAGI, individuals were further stratified
into four groups: (1) protein-truncating (frameshift and non-
sense), (2) splice site, (3) non-protein-truncating (missense
and in-frame deletions) and (4) structural (full gene deletions,
single or multi-exon deletions, multi-exon or full-gene dupli-
cations and translocations) for additional group comparisons.
A series of sensitivity analyses were conducted, excluding in-
dividuals with VOUS in both ALGS disease genes (JAGI and
NOTCH?2) to assess the robustness of the primary findings. A
p-value <0.05 was considered statistically significant, and the
analysis was performed using the Statistical Package for the
Social Sciences (SPSS, Chicago, IL) version 25.

3 | Results
3.1 | GALA Patient Cohort

At the time of data extraction, a total of 1543 participants with
ALGS were reported in the GALA database. Of these partici-
pants, 591 did not meet study requirements and were excluded
from further analysis. The majority of exclusions were attributed
to a lack of genetic testing (n=343), missing or incomplete vari-
ant details (n=197), or incomplete genetic testing (n=>51). The
final cohort consisted of 952 participants (56.6% male) from 66
centres in 29 countries (Figure 1).

The majority of study participants were probands (95.7%,
n=912/952). A pathogenic/likely pathogenic or VOUS in
JAG1 or NOTCH2 was identified in 98.3% (n=936/952) of
participants, with no variant identified in either gene for 1.7%
(n=16/952). The majority of individuals were identified to
have a variant in JAGI (94.7%, n=902), with a minority of pa-
tients reporting a finding in NOTCH2 (3.6%, n=234). Table 1
summarises the clinical characteristics of the entire study
cohort.
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1543 individuals with ALGS

were reported in the GALA database

Excluded (n=343)

y

1200 individuals with ALGS
underwent genetic-testing

n=343, The individual did not undergo genetic testing

|
{

Excluded (n=248)
n=197, Genetic testing was performed, but the report
J| and/or the variant details are missing/incomplete

A

n=51, The individual was negative for a JAG/ variant,
and no additional genetic testing was performed

952 individuals had a clinically and
genetically confirmed ALGS diagnosis

'

3.6% (n=34/952)
had a pathogenic/likely

94.7% (n=902/952)
had a pathogenic/likely
pathogenic or VUS in JAGI

athogenic or VUS in NOTCH?2

1.7% (n=16/952) were
negative for a pathogenic
variant in JAGI and NOTCH?2

y

64.7% (n=22/34)
had a pathogenic/likely

92.7% (n=836/902)
had a pathogenic/likely
pathogenic variant in JAGI

pathogenic variant in NOTCH?2

FIGURE1 | Ascertainment of the GALA study cohort.

3.2 | NOTCH2 Variants in ALGS

Among the 34 NOTCH2 probands in GALA, 30 unique variants
were identified and 18 of these were novel (Table 2). We clas-
sified 18/30 variants (60%) as likely pathogenic/pathogenic and
12/30 (40%) as VOUS. Two recurrent variants were identified in
the cohort, ¢.5858G>A; p.Argl953His (n=2/34 probands; 5.9%)
and ¢.6007C>T; p.Arg2003* (n=4/34 probands; 11.8%). Both of
these variants have been previously reported [23] and were clas-
sified as likely pathogenic and pathogenic, respectively. There
were no NOTCH2 structural variants identified.

A total of 61 previously reported NOTCH2 variants were iden-
tified from the literature, the majority of which were missense
(n=41, 67.2%). Forty variants had been reported as pathogenic/
likely pathogenic (65.6%), and 21 (34.4%) were reported as uncer-
tain. We re-assessed all reported variants using recommended
ACMG guidelines and disease-specific modifications including
the utilisation of gene-specific MAF cut-offs (Table S3) [28, 29].
Reclassification resulted in a drop from likely pathogenic/patho-
genic to VOUS for 19 variants (31.1%) and to likely benign for 10
variants (16.4%). One variant (p.Argl953His) was elevated from
VOUS to likely pathogenic (1.6%) and less than half of NOTCH2

variants (34.4%; n=21) retained their original classification.
After removing the 10 variants reclassified as likely benign, 51
disease-associated variants remained, of which 20 (39.2%) were
classified as pathogenic or likely pathogenic and 31 (60.8%) were
classified as VOUS.

With the addition of 18 novel NOTCH2 variants from GALA,
alongside those previously reported as disease-associated from
the literature, 69 NOTCH2 variants are now described in indi-
viduals with ALGS (Figure 2A, Table S3). When all 69 variants
are considered, the majority of disease-associated NOTCH2
variants are missense (56.5%, n=39), followed by frameshift
(15.9%, n=11), splice (14.5%, n=10) and nonsense (10.4%, n="7)
(Figure 2A). One synonymous variant (reported here) and one
multi-exon deletion have been reported [30].

Notably, the majority of missense variants (79.5%; n=31/39)
were classified as VOUS. We also observed a bimodal distribu-
tion of the missense variants across two hubs, the epidermal
growth factor like (EGF-like) domains (61.5%, n=24) and the
Ankyrin (ANK) repeats (20.5%, n = 8), with the strongest cluster
of EGF-like domain variants localised to the JAG1-binding re-
gion (EGF-like 8-12; n=9 variants) (Figure 2B).
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TABLE1 | Baseline clinical features for 952 individuals with ALGS.

Negative for JAG1
All JAG1 NOTCH2 and NOTCH2! 4]
n 952 94.7% (n=902) 3.6% (n=34) 1.7% (n=16)
Male, % (n) 56.4% (n=537) 55.7% (n=502) 79.4% (n=27) 50.0% (n=8) 0.006*
Age at first clinical 79.8% (n=751/941) 80.2% (n=715/891) 76.5% (n=26) 62.5% (n=10) 0.803
suspicion (0-1years),
% (n)
De novo, % () 58.2% (n=330/567)  58.9% (n=2330/543) 45.0% (n=9/20) 100% (n=1/1) 0.214
Probands, % (n) 95.8% (n=912) 95.6% (n==862) 100% (n=34) 100% (n=16) 0.437
Diagnostic criteria, % (n)
Liver involvement, 98.8% (n=926/937) 98.8% (n=3876/887) 100% (n=34) 100% (n=16) 0.660
any
History of neonatal 83.5% (n=768/921) 83.1% (n=1727/875) 90.6% (n=29/32) 85.7% (n=12/14) 0.261
cholestasis
Bile duct paucity on  64.7% (n=260/402)  64.9% (n=242/373)  56.5% (n=13/23) 83.3% (n=>5/6) 0.417
first biopsy
Characteristic facies ~ 89.1% (n=800/898) 90.1% (n=766/850) 57.6% (n=19/33) 100% (n=15/15) <0.001*
Echo-confirmed 91.1% (n=819/899)  92.2% (n=789/856)  64.3% (n=18/28) 80.0% (n=12/15) <0.001*
cardiac anomaly,
any
Posterior 51.9% (n=413/796)  52.8% (n=399/756) 18.5% (n=5/27) 69.2% (n=9/13) <0.001*
embryotoxon
Butterfly vertebrae 43.0% (n=366/852) 44.5% (n=359/806) 3.3% (n=1/30) 37.5% (n=6/16) <0.001*
Renal anomaly, any 38.9% (n=326/837) 39.2% (n=311/794) 34.5% (n=10/29) 35.7% (n=>5/14) 0.611
Vascular anomaly, 37.0% (n=128/346)  37.7% (n=124/329) 21.4% (n=3/13) 25.0% (n=1/4) 0.222

any

Note: Comparisons were made between those harbouring a JAGI or NOTCH2 variant (P/LP/VOUS). *This denotes statistical significance.

3.3 | NOTCH2 Genotype-Phenotype Analysis
in GALA

To study whether NOTCH2 variant type correlates with disease
presentation, all 34 ALGS patients identified in the GALA co-
hort with a pathogenic/likely pathogenic or VOUS in NOTCH2
were stratified into three variant groups: protein-truncating
(35.2%, n=12), splice site (20.5%, n=7) and non-protein-
truncating (44.1%, n=15) and compared. No correlations be-
tween NOTCH2 variant type and ALGS phenotype including
presentation of neonatal cholestasis, intrahepatic bile duct
paucity and extrahepatic features were identified (Table S4).
Available laboratory data from the first year of life, along with
the frequency of cholestasis-related complications (such as pru-
ritus and xanthomas), are detailed in Table S5.

We did not identify any differences in NLS or OS at 10-18years
in participants with a history of neonatal cholestasis for all three
variant groups (data not shown). To eliminate any confounding
effects from including individuals with VOUS, we repeated the
analysis including only individuals with a pathogenic/likely
pathogenic variant in NOTCH2 (n=22). In these analyses, our
results remained consistent with the primary analysis reported
above (data not shown).

Given the high rate of NOTCH2 variants within the ANK and
EGF-like domains, a secondary analysis was performed to de-
termine whether variants clustered in one of these hotspots
are associated with a distinct clinical phenotype or prognosis.
NOTCH2-related ALGS patients with a variant in the ANK or
EGF-like domains were clinically and histologically indistin-
guishable from other patients with NOTCH2-related ALGS.
There were also no differences between the groups in terms of
rates of NLS and OS (data not shown).

3.4 | JAGI1 Genotype-Phenotype Analysis in GALA

We report 521 unique JAGI variants identified in 863 probands
including 244 novel, previously unreported variants (Table S6).
The majority of JAGI variants are protein-truncating (nonsense,
frameshift; 66%, n=342), followed by missense (15.7%, n=_80),
splicing (13.8%, n="74) and copy number or structural variants
(n=24, 4.5%). One previously reported in-frame deletion was
also present in our cohort [31]. The incidence of these different
mutation types has been reported and has remained relatively
unchanged over the past three decades [7, 8, 20, 31]. Moreover,
the majority of missense variants identified in our cohort were
found within the first six exons (66.3%, n=53/80), a finding that
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FIGURE2 | NOTCH2variants reported for ALGS. (A) All disease-associated NOTCH2 variants (VOUS, likely pathogenic, and pathogenic; n=69)
identified in this study and those previously reported are plotted along the NOTCH2 protein. Structural variants and those predicted to have a benign
effect on protein function are not included (n=1). Variants are colour-coded to distinguish variant types: red (frameshift, n=11), blue (missense,
n=33), orange (nonsense, n=7), purple (splice, n=10), and green (silent, n=1). Protein domains are depicted using the following colour scheme:
teal (EGF-like), yellow (JAG1-interacting, EGF-like), light purple (Lin-12/Notch repeat; LNR), red (transmembrane), blue (ankyrin repeats) and dark
purple (PEST domain). (B) All disease-associated missense NOTCH2 variants identified in this study and those previously reported (VOUS, likely
pathogenic, and pathogenic; n=33) are plotted along the NOTCH2 protein. Variants are colour-coded according to their location in a functional do-
main: teal (EGF-like), yellow (JAG1-interacting EGF-like), blue (ankyrin repeats) and grey (no domain). The image was created using Protein Paint
(https://proteinpaint.stjude.org/) and BioRender.

has also been previously reported [4, 7, 32]. Protein-truncating deletions occur with varying breakpoints with no evidence of
and full or partial gene deletions are anticipated to result in loss regions with increased vulnerability to breakage, as previously
of function (LoF) and were all classified as likely pathogenic reported [34]. Within 784 probands harbouring a single nucleo-
or pathogenic when disease pathogenesis (haploinsufficiency), tide or insertion—deletion (indel) variant, we report 496 unique
inheritance and absence in unaffected individuals (i.e., gno- variants. The majority of these variants were seen in only a sin-
mAD) were taken into account [28, 33]. Using disease-specific gle proband (82.5%, n=409), whereas 17.5% of variants (n =87)
modified ACMG classification criteria (Table S2), we classified were identified in two or more probands. Most of these recurrent
56 (70%) unique JAGI missense variants as pathogenic or likely ~ variants are found in repetitive or homopolymeric regions and/

pathogenic and 24 (30%) as VOUS (Table S6). or in less than five probands. The most commonly occurring

variant was a frameshift, ¢.2122_2125del (p.Gln708Valfs*34)
Given the size of our cohort, we were able to investigate the fre- (3.6% of probands with a single nucleotide or indel variant,
quency of recurrent variants. The most common recurrent vari- n=28), which involves the deletion of CAGT within a tandem

ant type in JAGI-ALGS are whole gene deletions, which occur repeat (CAGTCAGT). Overall, 16 variants were seen at a fre-
in 6.4% of probands (n=55/863 JAGI probands). Whole gene quency greater than 1%.
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To study whether variant type correlates with a specific ALGS
phenotype, all participants with a pathogenic, likely pathogenic, or
VOUS in JAGI were stratified into four groups: protein-truncating
variant (n =538), splice site variants (n = 151), missense (n = 133), or
structural variant (n=382). No association was identified between
variant type and clinical phenotype including the presentation of
neonatal cholestasis, intrahepatic bile duct paucity, or extrahepatic
features (Table S5). We again did not identify any differences in
NLS or OS at 10- and 18-year-olds in participants with a history
of neonatal cholestasis for all four variant groups (Figure S1A,B).
To avoid overinterpretation of these findings, participants with a
VOUS were removed, and the analysis was repeated with results
remaining unchanged (data not shown).

3.5 | Characterisation of Phenotypic Differences
Between Individuals With JAG1 and NOTCH2
Variants in GALA

We investigated phenotypic differences between individuals
harbouring JAGI (n=902) or NOTCH2 (n =34) variants in the
GALA cohort (Table 1). The two groups were comparable in
terms of liver involvement, renal anomalies and vascular in-
volvement. However, NOTCH2-associated ALGS participants
were significantly less likely to have characteristic facies
(p<0.001), an ECHO-confirmed cardiac anomaly (p <0.001),
posterior embryotoxon (p<0.001) and butterfly vertebrae
(p<0.001), compared to participants with JAGI-associated
ALGS. Moreover, NOTCH2-associated ALGS participants
were significantly more likely to be male compared to JAGI-
associated ALGS participants (p <0.006). A comparison of
NLS rates at 10 and 18years among individuals with ALGS
presenting with neonatal cholestasis found no statistically
distinguishable difference between those with a NOTCH2 or
JAGI variant (log-rank p =0.0192; Figure 3A). In line with the
analysis of NLS, OS rates at 10 and 18 years were comparable
(log-rank p=0.506; Figure 3B). To confirm the robustness of
these findings, participants with a VOUS in either gene were
removed, and the analysis was repeated, yielding the same re-
sults (data not shown).

3.6 | Molecularly Uncharacterized ALGS
Individuals in GALA

No pathogenic variants were detected in either JAGI or
NOTCH2 for 1.7% (n=16/952) of the patients within our
cohort, despite their meeting clinical criteria for ALGS.
Hepatic involvement was universally reported in these pa-
tients, and the frequency of extrahepatic manifestations was
comparable to ALGS patients with JAGI variants (Table 1).
Notably, bile duct paucity was reported in 83.3% (n=5/6) of
mutation-negative probands. NLS of molecularly character-
ised (presence of a JAG1 or NOTCH2 variant; n=753) and un-
characterised (absence of a JAGI or NOTCH2 variant; n=12)
individuals with ALGS who presented with neonatal cholesta-
sis were comparable at 10- and 18-years (log-rank, p=0.411;
Figure S2A). Similarly, an analysis of OS including all individ-
uals, both molecularly characterised (n =931) and uncharac-
terised (n=16), at 10 and 18years yielded comparable results
(log-rank, p=0.139; Figure S2B).

4 | Discussion

We present data from an international cohort of 952 individuals
with clinically confirmed ALGS diagnoses from 66 participating
institutes across 29 countries, all of whom have undergone ge-
netic testing. We report a slightly higher incidence of NOTCH2
variants (3.6%) in ALGS than has been previously reported
(2.5%), which is likely due to the greater size and geograph-
ical distribution of our cohort [7]. We identified and classified
18 novel NOTCH2 variants, which increases the number of re-
ported variants to date by 30%, and we present 244 novel JAGI
variants (n=222 pathogenic/likely pathogenic, n=22 VOUS).
Our findings demonstrate a statistically supported phenotypic
divergence between patients with JAGI and NOTCH2 variants.
These phenotypic differences should be considered during clin-
ical evaluation for ALGS, particularly for patients with isolated
cholestasis who have not yet undergone molecular testing.

Our reference catalogue of all reported NOTCH?2 variants as-
sociated with ALGS obtained through meticulous curation
and rigorous disease-specific variant interpretation will aid
in the evaluation of variants when they are identified in the
clinic. For our classification framework, we reviewed all ev-
idence guidelines provided by the ACMG and modified them
when applicable based on our expertise with ALGS genetics,
which included the adaptation of gene-specific MAF cut-offs
for JAG1 and NOTCH2 based on disease incidence and gene-
specific disease frequency [28, 29]. For NOTCH2, this cut-off
corresponds to an absence of alleles in gnomAD (v.2.2.1. This
adaptation is supported by a recent study that stratified 35 pa-
tients with NOTCH2 variants by variant frequency and found
a statistically significant correlation between variants that
were absent in gnomAD and those that were both predicted to
be damaging by in silico models and were present in patients
with high GGT levels [35]. Review of all NOTCH?2 variants in
the GALA cohort (n=30) resulted in 18 likely pathogenic/
pathogenic and 12 VOUS (40%) classifications. NOTCH?2
VOUS rates vary drastically by reporting centre and pheno-
typic diversity of the tested population. Our VOUS rate of
40% is lower than what is reported in ClinVar (62.9%), which
is likely attributable to the highly phenotyped nature of our
GALA cohort [1]. Our study inclusion criteria for individuals
with a VOUS required the presence of three ALGS disease fea-
tures rather than the two required for inclusion of individuals
with a likely pathogenic or pathogenic variant. This increased
stringency for inclusion of VOUS was done with purpose to
retain only those variants with a high likelihood of disease rel-
evance. For this reason, all VOUS were included in statistical
analyses within the GALA cohort. Our analysis of previously
reported NOTCH2 variants in the literature indicates that
more than half (65.6%, n =40 out of 61) were misclassified, of
which the majority (85%, n =34 out of 40) resulted in a drop in
classification from likely pathogenic/pathogenic to VOUS or
likely benign or VOUS to likely benign.

Missense variants were the predominant variant type for
NOTCH2, and were largely classified as VOUS within the GALA
study (69.2%, nine out of 13). Our findings, alongside previously
reported missense variants in NOTCH2, strongly support the
presence of two mutational hotspots, one occurring within the
EGF-like domains and a second occurring within the ANK

90of15



A 100 "*NOTCH2
IJAGH
90 —
80
X
‘. 70
g
E 60
2
s
; 40
T 30
Z
20
10
0
| | |
0 2 4 6 8 10 12 14 16 18
Ne at risk Age, years
NOTCH? 29 21 15 11 11 8 6 4 2 2
JAGI 727 524 361 245 167 121 88 69 49 21
B +i*NOTCH2
100 - \ JAGH
< 90
-
«
2
5 80
=
«
s
>
=}
70
60
0 2 4 6 8 10 12 14 16 18
Ne at risk &
ge, years
NOTCH2 34 28 19 15 14 10 8 6 4 3

JAGI 902 739 571 438 326 262 204 159 116 63
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with neonatal cholestasis (log-rank p=0.192). (B) 10 and 18-year survival rates for both NOTCH2 (n =34) and JAGI-ALGS (n =902) individuals were
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repeats. Nearly all of the identified NOTCH2 missense variants
(GALA study combined with previously reported) are reported
in these two functional regions (34/39; 87.2%), with over half
(76.5%; n=26 out of 34) found within the EGF-like domains.
Identification of these two mutational hot spots can aid in pre-
dicting the pathogenicity of variants in NOTCH2.

The determination of whether a DNA change occurring within
JAGI or NOTCH?2 is causal for ALGS depends on multiple fac-
tors. The ACMG has published recommendations to help in the
interpretation of disease causality for variants [28], but these
generalised guidelines often require disease-specific modifica-
tions based on deep knowledge of mutation type and disease
mechanism. The published guidelines provide criteria that are
assessed individually for each variant and used to establish a
classification of pathogenic, likely pathogenic, VOUS, likely
benign, or benign. Each criterion is assigned a pre-determined
weight of very strong, strong, moderate, or supporting, and this
evidence is tallied to arrive at a final classification for each vari-
ant. Our analysis of the pathogenicity of JAGI and NOTCH2
variants relied predominantly on four classification criteria out-
lined by the ACMG [28], which we found to be most informa-
tive for or against disease causality (detailed in Table S2). We
found that low frequency or absence of a variant in control pop-
ulations was applicable to nearly all analysed variants (98.9%
of probands) and provided moderate support for pathogenicity.
Evidence supporting a damaging effect on protein function
was found to be highly important for variant classification. A
recent study reporting on the functional effects of nearly 3000
JAGI variants within exons 1-7 provided evidence in support
of pathogenicity for 23 JAGI variants reported here [36]. Only
six NOTCH?2 variants have been studied at the protein level,
all of which showed abnormal function and are classified here
as likely pathogenic or pathogenic [23]. Additional functional
studies for both JAGI and NOTCH2 will be important in resolv-
ing the pathogenicity of VOUS. We also recommended a reduc-
tion in the suggested weight for two additional ACMG criteria.
We recommend that the identification of a de novo variant be
considered as moderate, rather than strong, evidence toward
pathogenicity since inheritance status is not critical in ALGS,
where variable expressivity is highly prevalent, and where the
same variant can be de novo in one family and inherited in a
different family. We also recommend that the identification of
a novel missense change at an amino acid residue where a dif-
ferent missense change determined to be pathogenic has been
seen before should be weighted as supporting rather than as
moderate evidence. In the functional study described above by
Gilbert et al. [36], the authors found no correlation between ab-
normal function of one missense change extending to all other
substitutions at that amino acid residue. We expect that as more
research emerges for JAGI and NOTCH2 these guidelines can
be further modified and improved to help support clear and ap-
propriate variant classifications for ALGS.

Given the size of our cohort, we were able to define significant
phenotypic differences between JAGI- and NOTCH2-related
ALGS. NOTCH2-related ALGS patients were significantly less
likely to have butterfly vertebrae and characteristic facies, find-
ings that are consistent with an earlier, small case series [23].
These data suggest that NOTCH2 may not be expressed in
developing vertebral bodies and or may have a distinct role in

regulating craniofacial bone development. In contrast, loss of
JAGI function in mesenchymal progenitors leads to opposing ef-
fects in cortical and trabecular osteoblasts, which has been sug-
gested to contribute to the skeletal phenotype in JAGI-related
ALGS patients [37, 38]. Moreover, studies in both zebrafish and
mice support this finding, with loss of JAGI expression result-
ing in greater malformations of the inner and middle ear bones
than loss of NOTCH2 [39]. Our study further extends the obser-
vations of Kamath et al. [23] and reports significantly reduced
penetrance of other extrahepatic manifestations in NOTCH2-
related ALGS patients including cardiac and eye anomalies. We
also identified a marked male predominance among NOTCH2-
related ALGS patients. Male predominance in aortic valve dis-
ease, an unrelated condition that is caused by LoF variants in
NOTCH]I, has also been reported, raising the possibility of a
shared mechanism between these two Notch signalling disor-
ders [32, 40]. We postulate that Notch signalling could regulate
sex steroid hormones and this interaction could account for the
observed sex difference. Liver involvement was observed in all
NOTCH2-related ALGS patients, however our cohort was biased
asall individuals were ascertained from liver clinics. Regardless,
the presentation of liver disease and rates of NLS and OS were
comparable among all participants. Taken together, these data
suggest that reliance on classical clinical phenotypic definitions
of ALGS may miss patients with NOTCH2-related disease, or
lead to misdiagnosis with biliary atresia, and that expansion of
genetic testing criteria may improve diagnostic accuracy, par-
ticularly in cases with atypical ALGS phenotypes. Standard
genomic diagnostic workflows typically involve simultaneous
sequencing and deletion/duplication analysis of both JAGI and
NOTCH2, often due to their presence on cholestatic panels,
which also include many other genes associated with cholestasis
[41]. The use of these panels is standard of care in most liver clin-
ics. Moreover, despite these findings, the true spectrum of the
clinical phenotype associated with NOTCH2 variants remains to
be fully elucidated as this study focuses on those with an ALGS-
like phenotype, and further investigation will be necessary to
determine if non-characteristic ALGS features can be present in
these individuals. It is important to note that NOTCH2-related
ALGS is extremely rare, which results in small cohort sizes that
could impact the robustness of findings. We will validate our
observations in the future as our cohort size increases with ad-
ditional patient enrollment.

No genotype—phenotype differences in variant type were identi-
fied for individuals with JAGI or NOTCH2 variants, which is in
agreement with previous studies [19-21]. Although testing strat-
egies may differ across participating centres, it is unlikely that
this would influence the detection and classification of variants.
JAGI and NOTCH?2 are the only two genes implicated in ALGS,
and genome sequencing studies on ALGS individuals in whom a
JAGI or NOTCH?2 mutation has not been identified have failed to
implicate novel genes [30]. More likely, the variable expressivity
of ALGS is due to the contribution of genetic modifiers, epigen-
etic mechanisms, or environmental factors in disease severity.
Four candidate genetic modifiers have been implicated in the
pathogenesis or amelioration of JAGI-related liver disease, both
in mouse models and humans [15-18], and these types of genetic
modifier studies have not yet been extended to NOTCH2-related
disease. It is possible that non-genetic factors could play a role
in modulating disease penetrance. Two studies in monozygotic
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twins have proposed the role of prenatal hypoxia as an influ-
encing factor in ALGS disease severity due to unequal blood
flow and twin-to-twin transfusion syndrome [12, 14]. The con-
tribution of non-genetic modifiers to ALGS disease severity
has not been studied to the same degree as genetic modifiers.
Collectively, these results, along with previous publications, il-
lustrate a complex underlying molecular aetiology of ALGS and
support further investigations into modifiers of Notch signalling.

A pathogenic variant was not identified in JAGI and NOTCH2 for
1.7% of individuals in the study. A prior study in a large ALGS co-
hort reported a pathogenic variant negative rate of 3.2% [7]. When
genome sequencing was performed in this cohort of patients,
four novel pathogenic variants were identified in JAGI (n=3) and
NOTCH2 (n=1), indicating that the application of additional se-
quencing technologies was able to increase the diagnostic yield
[30]. As sequencing technologies and bioinformatic methodol-
ogies advance in conjunction with our understanding of how
non-coding regions influence JAGI and NOTCH2 expression, we
imagine that we might be able to identify novel variations in pa-
tients with molecularly uncharacterised ALGS. Alternatively, a
thorough investigation of the clinical phenotypes in these patients
could help point to other molecular diagnoses, and careful track-
ing of evolving clinical features will be critical in these individuals.

5 | Conclusion

Our reference catalogue summarises 79 NOTCH?2 variants, of
which 69 are associated with ALGS. This catalogue serves as
an invaluable resource for clinicians and clinical laboratory
geneticists, facilitating interpretation and classification of
NOTCH?2 variants. Our comprehensive literature review re-
vealed that the majority of reported disease-causing NOTCH?2
variants were later reclassified as either VOUS or likely be-
nign. This observation underscores the importance of employ-
ing strict clinical genotyping and utilising disease-specific
variant classification criteria when assessing variants. In the
GALA cohort, we identified 18 novel NOTCH2 variants and
corroborated earlier findings of a predominance of missense
variants in two hubs along the NOTCH2 gene. Furthermore,
we clearly establish phenotypic differences between patients
with NOTCH?2 variants compared to those with JAGI variants.
These data suggest that reliance on classical clinical pheno-
typic definitions of ALGS may miss patients with NOTCH2-
related disease and that an inclusive approach to genetic
testing is critical for diagnosis.
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