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Abstract 
Alzheimer’s disease (AD) is the most common cause of dementia and, despite decades of effort, 
there is no effective treatment. In the last decade, many association studies have identified genetic 
markers that are associated with AD status. Two of these studies suggest that an epistatic interaction 
between variants rs1049296 in the Transferrin (TF) gene and rs1800562 in the Homeostatic Iron 
Regulator (HFE) gene, commonly known as hemochromatosis, is in genetic association with AD. TF 
and HFE are involved in the transport and regulation of iron in the brain, and disrupting these 
processes exacerbates AD pathology through increased neurodegeneration and oxidative stress. 
However, by using a significantly larger dataset from the Alzheimer’s Disease Genetic Consortium 
(ADGC), we fail to detect an association between TF rs1049296 or HFE rs1800562 with AD risk 
(TF rs1049296 p=0.38 and HFE rs1800562 p=0.40). In addition, logistic regression with an 
interaction term and a Synergy Factor Analysis (SFA) both failed to detect epistasis between TF 
rs1049296 and HFE rs1800562 (SF=0.94; p=0.48) in AD cases. Each of these analyses had 
sufficient statistical power (Power>0.99), suggesting that previously-reported associations may be 
the result of more complex epistatic interactions, genetic heterogeneity, or were false-positive 
associations due to limited sample sizes.  
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Introduction 
Alzheimer’s disease (AD) is the most common cause of dementia and inflicts an estimated 24 to 35 
million people worldwide, with incidences predicted to increase dramatically as the population ages 
("2018 Alzheimer's disease facts and figures," 2018). Although decades of research have been spent 
investigating the causes and architecture of this neurodegenerative disease, it still inflicts an 
estimated 5.7 million people in the United States alone. This number is projected to increase to 13.8 
million by mid-century ("2018 Alzheimer's disease facts and figures," 2018). Association studies 
have accurately identified single-nucleotide polymorphisms (SNPs) associated with AD (D. Harold 
et al., 2009; Denise Harold et al., 2009; Hollingworth et al., 2011; J.-C. Lambert et al., 2009; J. C. 
Lambert et al., 2013; Seshadri et al., 2010; Shen et al., 2015; Shuai et al., 2015; Yan et al., 2015). 
However, these genetic loci account for only a fraction of AD heritability, (Ridge, Mukherjee, Crane, 
Kauwe, & Alzheimer’s Disease Genetics, 2013) suggesting that much of AD’s unexplained genetic 
make-up may be due to epistasis (Bullock et al., 2013; Combarros, Cortina-Borja, Smith, & 
Lehmann, 2009; M. T. Ebbert et al., 2014; Infante et al., 2004). Epistasis occurs when multiple genes 
interact to create a single phenotype (Cordell, 2002). These kinds of synergetic relationships play a 
critical role in the etiology of complex diseases, yet remain vastly understudied in AD pathology 
("2018 Alzheimer's disease facts and figures," 2018; M. T. W. Ebbert, Ridge, & Kauwe, 2015; 
Raghavan & Tosto, 2017). 
 
The Transferrin (TF) gene and the Homeostatic Iron Regulator (HFE) gene, commonly known as 
hemochromatosis, have been reported to show epistasis and play a role in the development of AD 
(Robson et al., 2004; Tisato et al., 2018). TFs are a group of non-heme iron-binding glycoproteins 
found in fluids and cells of vertebrates. The main role of TF is to maintain iron homeostasis in the 
body (Gkouvatsos, Papanikolaou, & Pantopoulos, 2012). In the brain, TF interacts with the Amyloid 
Precursor Protein (APP) (Belaidi et al., 2018) and tau (Jahshan, Esteves-Villanueva, & Martic-Milne, 
2016), two of the major protein families implicated in AD pathology. Since iron is essential for 
oxygen transport, its mis-regulation in the brain can lead to oxidative stress and neurodegeneration 
(Dias, Junn, & Mouradian, 2013; Matak et al., 2016; Yarjanli, Ghaedi, Esmaeili, Rahgozar, & 
Zarrabi, 2017). HFE encodes for a transmembrane glycoprotein that binds to a TF receptor, 
subsequently regulating iron in the cell (Bennett, Lebron, & Bjorkman, 2000; Feder et al., 1996; 
Lebron et al., 1998). Mutations in HFE are associated with neurodegenerative diseases through 
increasing neuroinflammation and production of free radicals in the brain (Andersen, Johnsen, & 
Moos, 2014; Lull & Block, 2010). In addition, other studies suggest that TF and HFE are involved in 
the transport and regulation of iron in the brain, and disrupting these processes potentially affects AD 
pathology through increased neurodegeneration and oxidative stress (Ali-Rahmani, Schengrund, & 
Connor, 2014; Lehmann et al., 2006). 
 
Robson et al. (2004) suggested that epistasis between TF variant rs1049296 and HFE variant 
rs1800562 is associated with AD. Although neither SNP alone was a risk factor for AD, the presence 
of both alleles resulted in a five times greater risk of developing AD. (Robson et al., 2004). Since the 
sample size for that study was relatively small (191 cases and 269 controls), a replication of these 
findings on a slightly larger dataset (1,161 cases and 1,342 controls) was conducted. A logistic 
regression analysis and a Synergy Factor Analysis (SFA) corroborated a significant association with 
AD risk among bi-allelic carriers of rs1049296 and rs1800562  (synergy factor= 2.71; p=0.0016) 
(Kauwe et al., 2010).  
 
Our study expands on these previous studies and attempts to detect statistical epistasis between TF 
rs1049296 and HFE rs1800562 with respect to AD risk using 25,666 individuals (12,532 cases and 



13,134 controls) from the Alzheimer’s Disease Genetic Consortium (ADGC), which is an expansion 
of the dataset employed by Kauwe et al. (2010). 
 
Material and Methods 
Dataset and Filtering 
Our analysis started with GWAS data from all 28,730 individuals in the Alzheimer’s Disease Genetic 
Consortium (ADGC) dataset as described by Naj et al. (A. C. Naj et al., 2011). ADGC is a collection 
of 30 merged datasets spanning 1984 to 2012, and was established to help identify genetic markers of 
late onset AD. (Boehme, Mukherjee, Crane, & Kauwe, September 2014) (see Supplementary Table 1 
for ADGC demographics). ADGC imputed the 30 datasets to the Haplotype Reference Consortium 
(HRC) reference panel, which includes 64,976 haplotypes and 39,235,157 SNPs (Loh et al., 2016; 
Adam C. Naj et al., 2017). Genotyped markers with a minor allele frequency less than 1% and a 
deviation from Hardy Weinberg Equilibrium (HWE) where α<10-6 were removed. All aspects of the 
study were approved by institutional review boards, and each applicant signed a written form of 
consent for their genetic data to be used for research purposes. 
 
We followed the same filtering protocols established by Ridge et al. (Ridge et al., 2013) by 
genotyping markers with a minor allele frequency less than 1% and removing markers with a HWE 
p-value less than 10-6. Principle components were calculated using Eigensoft (Patterson, Price, & 
Reich, 2006; Price et al., 2006) to account for population specific variations in allele distribution. 
After filtering, 12,532 cases and 13,134 control subjects contained genotypic information for TF 
rs1049296 and HFE rs1800562. 
 
Genetic Analyses 
The main effects of TF rs1049296 and HFE rs1800562 on AD risk were measured using a 
multivariate nonparametric logistic regression analysis. Each SNP was first analyzed as a single term 
and then as an interaction term in a subsequent analysis. Similar to the Kauwe et al. (2010) study, we 
used the annotations in the ADGC dataset to include sex, age of onset, APOE e4 allele status, cohort, 
and 10 principle components as covariates. In addition, we performed a chi-square analysis to 
determine odds ratios between AD status in each SNP as a single term and as an interaction term, 
respectively. Lastly, we performed a Synergy Factor Analysis (SFA) to calculate the size and 
significance of the interaction between TF rs1049296 and HFE rs1800562 and AD risk with minor 
allele non-carriers as the reference group (Cortina-Borja, Smith, Combarros, & Lehmann, 2009) (see 
Supplementary Table 3 for detailed SFA calculations). These analyses were performed for each of 
the 30 cohorts separately and for the entire ADGC dataset combined as a single cohort.  
 
Furthermore, we calculated the power of analysis for the ADGC dataset using an online power tool 
available at https://www.dartmouth.edu/~eugened/power-samplesize.php (Demidenko, 2008; Demidenko, 
2007). The previous analysis performed by Kauwe et al. (2010) had 0.31 power to detect an effect size of 
1.14 at an alpha of 0.05 by using a sample size of 2,503. Our logistic regression model has power of  
>0.99 to detect a similar effect size of 1.14  at an alpha of 0.05 by using a sample size of 25,666 (see 
Supplemental Figure 1).  
 
Results 
The nonparametric logistic regression analysis using ADGC as one cohort demonstrated that when 
testing the main effects, neither TF rs1049296 nor HFE rs1800562 was associated with AD risk (TF 
rs1049296 p=0.38; HFE rs1800562 p=0.40). The logistic regression analyses including an 
interaction term for the two variants also failed to show significant association (p=0.23). Similarly, 



the SFA analysis did not find epistasis between TF rs1049296 and HFE rs1800562 (SF=0.94; 
p=0.48). 
 
We performed logistic regression on all 30 individual cohorts (see Supplemental Figure 2). We 
detected a significant epistatic association between the interaction term and AD status in the ACT 
cohort (p=0.038) and a suggested association in the ADC1 cohort (p=0.063). In addition, the 
individual effect of HFE rs1800562 shows a suggested association with AD status in the ADC6 
(p=0.099), WHICAP (p=0.052), ADC4 (p=0.076), and ROSMAP (p=0.094) cohorts. Furthermore, 
logistic regression for the individual effect of TF rs1049296 determined a significant association with 
AD status in the WASHU cohort (p=0.016). However, none of these associations remained 
significant after a Bonferroni correction for multiple tests.  
 
In addition, chi-squared analyses between terms and AD status demonstrated a non-significant 
likelihood for any single term or interaction. The odds ratio for rs1049269 was 0.97 with a 95% 
confidence interval (CI) between 0.92 and 1.03, while rs1800562 had an odds ratio of 1.06 with a CI 
of 0.98 to 1.15, and the interaction term had an odds ratio of 0.99 with a CI of 0.86 to 1.14. The odds 
ratios and confidence intervals for main effects and the interaction in each cohort are displayed in 
Supplemental Figure 3. 
 
Discussion 
We failed to detect evidence of epistasis between TF rs1049296 and HFE rs1800562 as a risk for AD 
in the ADGC dataset. These findings do not support the conclusions drawn in the previous reports by 
Robson et al. (2004) and Kauwe et al. (Kauwe et al., 2010). The cause for this variability among 
studies could be a result of genetic heterogeneity, the complex nature of epistasis, or false positives 
in these previous studies due to limited sample size. 
 
Although recent literature suggests that much of the unidentified genetic makeup of AD is due to 
epistasis (Bullock et al., 2013; Combarros et al., 2009; M. T. Ebbert et al., 2014; Infante et al., 2004; 
Mez, 2016), the complex nature of these gene-gene interactions makes it difficult to define specific 
epistatic interactions when multiple genes could be involved (Gilbert-Diamond & Moore, 2011; 
Kouyos, Silander, & Bonhoeffer, 2007; Urbanowicz, Kiralis, Fisher, & Moore, 2012). Models for 
epistatic interactions are challenging to create because the models require large datasets to analyze 
combinations of variables simultaneously (Moore & Williams, 2009).  
 
When an insufficient number of samples are used, results have poor statistical power, which leads to 
frequent false negatives in gene-gene interaction studies. Likewise, the numerous comparisons 
required to assess epistasis may generate false positive findings (Mackay & Moore, 2014). 
Inadequate sample size can also result in false positives and is identified through statistical power 
analyses (Christley, 2010). The experiments performed by Robson et al. (2004) and Kauwe et al. 
(Kauwe et al., 2010) used datasets with much fewer individuals than the dataset used in this 
manuscript, and consequently have lower statistical power than our analysis. Although it is difficult 
to assess the proper significance threshold for power calculations, our study has significantly more 
power than the Kauwe et al. (2010) study regardless of the alpha value employed in the power 
calculation (see Supplemental Figure 1). Our analysis attains a power of .80 with an alpha value of 
just .003, whereas the Kauwe et al. (2010) study would need a significance threshold of .55 to reach 
the same level of power.  Current research suggests a phenomenon known as the “winner’s curse,” 
which occurs when the estimated effect of an association is inflated compared to the true genetic 
effect and the effects later measured in follow-up studies (Huang, Ritchie, Brozynska, & Inouye, 
2018; Palmer & Pe'er, 2017). The level of power necessary to accurately detect epistasis is currently 



unknown, and as such, replication studies are a necessary part of validating epistasis. As our results 
show, statistical studies should be re-evaluated when larger datasets become available. 
 
Heterogeneity in the genetic causes of AD is certainly present (Mez, 2016), and further erodes power 
to detect statistical epistasis. Similarly, combining various studies that use different diagnostic 
techniques could decrease our power to detect an epistatic signal if the classification criteria result in 
some patients being misclassified (Manchia et al., 2013). However, although the classification 
criteria for AD patients might vary depending on the sample, our analysis requires a large sample 
size in order to detect any synergetic relationship. Finally, even when statistical evidence for epistasis 
is detected, it does not necessarily indicate the presence of a physical biological interaction between 
the implicated proteins (M. T. W. Ebbert et al., 2015). Statistical patterns can be a product of a 
variety of underlying mechanisms. Therefore, the complexity of biological and statistical epistasis 
could also account for disparities in replication studies. Increasing sample sizes gives us better 
statistical power. Likewise, increasing the amount of multidimensional -omics data will help us focus 
our efforts on specific candidate interactions. For instance, we can use protein interaction networks 
and eQTLs to identify different loci that have similar effects on gene expression. This will help limit 
the search space of synergetic interactions. We anticipate that as more multidimensional -omics data 
become available, our ability to identify and understand the role of epistasis in AD risk will improve 
and help in the development of novel approaches to prevent and treat the disease.  
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Supplemental Figure 1: Power Calculations for Logistic Regression

We computed power for the logisitic regression analyses used in our study (sample siz e 
= 25666) and the Kauwe et al. (2010) study (sample size = 2503). A range of alpha values 
is shown on the x−axis and the corresponding le vel of power is shown on the y−axis. 
With a sample size of 25666, our analysis attains a po wer of .80 with an alpha value of 
.003. With a sample size of 2503, the Kauwe et al. (2010) study would reach a power of .80 
with an alpha level of .55. The power calculation tool we used can be found at 
https://www.dartmouth.edu/~eugened/power−samplesize.php (Demidenko, 2008;
Demidenko, 2007).
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Supplemental Figure 2: Logistic Regression P−Values per Cohort

We performed logistic regression on each cohor t to determine the p−values for rs1049296, rs1800562, and the epistatic inter action of these
variants. Each cohort is shown on the x−axis,and the p−value for each cohort is shown on the y−axis. The red line indicates the alpha value of 
0.05. From our analysis, only the ACT and WASHU cohorts have significant p−values at these variants.
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Supplemental Figure 3: Logistic Regression Odds Ratios and Confidence Intervals per Cohort

We performed logistic regression on each cohor t to determine the odds ratios for rs1049296, rs1800562,
and the epistatic interaction of these variants. Each cohort is shown on the y−axis, and the odds ratio with 
the 95% confidence interval for each cohort is shown on the x−axis. Lower limit values are truncated to .2, 
while upper limit and odds ratio values are truncated to 4. The dashed line indicates an odds r atio value of

1. Although the ACT2, ADNI, BIOCARD, RMayo, and WHICAP cohor ts have seemingly high odds ratio values (>2),
it is important to note that the confidence inter vals for these cohorts span the null value (1) and are not

precise. Furthermore, the p−values for these cohorts suggest that the effects are not significant (see Figure 1).



Supplementary Table 1: ADGC Population Demographics 
 

N Age at Onset % Female % APOE e4 positive

ADNI

Cases 215 73.33 42.33% 65.58%

Controls 140 37.86% 25.00%

WASHU

Cases 312 74.21 58.01% 51.60%

Controls 166 59.64% 25.90%

ROSMAP2

Cases 62 NA 72.58% 16.13%

Controls 237 78.06% 33.33%

WASHU2

Cases 30 74.91 53.33% 53.33%

Controls 65 44.62% 27.69%

EAS

Cases 10 86.4 40.00% 20.00%

Controls 209 51.20% 14.35%

CHAP

Cases 20 85.35 70.00% 30.00%

Controls 164 57.93% 17.68%

ADC3

Cases 711 74.47 53.16% 49.93%

Controls 464 61.64% 21.55%

TARC1

Cases 286 73.71 57.34% 51.05%

Controls 144 66.67% 21.53%

MTV

Cases 241 73.35 57.68% 50.62%

Controls 194 61.86% 10.31%

MAYO

Cases 616 NA 58.60% 55.68%

Controls 925 51.24% 24.97%

ACT

Cases 479 83.88 61.80% 41.75%

Controls 1348 55.49% 18.32%

ACT2

Cases 18 83.71 66.67% 44.44%

Controls 5 60.00% 60.00%

ADC4

Cases 287 73.34 54.01% 41.11%

Controls 340 62.06% 22.94%

ADC6

Cases 363 74.08 55.65% 27.27%

Controls 304 65.46% 23.68%

ADC1

Cases 1503 72.37 52.50% 52.03%

Controls 543 60.96% 20.44%

ADC2

Cases 546 73.45 49.45% 55.49%

Controls 121 68.60% 23.97%

ADC5

Cases 273 73.33 53.48% 56.78%

Controls 496 64.52% 18.55%  
 



RMAYO

Cases 12 79.89 8.33% 25.00%

Controls 271 40.59% 15.87%

BIOCARD

Cases 8 73.83 37.50% 37.50%

Controls 123 63.41% 28.46%

LOAD

Cases 745 73.28 66.31% 72.62%

Controls 801 60.92% 27.47%

WASHU

Cases 312 74.21 58.01% 51.60%

Controls 166 59.64% 25.90%

MIRAGE

Cases 398 71.64 60.55% 46.48%

Controls 294 61.22% 31.97%

OHSU

Cases 59 85.74 61.02% 45.76%

Controls 109 53.21% 16.51%

UPITT

Cases 1267 72.93 63.22% 56.83%

Controls 834 63.31% 19.42%

UMVUMSSM

Cases 1085 73.83 64.61% 56.41%

Controls 1112 61.06% 2.07%

WHICAP

Cases 74 84.04 71.62% 21.62%

Controls 562 60.32% 20.46%

GSK

Cases 796 74.58 57.79% 53.39%

Controls 764 64.40% 21.99%

NBB

Cases 215 NA 72.09% 13.95%

Controls 85 57.65% 5.88%

ROSMAP

Cases 364 85.59 68.13% 28.02%

Controls 853 70.34% 13.48%

TGEN2

Cases 770 74.6 60.78% 47.27%

Controls 448 51.34% 14.29%

UKS

Cases 767 72.24 56.06% 43.02%

Controls 973 47.79% 0.10%  
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Supplementary Table 3: SFA Calculations 
 

HFE 
rs1800562

TF 
rs1049296

Controls Cases Odds ratio ln(OR) var ln(OR)
se ln(OR) lower upper alpha

      -         - 8201 7832 Reference SF= 0.938229 0.7867 1.1190 0.05
      +         - 951 980 1.07905 0.07608 0.00232 0.04818 se(ln(SF))= 0.089889
      -         + 3174 2964 0.97783 -0.02241 0.00090 0.03003 ln(SF)= -0.063761
      +         + 403 381 0.98995 -0.01010 0.00536 0.07318 Z= -0.709329

p= 0.47812
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