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Abstract
Intrahepatic cholestasis of pregnancy (ICP) is the most common pregnancy-specific liver disease. It is characterized by 
pruritus, abnormal liver function and elevated total bile acid (TBA) levels, increasing the risk of maternal and fetal adverse 
outcomes. Its etiology remains poorly elucidated. Over the years, various omics techniques, including metabolomics, micro-
biome, genomics, etc., have emerged with the advancement of bioinformatics, providing a new direction for exploring the 
pathogenesis, diagnosis and treatment of ICP. In this review, we first summarize the role of bile acids and related components 
in the pathogenesis of ICP and then further illustrate the results of omics studies.
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Introduction

Intrahepatic cholestasis of pregnancy (ICP) is the most com-
mon pregnancy-specific liver disease, with an estimated 
incidence ranging from 0.3% to 15% in various populations 
[1]. ICP is characterized by mild to severe pruritus, abnor-
mal liver function and elevated total bile acid (TBA) lev-
els in the third trimester of pregnancy. The severity of ICP 
is graded according to the TBA concentration: mild ICP, 
10–39 μmol/L, and severe ICP, TBA ≥ 40 μmol/L. Although 
this disease is generally mild in pregnant women and recov-
ers after delivery, it increases the risk of postpartum hemor-
rhage, susceptibility to hepatobiliary cancer, immune dis-
eases and cardiovascular diseases [2]. Moreover, ICP can 
be highly harmful to the fetus, as maternal BAs can pass 
through the placenta and accumulate in the fetus and amni-
otic fluid, leading to various complications, as described 
below.

Patients with ICP have a higher-than-normal stillbirth 
rate, approximately 0.1–0.3% from 37  weeks of gesta-
tion [3]. The highest risk for stillbirth is in women with 
TBA ≥ 100 μmol/L [4], and the incidence of stillbirth in 
twin pregnancies is significantly higher than that in sin-
gleton pregnancies [5]. The pathophysiology of stillbirth 
may be related to BAs, which cause an acute fetal anoxic 
event possibly due to acute placental vessel spasm [6] or 
fetal arrhythmia [7]. The degree of fetal cardiac dysfunction 
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is also closely linked to the level of serum TBA [7], and 
fetal myocardial deformation is more likely to be impaired 
in severe ICP mothers (TBA ≥ 40 µmol/L) [8]. The risks of 
preterm delivery, meconium-stained amniotic fluid (MSAF), 
RDS, and stillbirth also rise with the elevation of maternal 
TBA to ≥ 40 µmol/L [9–11] (Table 1).

Although a meta-analysis of more than 5000 women with 
ICP discovered that ICP is not associated with low birth 
weight (LBW), with no difference in birthweight percentile 
between the ICP and control groups, a retrospective cohort 
study of 68,245 singleton pregnancies revealed LBW and a 
higher incidence of intrauterine growth restriction (IUGR) 
(1.4% vs. 0.5%) in patients with serum TBA ≥ 4.08 μg/mL, 
approximately 10 μmol/L [12]. Patients with the symptom 
of steatorrhea may have malabsorption of vitamin K in ICP 
[13]. Steatorrhea and vitamin K deficiency can lead to post-
partum hemorrhage [14].

The pathogenesis of ICP is associated with genetic, hor-
monal and immunological factors, but the etiology of the 
disease is still poorly elucidated. In this review, we first 
summarize the role of bile acids and related components in 
the pathogenesis of ICP and then go into the omics results 
(metabolomics, microbiome, genomics, etc.) to further 
explore the pathogenesis of ICP.

BA regulation in ICP and other liver diseases

In liver diseases, cholestasis related to BA regulation can be 
divided into intrahepatic cholestasis (IHC) and extrahepatic 
cholestasis (EHC) according to the presence of obstruction. 
EHC is caused by obstruction of excreta outside the liver and 
extrahepatic bile duct disease. In contrast, hepatic parenchy-
mal cell and/or intrahepatic bile duct diseases contribute to 
IHC. These include primary sclerosing cholangitis (PSC), 
which is found in IHC more than any other condition, pro-
gressive familial intrahepatic cholestasis (PFIC), and ICP 
[15].

According to the location and mechanism of cytological 
damage, PSC, PFIC and ICP are associated with a reduc-
tion of bile canaliculi, genetic defects in bile transporters, 
and changes in the canalicular membrane of bile canaliculi, 
respectively, finally resulting in defects in BA synthesis and 

abnormal bile excretion. The etiology of PSC is still unclear. 
PFIC is an autosomal recessive disease, while ICP is due to 
various factors, environmental, hormonal and genetic.

ICP is characterized by pruritus and elevated serum BAs, 
which are necessary for the diagnosis of ICP. However, BA 
elevation may not be apparent in other, nonpregnant IHC 
patients, so serum BAs are not diagnostic criteria for other 
IHCs.

Enterohepatic circulation of bile acids

In humans, the primary BAs synthesized include chenode-
oxycholic acid (CDCA) and cholic acid (CA), which are reg-
ulated by cholesterol 7a-hydroxylase (CYP7A1) and sterol 
27-hydroxylase (CYP27A1). In addition, CA production is 
regulated by sterol 12a-hydroxylase (CYP8B1), which can 
affect the ratio of these two primary BAs [16]. After CDCA 
and CA bind to taurine or glycine at a ratio of approximately 
1:3 [17], these conjugated BAs are delivered into the bile 
duct via the bile salt export pump (BSEP), which is a spe-
cific ATP-dependent transporter encoded by the ABCB11 
gene. Mutations in the ABCB11 gene are thought to increase 
susceptibility to ICP [18]. Phospholipids in bile require 
multidrug resistance protein 3 (MDR3), encoded by the 
ABCB4 gene. Mutations in the ABCB4 gene have a major 
role in the pathogenesis of ICP [19], and these mutations 
are related to the severity of ICP and to TBA levels above 
40 µmol/L [20]. Cholesterol is transported via ATP-binding 
cassette transporter G5 (ABCG5)/ATP-binding cassette 
transporter G8 (ABCG8). Multidrug resistance-associated 
transporter 2 (MRP2), expressed in the canalicular mem-
brane of hepatocytes, is encoded by the ABCC2 gene and 
mainly secretes conjugated bilirubin, glutathione conjugates 
and other organic anion compounds. MRP2 also contributes 
to the development of ICP, although this relationship was 
found only in a population of South American women and 
not Caucasians [21].

Then, conjugated BAs stored in the gallbladder can be 
released into the duodenum under the influence of postpran-
dial cholecystokinin. Only a small fraction of BAs diffuses 
passively in the duodenum. Conjugated BAs are reabsorbed 
in the distal ileum by apical sodium-dependent transporter 

Table 1   Relationship of bile acid and ICP

LBW low birth weight, IUGR​ intrauterine growth restriction, SMFM society for maternal fetal medicine, MSAF meconium-stained amniotic 
fluid, RDS respiratory distress syndrome

ICP grade BA concentrations Complications closely related to BA concentrations Delivery time (Recommended by SMFM)

Mild ICP 10–39 μmol/L LBW; IUGR; Fetal cardiac dysfunction 360/7–390/7 weeks of gestation
Severe ICP  ≥ 40 μmol/L Preterm delivery; MSAF; RDS; Fetal myocardial deformation 360/7–390/7 weeks of gestation

 ≥ 100 μmol/L Stillbirth 360/7 weeks of gestation
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(ASBT). Then, BAs can efflux into the portal blood by het-
erodimeric transporter organic solute transporters alpha/
beta (OSTα/OSTβ), and this progress can be facilitated by 
intestinal bile acid-binding protein (IBABP). Na + /taurocho-
late cotransporter (NTCP) and organic anion transporting 
polypeptides (OATPs), respectively, mediate the uptake of 
bile salts and bile acids from the blood to the liver [22]. This 
process is termed enterohepatic circulation. NTCP performs 
the majority of BA uptake, and its expression is affected 
by BAs and hormones, such as estrogen and prolactin [22]. 
Hepatic multidrug resistance protein 3 (MRP3), multidrug 
resistance protein 4 (MRP4), and OSTα/OSTβ, which exist 
at the hepatic basolateral membrane as well as in entero-
cytes, provide excretion routes for BAs into the circulation. 
MRP3 and MRP4 have low expression in the physiological 
state but are upregulated in ICP [17].

In addition, BAs escaping ileal reabsorption can be 
exposed to intestinal flora. Microbial deconjugation, as in 
bacteria with bile salt hydrolase (BSH) activity, can remove 
glycine or taurine from conjugated BAs, preventing active 
reabsorption via ASBT, and these BAs finally enter the 
colon to become secondary BAs [deoxycholic acid (DCA) 
and lithocholic acid (LCA)] by 7-dehydroxylation. Approxi-
mately 95% of BAs are taken up by the liver through entero-
hepatic circulation, and 5% of BAs are excreted in the feces 
[23] (Fig. 1).

In addition to the effects of the ABCB11, ABCB4, and 
MRP2 genes mentioned above, mutations in the ATP8B1 
gene, encoding familial intrahepatic cholestasis protein 1 
(FIC1), which are often identified in PFIC, are also found in 
ICP [24]. FIC1 was proposed to be an amino-phospholipid 
translocase that may act to maintain the distribution of phos-
pholipids and thus the function of BA transporters [24].

Beyond the influence of genetic defects in enterohe-
patic circulation, hormones, such as estrogen and proges-
terone, which are at their highest levels in the late stages 
of pregnancy, when ICP generally occurs, can also inhibit 
BA flow through the liver. 17β-Estradiol can repress BSEP 
expression, affecting biliary secretion of BAs [25]. In 
rat studies, one estrogen–glucuronide, estradiol-17β-D-
glucuronide, trans-inhibits the bile suit export pump (BSEP) 
[26]. Estradiol-17β-D-glucuronide is excreted into bile by 
MRP2 in drug- and estrogen-induced cholestasis [27] and 
suppresses the expression of MRP2 in intrahepatic and 
obstructive cholestasis [28]. Like estrogen, one sulfated 
progesterone, allopregnanolone sulfate (PM4S), can cause 
trans-inhibition of BSEP [26] in ICP. The sulfated progester-
one PM4-S/epiallopregnanolone–sulfate (PM5S) competi-
tively inhibits the NTCP-mediated uptake of taurocholate 
(TC) [29].

Pregnancy can bring about portal hypertension syndrome 
due to modified systemic hemodynamics as a response to the 
increased oxygen demands of the fetus and mother. Despite 

the paucity of associations between portal hypertension 
and ICP in previous studies, as increased plasma volume is 
related to increased aldosterone, estrogen, and lactogen lev-
els, ICP has also become a risk factor for preeclampsia [30].

Overall, in the pathophysiological process of ICP, the syn-
thesis of BAs can increase under the influence of CYP7A1 
and CYP8B1, while the transport of BAs is impaired due 
to effects on BA transporters such as BSEP and MDR3. In 
addition, the BA profile is also altered. Although CA and 
CDCA are the predominant serum BAs in ICP patients, the 
level of CA is significantly higher in ICP patients than in 
normal pregnant women, while CDCA is modestly increased 
or even a decreased, thereby further increasing the CA/
CDCA ratio [31]. There is also a rise in the concentrations of 
secondary BAs. These profile changes, including pool size, 
may indicate alterations in the hydrophilicity and hydropho-
bicity of the BA pool. Hydrophobic BAs are typically more 
toxic and can damage cell membranes and promote oxidative 
stress, apoptosis and necrosis [32].

Placental bile acids

In normal pregnant women, serum bile acid levels may 
increase gradually with advancing gestation [33–35]. Mater-
nal BA synthetic pathways are present not only in the liver 
in the enterohepatic circulation but also in the placenta [36]. 
On the other hand, the fetus has the ability to synthesize BAs 
as early as 12 weeks of gestation [37], though its entero-
hepatic circulation is not yet functional. BAs produced by 
the fetus are mainly processed by the placenta, and a small 
fraction is excreted to amniotic fluid via the fetal kidneys. 
In human amniotic fluid, CA and CDCA were found in all 
test samples, while only a portion detected LCA and DCA 
[38]. CA and CDCA increased significantly in the amniotic 
fluid of ICP patients despite there being no change in the 
concentration of DCA [39].

Various enzymes and transports of BAs assist in main-
taining BA homeostasis. The sulfation of BAs, activated by 
placental sulfatases (SULFs) and sulfotransferases (SULTs), 
and the glucuronidation of BAs, catalyzed by UDP glucu-
ronosyltransferases (UGTs), lead to the production of water-
soluble BAs and facilitate excretion [40, 41]. These pro-
cesses form a metabolic barrier that avoids the transfer of 
potentially toxic hydrophobic BAs from the maternal to fetal 
circulation. Transport of BAs also plays an active role in 
protecting the fetus from BA overexposure. Trophoblast cells 
in the placenta have a maternal-facing apical membrane and 
a fetal-facing basolateral membrane. [17] The OATP family 
can transport fetal BAs across the basal plasma membrane, 
while NTCP is poorly expressed in the placenta and is used 
to mediate bile acid uptake in the liver. [42] Other trans-
porters, including MDR3, OSTα, organic cation transporter 
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3 (OCT3), and organic anion transporter 4 (OAT4), are 
also expressed at the basal membrane. MDR1, MRP2, and 
ABCG2 have been found at the apical membrane. ABCG2, 
which is also located in fetal vessels of the chorionic villi, 
plays a key role in transporting hepatobiliary products such 
as sulfated and nonsulfated BAs across the placenta. MRP1 

and MRP3, which are expressed in the endothelium of fetal 
blood vessels, are less abundant in the apical membrane, and 
BSEP is expressed at low levels in the placenta [17] (Fig. 2).

When ICP occurs, the interaction of BAs at the level of 
the feto-maternal axis in the placenta is altered, and BA flow 
is reversed from mother to fetus due to the high maternal BA 

Fig.1   Enterohepatic circulation of bile acides and the main bile acid 
transporters in enterohepatic system. The classical and alternative 
pathway of primamry BA synthesis are indicated by solid line and 
dotted line respectively, generating taurine- or glycine- conjugated 
BAs such as TCA, GCA, TCDCA and GCDCA. Active transporters 
BSEP, MDR3, ABCG5/ABCG8 and MRP2 deliver conjucated BAs 
phospholipids, cholesterol and bilirubin into the bile duct, respec-
tively. Then, conjugated BAs are reabsorbed in the distal ileum 
by ASBT. Most BAs are transported from the intestine back to the 

liver via transporters on ileal enterocytes (OSTα/OSTβ) and hepato-
cytes (NTCP and OATP). FGF19 from the enterocytes can bind tok 
FGFR4/β-Klotho on the hepatocytes, leading to suppression of BA 
synthesis. CA cholic acid, CDCA chenodeoxycholic acid, GCA​ gly-
cholic acid, TCA​ taurocholic acid, GCDCA glycochenodeoxycholic 
acid, TCDCA taurochenodeoxycholic acid, DCA deoxycholic acid, 
LCA lithocholic acid, GDCA glycodeoxycholic acid, TDCA tauro-
deoxycholic acid, TLCA taurolithocholoc acid, GLCA glylithocholic 
acid. Figure created with BioRender.com
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levels. High concentrations of BAs, especially hydrophobic 
BAs such as LCA, may exert a detrimental effect on the fetus 
by constricting chorionic veins [6, 43]. Placental transport of 
BAs was affected and the RNA expression of OATP3A1 was 
significantly decreased in ICP patients [44]. Placental MRP2 
protein and RNA expression soared in ICP patients treated 
with UCDA compared to controls; meanwhile, MRP3 pro-
tein expression was not obviously different, while the RNA 
expression was significantly decreased [45].

Bile acid receptors

BAs can influence multiple metabolic pathways in many 
tissues primarily by activating nuclear receptor farnesoid 
X receptor (FXR) and G protein-coupled receptor (TGR5) 
[16].

FXR is widely distributed in a variety of tissues and is 
predominantly expressed in the liver, intestine and kidneys. 
In hepatocytes, primary BAs can bind to FXR and activate 
the FXR–RXR heterodimer complex, which can enhance the 
expression of small heterodimer protein (SHP). SHP binds 
to liver receptor homolog-1 (LRH-1), repressing CYP7A1. 
SHP can inhibit the expression of NTCP. Activation of 
FXR can promote BSEP, MDR3, and MPR2, inducing 
efflux of bile into the bile canaliculus. In enterocytes, FXR 
activated by BAs can induce the expression of fibroblast 
growth factor 19 (FGF19), SHP, OSTα/OSTβ and IBABP. 
FGF19 is secreted into enterohepatic circulation and binds 
to a complex of the receptor tyrosine kinase FGF receptor 
4 (FGFR4)/β–Klotho on hepatocytes, resulting in the initia-
tion of JNK/ERK signaling, which can blunt the expression 
of CYP7A1. Cyp8b1 expression can also be downregulated 
by the activation of FXR, modulating CA production [46]. 
On the other hand, upregulation of SHP by FXR may inhibit 
ASBT in animal model, reducing the uptake of intestinal 
BAs. [47].

TGR5 is a plasma membrane-bound G protein widely 
expressed in the gallbladder, placenta, intestine, lung, 
spleen, brown and white adipose tissue, etc. In the pla-
centa, it is found mainly in fetal macrophages and to a 
lesser extent in trophoblasts [48]. TGR5 is predominantly 
activated by secondary BAs, and its affinity is as follows: 
LCA > DCA > CDCA > CA. BAs conjugated to taurine are 
generally more potent activators than BAs conjugated to 
glycine or unconjugated BAs [23]. TGR5 located on enter-
oendocrine L cells can mediate BA-induced cyclic AMP 
(cAMP) increases and protein kinase A (PKA) activation. 
Activation of TGR5 also increases the synthesis and release 
of GLP-1 and modulates calcium mobilization. Furthermore, 
although FXR can stimulate TGR5 expression, activation of 
FXR in L cells inhibits GLP-1 synthesis (Fig. 3).

Influence of bile acid metabolism

BA biosynthesis can terminate with the conjugation of gly-
cine or taurine in humans. Additional forms of BA conju-
gation include sulfation, hydroxylation and glucuronidation 
[23].

An untargeted metabolomics study [49] showed that gly-
cochenodeoxycholate (GCDCA), taurochenodeoxycholate 
(TCDC), glycocholic acid (GCA), TC, glycolithocholic 
acid (GLCA) and taurodeoxycholic acid (TDCA) in plasma 
were increased in the ICP group. Furthermore, taurine nega-
tively interacted with GCDCA, TCDC and GCA, accord-
ing to debiased sparse partial correlation (DSPC) networks. 
Taurine, which is an important free radical scavenger and 
an antioxidant, was also found to be significantly decreased 
in ICP. Taurine may attenuate maternal oxidative stress or 
improve adverse pregnancy outcomes in rats [50, 51].

Another study [52] enrolled ICP patients with gestational 
age < 28 weeks as the early onset ICP (EICP) group and 
ICP patients with gestational age ≥ 28 weeks as the late-
onset ICP (LICP) group. Conjugated BAs increased in the 

Fig. 2   Bile acid transporters and enzymes in the placenta. Placental 
SULFs and SULTs convert unconjugated steroids such as BAs and 
estrogens, into their sulfated forms; UGTs catalyse the glucuronida-

tion of BAs. SULTs sulfotransferases, SULFs sulfatases, UGTs, UDP 
glucuronosyltransferases. Figure created with BioRender.com
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serum of ICP patients, whereas GCA was especially highly 
expressed in the EICP group, and taurocholic acid (TCA) 
was expressed in the LICP group, showing distinct BA 
metabolism profiles of EICP and LICP.

In a study that collected serum, placenta and urine sam-
ples [53], three main pathways of primary BA biosynthesis, 
taurine metabolism, hypotaurine metabolism, and sphin-
golipid metabolism, were found in serum samples, while 
only the main pathway of primary BA biosynthesis was 
found in placenta and urine. GCDCA, taurochenodesoxy-
cholic acid (TCDCA), GCA and TCA increased in all sam-
ples of ICP patients. This systematic metabolomics profiling 
showed that the placental and serum states tended to be very 
similar, whereas the urine state was distinct.

Above all, the importance of glycine and taurine con-
jugation was demonstrated. Sulfation also plays a crucial 
role in the detoxification of BAs, increasing their solubility, 
decreasing their intestinal absorption, and promoting urinary 
and fecal excretion [54]. In humans, in contrast to the small 
fraction of BAs in bile and serum being sulfated, more than 
70% of BAs can be sulfated in urine. The hydroxysteroid 
SULT family is composed of two subfamilies, SULT2A1 
and SULT2B1. SULT2A1 has a limited distribution in tis-
sue, whereas SULT2B1 is detected in various hormone-
responsive tissues, such as the uterus, ovary, and placenta 
[55]. In the placenta, SULT2B1 is localized to the nuclei of 
placental syncytiotrophoblasts [41] (Fig. 2).

In a targeted metabolomics study of sulfated bile acids 
(SBAs) in urine [56], total SBAs were found to be increased 
in ICP, especially sulfated taurine-amidated BAs (TBA-S) 
and glycine-amidated BAs (GBA-S). For example, sul-
fated dihydroxy glycine bile acid (di-GBA-S), sulfated 
dihydroxy taurine bile acid (di-TBA-S), glycine cholic 
acid 3-sulfate (GCA-3S) and taurine cholic acid 3-sulfate 
(TCA-3S) increased significantly in the ICP group. When 
BAs were conjugated to glycine and taurine, this decreased 
their pKa, which increased their solubility and enhanced 
their urinary elimination. GBA-S was the major SBA in 
urine, whereas the uptrend in the proportion of TBA-S had 

a higher correlation with the severity of ICP than that of 
GBA-S. TBA-S is generally less cytotoxic than GBA-S. In 
that study, GCA-3S was well suited as a biomarker for the 
diagnosis of ICP, and the combination of GCA-3S and di-
GBA-S-1, which were constructed by multivariable logistic 
regression, was suitable for the grading of ICP. In addition, 
sulfated unconjugated BAs, such as LCA-3S, remained at 
low concentrations.

In another untargeted metabolomics study of urine [57], 
most of the detected metabolites were involved in BA bio-
synthesis and metabolism, hormone metabolism and lipid 
metabolism. Varanic acid, tauromuricholic acid (TMCA), 
GCA, chenodeoxycholic acid 3-sulfate (CDCA-3S), glyc-
ochenodeoxycholate-3-sulfate (GCDCA-3S), and taurohyo-
cholate (THC) were found to be increased in the ICP group. 
A metabolite panel [L-homocysteine sulfonic acid, GCA and 
CDCA-3S, MG (22:5), LysoPE (22:5)] was screened out 
based on binary logistic regression analysis, having high 
diagnostic accuracy for ICP.

Furthermore, hydroxylation and glucuronidation of 
BAs occupy an important position in ICP, which are con-
ducive to solubility and excretion of BAs. The common 
BAs in humans can be sorted by hydrophobic strength 
as follows: muricholic acid (MCA) < ursodeoxycholic 
acid (UDCA) < CA < CDCA < DCA < LCA [16]. LCA is 
a toxic BA that can induce endoplasmic reticulum stress 
and syncytiotrophoblast cell apoptosis in ICP patients 
[58, 59]. In a targeted metabolomics study of plasma 
BAs[60], hydroxylated BAs such as UDCA, hyocholic 
acid (HCA) and MCA, which are converted from CDCA, 
were increased in the ICP group. HCA and MCA were the 
predominant BAs in pigs and rodents, respectively, but 
showed low concentrations in humans [61, 62]. CDCA and 
LCA remained unchanged between the ICP and normal 
groups. Glucuronidated BAs such as CDCA-3Gln and sul-
fated BAs such as LCA-3S, GLCA-3S, and TLCA-3S were 
significantly increased in severe ICP patients [60]. In this 
study, taurine-conjugated BAs, glycine-conjugated BAs, 
and CA/CDCA increased in the ICP groups. In contrast to 

Fig. 3   Function mechanism of bile acid receptors FXR and TGR5 in hepatocyte, entercyte and enteroendocrine L cells
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the higher levels of glycine-conjugated BAs in the healthy 
group, taurine-conjugated BAs increased more in the ICP 
group, to be slightly more abundant than glycine-conju-
gated BAs. THCA, GHCA, GLCA and TLCA-3S may be 
biomarkers for ICP grading.

In a pseudotargeted metabolomics study of serum 
BAs in women with ICP [63], the BA profile was altered 
due to the reduced proportion of unconjugated BAs and 
increased proportion of taurine and glycine conjugates 
in women with ICP, especially TCA, GCA, TCDC, T-ω-
MCA, THCA, and Ttri-3, which soared in the ICP group. 
After delivery, these conjugates decreased and uncon-
jugated BAs increased. In addition, the proportion of 
unconjugated BAs increased significantly during UDCA 
therapy. A potential combination biomarker made up of 
α-MCA, TCA, and Gtri-8 had good predictive ability by 
logistic regression analysis. α-MCA was first discovered in 
Murinae and was discovered in human serum by advanced 
detection techniques. In another combination study detect-
ing placental tissue through metabolomics and proteomics 
[64], GCA was also increased in the ICP group and was 
found to be a potential biomarker with acyl-CoA oxidase 
1 (ACOX1) and L-palmitoylcarnitine.

Noteworthy changes in BAs in the placenta, urine and 
blood of ICP patients according to metabolomics studies 
are illustrated in Fig. 4.

Influence of lipid metabolism

The chemical structure of BAs gives them detergent-like 
activity; once released postprandially in the duodenum, the 
BA fraction facilitates lipid emulsification and absorption. 
Hence, lipid metabolism shows a significant change in the 
setting of ICP. Lipids play important roles in various bio-
logical processes, including intercellular communication, 
energy transport and signal transduction.

Sphingosine 1-phosphate (S1-P), a bioactive sphin-
golipid, phosphatidylcholines (PCs) and Lysophosphatidyl-
choline (LysoPC) in plasma were found to be reduced in 
an ICP cohort [49]. LysoPCs increased in the placenta of 
ICP patients in another study, which also portrayed reduced 
diacylglycerol and increased sphingoid bases in the serum 
of ICP patients [53]. This study found that sphingolipid 
metabolism was important in the metabolic pathway of ICP 
[53]. Another untargeted lipidomics study [65] confirmed 
this result, indicating a connection between ICP and disor-
dered sphingolipid homeostasis, especially ceramide (Cer) 
and sphingomyelin (SM). In these plasma lipid profiles [65], 
33 lipids differentially expressed in ICP group compared 
with the control group, and 20 sphingolipids accounted for 
most of this difference. All differentially abundant sphin-
golipids in the mild ICP group were also differentially abun-
dant in the severe ICP group, and the trend of expression was 
positively correlated with disease severity. Sphingolipids are 

Fig. 4   Remarkable changes of bile acids in placenta, urine and blood 
of ICP patients according to metabolomics studies. Note: Red Arrow 
means BAs increases in ICP; Blue arrows means BAs decrease 

in ICP; Asterisk means BAs increase in plasma while decreased in 
serum. Figure created with BioRender.com
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ubiquitous structural components present in eukaryotic cell 
membranes that modulate a wide range of biological pro-
cesses, including cell proliferation, immune cell trafficking 
and inflammation. Sphingolipids are also the main ligands 
for the G protein-coupled receptor sphingosine 1-phosphate 
receptor 2 (S1PR2) [66], which interacts with BAs to trig-
ger acute responses. S1PR2 may play a pathological role in 
cholestasis, as the blockage of S1PR2 attenuated portal vein 
pressure and liver injury in rodents [67, 68].

Thus, lipids, especially sphingolipids, are important in 
the occurrence of ICP. However, the above metabolomics 
studies only reflect the changes in lipids, and the poten-
tial mechanisms of lipid functions in ICP remain obscure. 
Bile acid-mediated activation of S1PR2 and FXR may play 
key roles, as BAs may be associated with lipid metabolism 
through activation of S1PR2 [66], and FXR regulates lipid 
metabolism in a rodent model [69], while downregulation 
of FXR activity is involved in ICP pregnancies [70]. Further 
studies are needed.

Influence of hormones

It is widely known that estrogen and progesterone play key 
roles in the pathogenesis of ICP. As sulfation and glucuroni-
dation are primary metabolic pathways of hormones, estrone 
glucuronide and estriol-3-glucuronide in urine were found 
to be increased in ICP patients [57]. However, pregnanolone 
sulfate, pregnandiol sulfate, 16a-hydroxy DHEA 3-sulfate, 
pregnanediol monosulfate, 5β-pregnanediol sulfate, andros-
terone sulfate, and testosterone sulfate were found to be 
decreased in ICP [53].

In another study collecting plasma samples, estriol 
16-glucuronide, estrone glucuronide, and estrone sulfate in 
plasma were also found to soar in ICP [49]. Estrone sulfate, 
the most abundant circulating estrogen in pregnant women, 
acts as a long-term storage that can be transformed to more 
active estradiol as needed. It was found to inhibit TC uptake 
by 65% but did not decrease bile flow following adminis-
tration to rats, under conditions in which estradiol-17β-D-
glucuronide decreased bile flow by 100% [71].

Unlike its decrease in urine [53], pregnenolone sulfate 
was found to be increased significantly in plasma [49]. Pro-
gesterone plays a key role in the pathophysiology of ICP, and 
pregnenolone sulfate is the precursor of progesterone and is 
converted into progesterone by enzymes. Sulfated proges-
terone metabolites were reported to increase BA levels by 
inhibiting FXR, thus reducing FXR-mediated bile acid efflux 
and secreted FGF19 [70].

Overall, these metabolomics studies discovered some 
important hormones acting in ICP, such as estrone glucu-
ronide, estrone sulfate, and pregnanolone sulfate, which 
influence the uptake and transport of BAs, though their 

detailed mechanisms in the occurrence of ICP require fur-
ther investigation.

Role of gut microbiota

Firmicutes, Bacteroidetes, Actinobacteria, and Proteobacte-
ria are generally known as the dominant phyla in pregnant 
women [72]. During ICP, the relative abundance of Firmi-
cutes was reduced, and Bacteroidetes was enriched [73, 74]. 
The genome of bacteria of the Bacteroidetes phylum can 
encode BSH capacity [75]. UDCA treatment of ICP patients 
has been associated with enrichment of the gut microbiota 
with Bacteroidetes; as a result, the increased BSH activ-
ity deconjugated BAs, enabling secondary modification to 
FXR agonists, increasing FGF19-mediated enterohepatic 
feedback and reducing 7α-hydroxy-4-cholesten-3-one (C4) 
concentrations [74].

A microbiome study in ICP revealed that at the genus 
level, Blautia, Citrobacter and Streptococcus were signifi-
cantly higher in the ICP group, while at the family level, 
Enterobacteriaceae, Leuconostocaceae and Streptococcaceae 
increased in the ICP group. In KEGG pathways, differences 
in ketogluconate metabolism were more pronounced in ICP 
patients [76].

In another study that combined gut microbiota with the 
serum metabolome [73], at the genus level, bacteria depleted 
in ICP contained butyrate-producing bacteria, such as Fae-
calibacterium, Eubacterium hallii and Blautia, which were 
capable of producing short-chain fatty acids, and Bifido-
bacterium, which exhibited functional BSH [77], preventing 
the reuptake of BAs from the small intestine. In contrast to 
the findings mentioned above, Blautia, which has beneficial 
roles in glucose metabolism [78, 79], was reduced in ICP. 
Blautia was also found to be elevated in primary sclerosing 
cholangitis when bile release into the small intestine was 
inhibited [80]. Furthermore, the bacteria enriched in ICP 
were involved in BA metabolism, such as Parabacteroides 
and Bilophila. Escherichia/Shigella, which may promote the 
colonization and growth of Bilophila wadsworthia, were 
elevated in ICP [73].

Zhan et al. also observed that the proportion of Escheri-
chia/Shigella was enriched in ICP, as well as Parabacteroides 
[81]. Escherichia/Shigella was associated with lipid metabo-
lism and liver enzymes in a study of nonalcoholic fatty liver 
disease [82]. Megamonas was reduced and Lactobacillus, 
Flavonifractor, Atopobium, and Turicibacter were enriched 
in ICP patients [81]. Lactobacillus was a bacterial group 
with functional BSH in mouse [83].

Moreover, Lactobacillus rhamnosus LRX01 was found to 
reduce susceptibility to lipopolysaccharide-induced inflamma-
tory responses in offspring from CA-fed SD rats by inhibiting 
ileal FXR expression in a recent study [84]. Enrichment of 
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Escherichia/Shigella and other gram-negative bacteria was 
also detected in ICP rat offspring.

A recent metagenomic study [85] revealed that the gut 
microbiomes of ICP patients were primarily characterized by 
Bacteroides fragilis (B. fragilis), which inhibited FXR signal-
ing via its BSH activity. According to the measurement of BA 
synthesis, such as by the levels of CYP7A1, CYP8B1 and 
CYP27A1, and bile excretion, such as by BSEP and MRP2, 
B. fragilis was responsible for the excessive BA synthesis and 
interruption of hepatic bile excretion, leading to the initiation 
of ICP. Overall, microbiome-modulated BA metabolism may 
have potential for ICP treatment.

In addition to the deconjugation of BAs through BSH activ-
ity mentioned above, there are other main BA biotransforma-
tion reactions catalyzed by gut microbiota, such as hydroxyl 
group oxidation, 7β-epimerization, 3β-epimerization, and 
7-dehydroxylation. Finally, secondary BAs are produced, 
such as DCA, LCA, murideoxycholic acid (MDCA), UDCA, 
ω-muricholic acid (ω-MCA), and hyodeoxycholic acid [23], 
increasing BA diversity. Not only FXR signaling but also 
TGR5 signaling is strongly affected by gut microbiota, as 
secondary BAs such as LCA, DCA, and their conjugates are 
potent TGR5 activators.

In addition, tryptophan is essential among the metabo-
lites at the interface between the host and gut microbiota. 
The predominant tryptophan metabolism pathways leading 
to kynurenine, indole and serotonin derivatives in the gut are 
controlled by these microbiota. In the kynurenine pathway, 
over 90% of tryptophan is a substrate. This pathway contains 
many metabolites, including kynurenine, 3-hydroxykynure-
nine, and 2-oxoadipic. In the indole pathway, indole and its 
intermediates are ligands of the aryl hydrocarbon receptor 
and play vital roles in intestinal homeostasis by regulating 
inflammatory signals [86]. Kynurenine, 3-hydroxykynurenine, 
2-oxoadipic acid, and indole were significantly changed in ICP 
patients and associated with BA levels. Moreover, valeric acid, 
a gut microbial-specific metabolite, was reduced, while panto-
thenate (vitamin B5), a metabolite primarily produced by gut 
microbiota, was increased, in an ICP group [49]. This latter 
study implied that abnormal tryptophan metabolism may be 
associated with alterations in the intestinal flora in ICP.

In conclusion, the gut microbiota affect metabolomics in 
ICP not only through BAs but also through other metabolites, 
such as short-chain fatty acids [73] and tryptophan [49]. Fur-
ther in-depth mechanistic studies are needed.

The gut microbiota with significant differential expression 
in the ICP microbiome studies are listed in Table 2.
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Genetic factors

ABCB4 gene mutations have been found in ICP [87–93], 
whereas they were not associated with the response to UDCA 
therapy [94]. ABCB11 mutations had less of an effect on the 
pathogenesis of ICP [87] and raised the susceptibility to chol-
estasis of pregnancy [18].

Müllenbach et  al. detected ATP8B1 mutations in ICP 
patients and suggested that susceptibility to ICP was related 
to the increase in biliary phospholipids [24]. A frameshift 
deletion in FGFR4 was also detected in ICP patients. It may 
lead to impaired enterohepatic feedback repression of hepatic 
BA synthesis via FXR and FGF19 [95]. TJP2 mutations and 
ANO8 mutations were detected in Han ICP patients by whole-
exome sequencing [93].

The genes GABRA2, HLPT and KIFC3 play a role in the 
pathogenesis of pruritus, lipid metabolism and bile compo-
sition, and protein trafficking and cytoskeleton arrangement, 
respectively [96].

In addition, Du et al. [97] discovered roles in ICP for genes 
involved in the immune response, such as CXCL6, CXCL14 
and IL-7R; genes associated with vascular endothelial growth 
factor (VEGF) signaling, such as FGF9, ITGB3 and VEGFC; 
and genes associated with GPCR signaling, including EGF, 
EGFR, and GNA14.

Complications of ICP and omics results

GCDCA, GCA, TC, glycodeoxycholic acid (GDCA) and 
TDCA were found to be markedly increased in ICP patients 
with MSAF and had a negative correlation with birth weight 
in a metabolomics study. TCDC was negatively and most 
strongly associated with birth weight [49]. Pearson correlation 
analysis showed that estrone sulfate levels were positively cor-
related with TBA levels and birth weights [49]. In another gut 
microbiota study, B. fragilis caused increased levels of TBA 
and was negatively correlated with birth weight, while sup-
plementation of B. fragilis-treated mice with GDCA decreased 
their BA synthesis and increased their offspring’s birth weight 
[85].

The elevated GCA, TBA, albumin and total bilirubin per-
centages taken together predicted preterm birth (PTB) in 
EICP, suggesting that high liver burden in the second trimes-
ter increases the risk of PTB. The TCA percentage predicted 
PTB in LICP(52).

Conclusion

BAs play a key role in the pathogenesis of ICP and are influ-
enced by many aspects, such as enterohepatic circulation, 
placental BA homeostasis, and BA receptors. Various omics 

techniques have emerged as the techniques of bioinformatics 
have advanced, providing a new direction toward explor-
ing the pathogenesis, diagnosis and treatment of ICP. For 
instance, high-throughput sequencing enables researchers 
to capture unknown targets from massive data. In studies 
of ICP, metabolomics provides insight into the role of bile 
acids, lipids, hormones, etc.; studies of the microbiome 
have dissected the role of gut microbes; and genomics stud-
ies have advanced our understanding of genetic factors in 
ICP. Most studies have focused on the analysis of biological 
information, and basic experimental verification is lacking. 
In addition, only a few different multiomics analyses have 
been applied. Combined multiomics analysis would be a sys-
temic and in-depth approach to exploring this disease. For 
instance, genomic alterations may affect transporters of BAs, 
thereby causing changes in the BA profile in metabolomics, 
and ICP-induced changes in the relative abundance of BA-
related compounds in metabonomics may influence the gut 
microbiota. Furthermore, emerging technologies such as 
single-cell omics and spatial methods have not been used in 
ICP. Overall, omics technology has yielded several signifi-
cant findings and will keep playing a key role in the future.
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