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Abstract

Glycogen storage disorders (GSDs) are inherited disorders of metabolism

resulting from the deficiency of individual enzymes involved in the synthesis,

transport, and degradation of glycogen. This literature review summarizes the

development of gene therapy for the GSDs. The abnormal accumulation of gly-

cogen and deficiency of glucose production in GSDs lead to unique symptoms

based upon the enzyme step and tissues involved, such as liver and kidney

involvement associated with severe hypoglycemia during fasting and the risk

of long-term complications including hepatic adenoma/carcinoma and end

stage kidney disease in GSD Ia from glucose-6-phosphatase deficiency, and

cardiac/skeletal/smooth muscle involvement associated with myopathy +/�
cardiomyopathy and the risk for cardiorespiratory failure in Pompe disease.

These symptoms are present to a variable degree in animal models for the

GSDs, which have been utilized to evaluate new therapies including gene ther-

apy and genome editing. Gene therapy for Pompe disease and GSD Ia has pro-

gressed to Phase I and Phase III clinical trials, respectively, and are evaluating

the safety and bioactivity of adeno-associated virus vectors. Clinical research to

understand the natural history and progression of the GSDs provides invalu-

able outcome measures that serve as endpoints to evaluate benefits in clinical

trials. While promising, gene therapy and genome editing face challenges with

regard to clinical implementation, including immune responses and toxicities

that have been revealed during clinical trials of gene therapy that are under-

way. Gene therapy for the glycogen storage diseases is under development,

addressing an unmet need for specific, stable therapy for these conditions.
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1 | BACKGROUND

Glycogen metabolism involves a series of coordinated
enzymatic reactions that includes the synthesis and

breakdown of glycogen polymers (Supplementary
Figure S1).1 Deficiencies in any of the enzymes or trans-
port proteins involved in the glycogen synthesis and deg-
radation pathways can result in a glycogen storage
disorder (GSD) (Table 1; types 0a, 0b, Ia, Ib, II, III, IV, V,
VI, IX).2,3 In addition, deficiencies in enzymes whoseGuarantor: Dwight D. Koeberl.
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actions are external to the canonical glycogen metabolism
pathways can result in excessive glycogen accumulation and
thus are classified as a GSD (types VII, X, XI-LDHA, XI-FBS,
XII, XIII).2,4 Furthermore, there are several disorders that
are classified as both a GSD and another disorder, including
Lafora disease and RBCK1 deficiency which are polygluco-
san storage disorders, and Pompe and Danon disease which
are lysosomal storage disorders. Therefore, the list of GSDs
included in Table 1 is selective and not considered to be a
comprehensive list of all known GSDs. PGM1 deficiency was
historically referred to as GSD XIV but has been re-classified
as a congenital disorder of glycosylation5 and is not discussed
further in this review.

The liver and skeletal muscle normally store large quan-
tities of glycogen and therefore are the most commonly
affected tissues. For this reason, GSDs are classified by the
primary organs involved—liver, muscle, or both—though
additional organs may be involved. Individuals with liver
GSDs often present in infancy or early childhood with fast-
ing hypoglycemia due to the inability to produce sufficient
free glucose to maintain euglycemia as well as hepatomeg-
aly due to the accumulation of glycogen in hepatocytes.
Glycogen in the skeletal muscle provides substrates for
muscle contraction, and therefore GSDs that principally
affect the skeletal muscle are characterized by skeletal
myopathy, muscle pain and weakness, cramps, and
exercise intolerance. Cardiomyopathy and arrhythmias are
commonly observed in GSDs that involve the cardiac
muscle. The overall incidence of all GSDs is approximately
1:10000–25 000 live births.6–8 The severity of symptoms
along with the lack of standardized management strategies
have driven the discovery and development of new thera-
pies including enzyme replacement therapy (ERT) and gene
therapy, which are still under development and have been
shown to be efficacious in preventing disease progression
and reversing disease involvement.

The purpose of this review is to summarize recent
developments in a review of current literature relevant to
the topic of gene therapy for GSDs, while acknowledging
previous reviews of some aspects of the field.9–11 Special-
ized considerations and the stage of development for
gene therapy or related technologies will be described.
Animal models being used for gene therapy or with
potential to be used for gene therapy are included
(Table 2); a comprehensive review of all GSD animal
models can be found in Almod�ovar-Pay�a et al.11

2 | NATURAL HISTORY AND
ANIMAL MODELS FOR THE GSDs

Given the lack of specific, effective therapy in general for
GSD, gene therapy has been developed for several of theT
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individual GSDs.9 However, the preclinical research done
in advance of clinical trials requires the availability of
authentic animal models to evaluate safety and efficacy.
Furthermore, natural history studies are critical for char-
acterizing disease progression and providing endpoints
and biomarkers for clinical trials. To date, natural history
data has been published for GSD Ia, Ib, II, III, IV, VI, and
IX, yet many are limited to retrospective chart reviews
with small patient numbers from specific countries or
populations, and thus additional comprehensive natural
history studies with inclusion of larger patient cohorts
and representation from across the world are warranted.
Several retrospective and prospective natural history
studies on GSDs have been conducted or are ongoing,
providing the much-needed characterization of these dis-
orders for current and future gene therapy investigations.
Herein, we summarize the available natural history data
and animal models briefly by GSD type, and compare the
phenotypes of animal models to those of affected
patients.

2.1 | GSD 0a and 0b

GSD 0a is associated with deficiency in glycogen synthase
2 (GYS2), disrupting glycogen synthesis in the liver.
Patients often present with fasting ketotic hypoglycemia,
short stature, postprandial hyperglycemia, lactic acidosis,
and hyperalaninemia with normal insulin levels. There
are limited published reports on affected adolescent and
adult individuals, and therefore long-term disease
sequelae is not clear. Current management strategies
include dietary intervention to prevent fasting hypoglyce-
mia.62 No animal's models are available for GSD 0a.

GSD 0b is associated with deficiency in glycogen
synthase 1 (GYS1) which disrupts glycogen synthesis in
the muscle, causing cardiomyopathy, cardiac arrhythmia,
muscle weakness, and exercise intolerance.63,64 Patients
are managed symptomatically and there is a long-term
risk of cardiac arrest. A Gys1�/� mouse model features
impaired cardiac function, edema, pooling of blood, and
hemorrhagic liver.12 It has a poor survival rate, yet �10%
survive birth and live through late adulthood with no
apparent functional differences despite exhibiting signifi-
cant cardiac fibrosis.

2.2 | GSD Ia and Ib

GSD Ia and Ib result in a defect in glycogenolysis and
gluconeogenesis as a result of deficient glucose-
6-phosphatase α or glucose-6-phosphate translocase,
respectively. Guidelines for the management of GSD I

have been previously published.65–67 The natural history
of hepatocellular adenoma (HCA) formation in GSD I
has been detailed in several retrospective chart reviews,
including the ages when HCA develops and the relation-
ship of HCA with metabolic control.68–71 A cohort of
affected individuals from the Netherlands (N = 39), both
with optimal and non-optimal metabolic control, were
assessed for the natural course of renal disease.72 A 2021
review details the current management options, burden,
and unmet needs in GSD Ia,73 providing support for clini-
cal trials targeting GSD Ia. Findings from a retrospective,
observational study on individuals with GSD Ib in
England (N = 35) was published in 2021,74 and key find-
ings include the impact of GSD Ib on growth, fasting tol-
erance, bone health, as well as renal, endocrine, and
gastrointestinal manifestations. That study was limited in
conclusions it could draw on the natural history in adult-
hood due to limited adult cases (N = 7). The natural his-
tory of GSD Ib is continuously evolving with the utility of
pharmaceuticals to treat neutropenia and neutrophil dys-
function, including granulocyte colony-stimulating factor
and empagliflozin.75,76 Additional natural history data on
GSD Ib is needed to better define future gene therapy
clinical trials and should include data on affected individ-
uals from around the world. Finally, patient-reported
outcomes and psychosocial impacts of disease are now
being detailed in GSD I,77–81 improving our understand-
ing of disease natural history.

A naturally occurring GSD Ia dog model features a
missense variant resulting in a methionine to isoleucine
substitution in codon 121 of G6PC, which causes hepato-
megaly, hypoglycemia, renomegaly, lactic acidemia
hypercholesterolemia, hypertriglyceridemia, hepatocellu-
lar carcinoma, and renal disease (Table 2).13–16 A GSD Ia
mouse model was developed by disruption of the G6pc1
gene in exon 3 by a neomycin cassette. These mice dem-
onstrated slow growth, hypoglycemia, hyperlipidemia,
hepatomegaly, renomegaly, and generalized dysplasia of
cartilage.18 Tamoxifen inducible G6pc�/� mice models
specific to liver, kidney, or intestines have been devel-
oped (Table 2).19–21,82 A G6pt�/� mouse model featured
the expected neutropenia in addition to other features of
GSD I.22 A tamoxifen-inducible G6pt�/� mouse model
demonstrated the expected phenotype, albeit milder and
with increased survival.23

2.3 | GSD II (Pompe disease)

GSD II, more often referred to as Pompe disease, is
caused by deficiency in acid α-glucosidase within the
lysosome and primarily affects the skeletal muscle, car-
diac muscle, and diaphragm. Patients are classified as

10 KOEBERL ET AL.
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infantile-onset Pompe disease (IOPD) and late-onset
Pompe disease (LOPD) based on age of symptom onset.83

A natural history study on disease progression in IOPD
was conducted using clinical data from 20 affected Dutch
infants and 133 cases reported in the literature.84 A retro-
spective, multinational, multicenter natural history study
on IOPD (N = 168 cases) detailed the progression of dis-
ease, including the characterization and onset of cardio-
respiratory involvement, muscle weakness, feeding
difficulties, as well as survival curves and prognosis.85

Additional natural history data on adults with LOPD has
been published, with a prospective observational study
(N = 94) detailing the clinical features and pattern of
muscle weakness as well as prognostic factors for disease
progression.86 An additional prospective international
observational study on LOPD (N = 268 from 15 countries)
reported higher mortality than the general population in
untreated adults with Pompe disease and identified levels
of disability and impact on participation as factors associ-
ated with mortality.87 ERT with alglucosidase alfa was
approved for patients with Pompe disease in Europe and
the United States in 2006, with the next generation ERT
avalglucosidase alfa gaining approval for use in the
United States in 2021 for individuals with LOPD 1 year of
age or older, and in 2022 was approved for use in Europe
for all patients with Pompe disease. Immunomodulation
strategies have since been employed to induce immune
tolerance to ERT in affected individuals who are cross-
reactive immunologic material (CRIM)-negative and
would otherwise develop an IgG antibody immune
response to the ERT, leading to a deeper understanding
of the natural history of CRIM-negative individuals that
otherwise would have succumbed to the disease despite
ERT.88 ERT for Pompe disease has drastically improved
the survival rates in affected individuals,89–93 resulting in
the emergence of new phenotypes, including variable
central nervous system involvement in children with
IOPD94–101 and progression of disease in individuals
with LOPD treated with ERT, including respiratory func-
tion and functional outcomes.89,102,103 Furthermore, the
addition of Pompe disease to newborn screening (NBS)
programs in Taiwan in 2005104 and the United States
Recommended Uniform Screening Panel in 2015 has per-
mitted early diagnosis of patients with IOPD, as well as
those with LOPD who otherwise appear healthy.105 Natu-
ral history of patients who are detected on NBS is con-
tinuing to evolve; studies in Taiwan and the
United States are shedding light on the early involvement
and a characteristic phenotype in infants and children
with LOPD diagnosed via NBS.94,105

There are numerous animal models for Pompe dis-
ease (Table 2). A GAA knockout mouse model has been

used most commonly for gene therapy development
which displays progressive muscle weakness from glyco-
gen accumulation in heart and skeletal muscle.30

Another potentially useful model for gene therapy devel-
opment is a naturally occurring dog model found in
Swedish Lapphunds which had clinical signs of vomiting,
progressive muscular weakness, loss of condition and
myocardial hypertrophy caused by generalized glycogen
accumulation in skeletal, esophageal, cardiac, and
smooth muscles.25

2.4 | GSD III

GSD III is caused by deficient glycogen debranching
enzyme (GDE) activity, resulting in disrupted glycogenol-
ysis. Affected patients are classified as GSD IIIa if they
experience liver and muscle involvement or GSD IIIb if
they exhibit liver involvement only. Management guide-
lines for GSD III have been previously published106 and
the liver, skeletal muscle, and heart involvement in GSD
III has been characterized in various reports. The Inter-
national Study on GSD III was conducted and included a
multi-center retrospective review of growth and
development and hepatic, neuromuscular, and cardiac
complications in individuals with GSD III (175 cases with
follow-up into adulthood in 91 cases).107 Yet, the data
were largely cross-sectional rather than longitudinal and
thus may not fully represent the breadth of long-term
complications in GSD III. The natural course of liver dis-
ease in affected pediatric and adult individuals (N = 26)
was described and revealed key findings on liver pathol-
ogy, imaging, and biochemistry, including support for
using Glc4 as a biomarker of liver disease progression.108

The extent of cardiomyopathy in GSD III (N = 33) was
described in a retrospective review which detailed the
increase in wall thickness and left ventricular mass
through adulthood in affected individuals with GSD IIIa
compared to GSD IIIb.109 A retrospective, longitudinal
natural history study detailed the clinical, biochemical,
radiological, functional, and histopathological aspects of
the disease course in adults with GSD III (N = 25) as well
as confirmed the use of Glc4 as a biomarker of GSD
III.110 Furthermore, the musculoskeletal manifestations
in GSD IIIa from affected pediatric and adult individuals
(N = 22) were detailed, providing support for monitoring
performance on functional assessments in future clinical
trials.111

Four GSD III mouse models with different Agl gene
variants have been described, all demonstrating glycogen
accumulation in the muscle and liver (Table 2).32–35

There is also a naturally occurring curly-coated retriever

KOEBERL ET AL. 11

 15732665, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jim

d.12654 by R
eadcube (L

abtiva Inc.), W
iley O

nline L
ibrary on [10/10/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



dog model that demonstrates initial elevations of liver
enzymes, muscle enzymes, and urine Glc4, as well as
hepatomegaly with glycogen accumulation in liver and
muscle. With disease progression, there was an increase
in hepatic fibrosis and eventual cirrhosis in some dogs
with a contaminant decease in liver and muscle enzymes
as well as urine Glc4 (Table 2).

31,112

2.5 | GSD IV

GSD IV is caused by reduced or deficient glycogen
branching enzyme (GBE) activity and results in abnormal
glycogen synthesis and the formation of polyglucosan.
The clinical spectrum of GSD IV is heterogeneous and
encompasses severe neurological and neuromuscular
manifestations, myopathy, cardiomyopathy, and progres-
sive liver fibrosis, and can present in the neonatal period,
infancy, early childhood, adolescence, or adulthood
(Adult Polyglucosan Body Disease [APBD]). A summary
of management for all GSD IV phenotypes, including
APBD, was previously published.2 Additionally, a recent
review of all published cases with GSD IV that had symp-
tom onset before the age of 25 years (N = 179) evaluated
the extent of multisystem tissue involvement and
revealed the pitfalls of the traditional subtype classifica-
tion system.113 Rather than classifying patients into dis-
crete hepatic or neuromuscular subtypes, Kiely et al.113

recognized that GBE deficiency can cause a spectrum of
manifestations across multiple tissue systems and
affected individuals may exhibit differing degrees of
hepatic, neuromuscular, and/or cardiac involvement over
time. An additional natural history study focused on
APBD (N = 50 cases) defined the cardinal signs of the
disease and the typical stages of disease progression.114

Long-term clinical surveillance and natural history data
on GSD IV is needed for future gene therapy investiga-
tions to better catalog the phenotypic variation in a gran-
ular manner. As of May 2023, there is an active
retrospective and prospective natural history study on
GSD IV, including the adult-onset form APBD
(NCT02683512).

There are two naturally occurring large animals dis-
playing clinical features more similar to early onset GSD
IV with early mortality; these are the Norwegian Forest
Cat and American Quarter Horse (Table 2).36–41,115 Three
mouse models for GSD IV are described, with clinical
signs consistent with early, juvenile and adult onset
(Table 2).42,43 The adult-onset model used homologous
recombination to knock in the most common variant
found in patients of Ashkenazi Jewish descent with
APBD, c.986A > C (p.Y329S), and has been used in a pre-
vious gene therapy study.43

2.6 | GSD V

GSD V, commonly referred to as McArdle disease, is
caused by deficient muscle glycogen phosphorylase (myo-
phosphorylase) which disrupts glycogenolysis in the mus-
cle. Patients typically present as adults with muscle
cramping and rhabdomyolysis during exercise, and the
ability to resume moderate, aerobic exercise after
resting—the “second wind phenomenon.” No natural
history study of McArdle disease has been published to
date. Management strategies for GSD V have been
reviewed.116 There are naturally occurring Charolais cat-
tle and Merino sheep models for McArdle disease, with
the sheep being used for gene therapy to date
(Table 2).44–46 The affected sheep exhibited exercise intol-
erance and muscle biopsy samples showed a lack of myo-
phosphorylase and the accumulation of excessive
glycogen.46 A knock-in mouse model for GSD V was gen-
erated by introducing the common p.R50X mutation in
exon 1 of the Pygm gene.47 The homozygous (PygmR50X/

R50X) mice exhibit similar phenotypes as shown in human
patients, including lack of myophosphorylase expression
and massive glycogen accumulation in skeletal muscles,
elevated plasma creatine kinase activity, exercise-induced
myoglobinuria, exercise intolerance, and progressive
muscle degeneration, fibrosis, and inflammation
(Table 2).47–49 A zebrafish model for GSD V is also
described (Table 2).50

2.7 | GSD VI and IX

GSD IX is caused by deficient phosphorylase kinase
(PhK) activity in the liver and/or the muscle, whereas
GSD VI is caused by deficient liver glycogen phosphory-
lase activity. PhK in the liver phosphorylates and acti-
vates glycogen phosphorylase, and therefore patients
with GSD VI and GSD IX experience disruption in glyco-
genolysis and can present very similarly with fasting
hypoglycemia and hepatomegaly.212,213 The first natural
history reviews detailing long-term outcomes of patients
with GSD VI and GSD IX were published in 1990. From
there, a retrospective chart review detailing natural his-
tory of affected individuals in Canada (N = 4 GSD VI,
N = 17 GSD IX).117 This report highlighted the long-term
complications of GSD VI and GSD IX, including HCA
and progressive fibrosis. A follow-up retrospective chart
review of individuals with GSD VI and GSD IX in
England (N = 9 GSD VI, N = 13 GSD IX) was conducted
to determine the extent of liver involvement at presenta-
tion versus the most recent follow up, highlighting that
although GSD VI and IX are often considered “mild”
clinically, chronic histological changes could be seen in
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all liver biopsies.118 However, published data from these
retrospective natural history studies are limited to that of
affected children and young adults, emphasizing the need
for longitudinal data on affected adults. Additional sys-
temic literature reviews have further detailed clinical
data on cases with GSD VI (N = 63), GSD IX α2
(N = 183), GSD IX β (N = 17), and GSD IX γ2
(N = 30).119,120 The reviews were conducted in a comple-
mentary manner so that findings can be compared to one
another, including the age at initial presentation, fre-
quency of clinical findings, and pathology findings on
liver biopsy. Both reviews were not able to fully address
the long-term outcomes and complications on GSD VI or
GSD IX due to limited published follow-up reports,
emphasizing the need for studies with longitudinal data
to guide future clinical trials. Moreover, there has been
no publication of natural history data for GSD IX α1.
Therefore, the critical need for comprehensive, longitudi-
nal natural history study data on GSD VI and all subtypes
of GSD IX remains. As of May 2023, there is an active ret-
rospective and prospective natural history study on GSD
VI and GSD IX (NCT04454216).

There are no known naturally occurring large animal
models for GSD VI, but there is promise for use in future
gene therapy development with a GSD VI mouse model
(C57BL/6N-Pygltm1a(KOMP)Wtsi or Pygl�/�) (Table 2).51

Pygl�/� mice have enlarged hepatocytes from glycogen
accumulation with progression to hepatic fibrosis accom-
panied by increased transaminase concentrations in older
Pygl�/� mice.51

There are no known naturally occurring large animal
models for GSD IX, but two murine models exist, γ2 and
β (Table 2). A GSD IX γ2 mouse model (C57BL/6
N-Phkg2tm1.1(KOMP)Vlcg/JMmucd or Phkg2�/�) has mas-
sive glycogen accumulation in the liver leading to hepato-
megaly, early liver fibrosis with elevations in serum liver
transaminases, and hypoglycemia.60 A rat model
(gsd/gsd) has also been described.121–123 A GSD IX β
mouse model (C57BL/6NJ-Phkbem1(IMPC)J/Mmjax or
Phkb�/�) developed mild fasting hypoglycemia with ele-
vated blood ketones in the fed and fasting state and his-
tology revealed enlarged, glycogen-filled hepatocytes
with minimal collagen deposition at 40 weeks of age.59

2.8 | GSD VII

GSD VII is caused by deficient muscle phosphofructoki-
nase activity, resulting in a block in muscle glycolysis.
GSD VII typically presents similarly to GSD V with
exercise-induced muscle cramping; however, patients do
not experience a second wind phenomenon. A high car-
bohydrate meal aggravates symptoms, which has been

termed the “out of wind phenomenon.” The management
strategies for GSD VII have been reviewed.116

A naturally occurring nonsense mutation in exon
21 of the PFKM gene has been described in English
Springer Spaniels, Cocker Spaniels, and Whippet dogs
(Table 2).53–55 The affected dogs demonstrated mild exer-
cise intolerance, rare muscle cramps, increased serum
creatine kinase activity, but had no myoglobinuria.53 A
new missense point mutation (c.550 C > T) in the PFKM
gene associated with muscle phosphofructokinase defi-
ciency was later described in Wachtelhunds dogs pre-
senting with exercise intolerance and hemolytic
anemia.56,57 The knockout mouse model of GSD VII
(Pfkm�/�) developed hemolysis, increased erythropoie-
sis, and exercise intolerance, as well as high glycogen
accumulation and increased vascularization and fiber
necrosis in the skeletal muscles. High lethality (about
60%) in the Pfkm�/� mice was observed at around
weaning age and those surviving mostly died before
6 months of age (Table 2).58

2.9 | GSD XV

GSD XV is caused by deficient glycogenin-1 activity
which results in abnormal glycogen synthesis and the for-
mation of polyglucosan in the skeletal muscle and heart.
To date, literature on GSD XV is limited to case reports
describing the clinical presentation either with skeletal
myopathy or cardiomyopathy.124–137 Rodents carry a sin-
gle Gyg gene compared to humans and other mammals
that carry two glycogenin isoforms: Gyg1 and Gyg2. A
knock-out mouse model of GSD XV (Gyg�/�) has been
characterized with deficient GYG activity in the muscle,
heart, liver, and brain.61 This model recapitulates the
patient phenotype with skeletal muscle weakness and
glycogen accumulation in skeletal muscle and heart.
However, an important distinction is affected patients
accumulate polyglucosan (diastase-resistant glycogen)
whereas the Gyg�/� mice accumulate diastase-sensitive
glycogen in skeletal muscle and heart tissue.

3 | PRECLINICAL RESEARCH IN
GSD GENE THERAPY

Gene therapy has been defined as viral vector-mediated
gene delivery, or gene replacement therapy, which has
been adapted to deliver the components needed for
genome editing.138 This review will focus on viral vector-
mediated gene therapy and genome editing that achieve
stable benefits from transgene delivery. However, other
clinically relevant therapeutic methods utilizing
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nucleotides, including encapsulated mRNA, are summa-
rized briefly in Table 1.

3.1 | GSD Ia and Ib

Preclinical development of gene therapy and
genome editing for GSD Ia

While dietary therapy has succeeded in prolonging life-
span of people with this condition, it fails to reliably pre-
vent long-term complications of GSD Ia including HCA
or carcinoma formation, as well as end-stage kidney dis-
ease. Preclinical studies have demonstrated the correc-
tion of G6Pase deficiency in the liver and hypoglycemia
(Table 3), although only AAV1, AAV2 with adenovirus,
and AAV9 vectors have corrected kidney abnormalities.
AAV vector-mediated gene therapy has achieved long-
term efficacy in GSD Ia in multiple studies10; however,
the duration of efficacy in these studies was limited as
hepatic AAV vector genome abundance declined rapidly
followed by a more gradual loss of biochemical correc-
tion.140,146,147 General approaches to this problem have
included higher vector dosages148,149 and re-administration

of the vector, prior to the formation of anti-AAV anti-
bodies.150 These approaches have not comprehensively
addressed the loss of efficacy due to the loss of AAV vector
genomes in animal models for genetic disease. For example,
a recent study in neonatal G6pc �/� mice revealed that
despite the correction of G6Pase deficiency by AAV vector-
mediated gene therapy, autophagy was only partially
restored in liver.151 Similarly, gradual loss of efficacy from
gene therapy has been shown in canine models of GSD
Ia.15,17,152 Puppies treated with gene therapy vectors have
increased G6pase expression and decreased glycogen in the
liver. However, the effect is transient and the dogs required
re-administration of vector and constant dietary monitoring.
Gene therapy was able to improve the dogs blood glucose
during fasting but ultimately failed to prevent kidney failure
and liver adenoma and carcinoma, which developed over
multiple years following initial treatment.15 In contrast,
treatment with AAV vector-mediated gene therapy com-
bined with continuous nutrition prevented long-term com-
plications of gene therapy in the canine model, confirming
the value of good metabolic control in the successful treat-
ment of GSD Ia that has also been reported in patients.70,153

Genome editing promises to address the limitations of
gene therapy by stably integrating the therapeutic sequence

TABLE 3 First decade of gene therapy for GSD Ia.a

Serotype

Effective dose (vg/kg), IV administration
to either neonatal or infantile (12 days
old) G6pc�/� mice

Duration of elevated blood
glucose during fasting
(>100 mg/dl)

Biochemical
correction

AAV2 + adenovirus vector
coadministration139

Alternate protocol: �3 � 1012 infectious units
AAV2/kg and � 1 � 1010 plaque forming
units adenovirus vector/kg

at birth, and an additional 5 � 1011 infectious
units/kg of AAV2 at 2 weeks old

0 h (not fasted) Liver and
kidney

AAV8140 �2 � 1014 vg/kg 2 h Liver

AAV1141 �2 � 1014 vg/kg 0 h (not fasted) Liver and
kidney

Helper-dependent
adenovirus142

�2 � 1012 vg/kg 2 h Liver

Double-stranded AAV8143 �1 � 1013 vg/kgb 2 h Liver

Double-stranded AAV1143 �3 � 1013 vg/kg 0 h (not fasted) Liver

AAV8144 �1 � 1013 vg/kg 6 h Liver

Feline immunodeficiency
virus145

Alternate protocol: �1 � 1010 viral particles/
kg at 1 day old, and an additional �2 � 109

viral particles/kg at 7 days of age

0 h (not fasted) Liver

Double-stranded AAV9146 �2 � 1013 vg/kg 8 h Liver and
kidney

AAV8147 �3 � 1013 vg/kg 24 h Liver

Abbreviation: GSD, glycogen storage disorder.
aStudies published between 2002 and 2011, summarizing progress of gene replacement therapy.
bAlso treated puppies with GSD Ia.
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in chromosomal DNA. Genome editing has been initiated
to correct a mutation or integrate a transgene as a method
to stably treat liver metabolic diseases and hemophilia,
including GSD Ia, hemophilia B, ornithine transcarbamy-
lase deficiency, and phenylketonuria.154–157 The underlying
strategy depends upon the stable transduction of hepato-
cytes through genome editing, which prevents the loss of
episomal AAV genomes due to cell division that limits the
efficacy of gene replacement therapy. Increasingly genome
editing studies use CRISPR/Cas9 as a nuclease, due to its
flexibility and high nuclease activity. An initial genome
editing study used a zinc finger nuclease (ZFN) mediated
genome editing method, which demonstrated an advantage
for genome editing in comparison with gene replacement
therapy.154 Intriguingly, the addition of bezafibrate to
induce autophagy during genome editing of G6pc�/� mice
more effectively corrected the liver abnormalities of GSD Ia,
achieving normal G6Pase activity in liver and widespread
transduction of hepatocytes.158 More recently, CRISPR/
Cas9 based genome editing has been used to correct a
mutation causing GSD Ia in mice.159 Instead of inserting a
full length transgene, they targeted the most common
mutation in GSD Ia patients, G6PC-p.R83C, which repre-
sents 32% of all diseased alleles in humans. Two AAV vec-
tors were used, one expressing Cas9 and a single guide
RNA, and a second containing the repair template
sequence. GSD Ia mice treated with the CRISPR/Cas9
based editing vectors had 0.7% of alleles edited and G6pase
expression was 4% of wild type (WT) after 8 weeks of treat-
ment. The edited mice had serum triglycerides, cholesterol,
lactic acid, and uric acid levels comparable to WT controls
and showed improved blood glucose levels during fasting.
All treated mice survived, while none of the untreated GSD
Ia mice survived to 16 weeks. A recent study of CRISPR/
Cas9-medatied genome editing in the canine model for
GSD Ia revealed the integration of a G6PC transgene in up
to 1% of alleles for over 16 months.160 These preclinical
studies with CRISPR/Cas9 or with ZFN-mediated genome
editing demonstrated that correcting mutations causing
GSD Ia or inserting a fully functional transgene hold prom-
ise for more stably treating GSD Ia, in comparison with
gene replacement therapy.

Gene therapy for GSD Ib corrected liver, but
not hematologic abnormalities

GSD Ib is caused by glucose-6-phosphate transporter defi-
ciency, and features neutropenia in addition to the liver
and kidney involvement seen in GSD Ia.161 AAV vector-
mediated gene therapy has corrected the liver involve-
ment of mice with GSD Ib without impacting neutrope-
nia and its consequences.162 Notably, an AAV vector

containing the G6PC promoter/enhancer driving G6PT
expression corrected liver glycogen and prevented hypo-
glycemia. However, neutropenia was not corrected, indi-
cating a lack of hematologic cell transduction. Similarly,
mice with GSD Ib were treated with an adenoviral vector
expression G6PT benefited from correction of liver
involvement and hypoglycemia transiently, without
impacting neutropenia.163

3.2 | Pompe disease

The availability of ERT has decreased mortality among
patients with IOPD, facilitating a greater understanding
of the natural history of these patients.92 However, mus-
cle weakness (neck flexor weakness, dorsiflexor weak-
ness, myopathic facies, ptosis, and strabismus) has
persisted despite treatment with ERT.93,164,165 There
remains a high risk for patients with IOPD to develop
anti-GAA antibodies that decrease benefits from ERT,166

especially those that are CRIM-negative and a subset of
CRIM-positive patients. The limitations of ERT have
driven the development of gene therapy as an alternative
(Table 4). Preclinical studies have generally confirmed
both a lower dose requirement and higher degree of effi-
cacy from liver-based expression of GAA, or liver depot
gene therapy that can induce immune tolerance to GAA
that prevents and/or suppresses anti-GAA antibody for-
mation.178 Studies with muscle-based GAA expression
required higher vector dosages (Table 4).170,173 A unique
strategy of intracerebroventricular administration of an
AAV vector decreased glycogen in the brain and spinal
cord, but not in the muscles.179 Overall, studies have
demonstrated that liver depot gene therapy with an AAV
vector corrected GAA deficiency in the heart and skeletal
muscle, and improved muscle function testing in GAA
�/� mice with Pompe disease.167,168,171,180

It is expected that gene therapy with AAV vectors will
be less effective early in life due to the accelerated loss of
episomal vector genomes from rapid growth accompa-
nied by cell division, which especially affected liver-
targeted gene therapy.148,150,181,182 Although AAV vectors
have advanced to successful clinical trials based upon
liver transgene expression,183 the loss of vector genomes
during infancy has exceeded the rate expected solely from
cell division in the liver.181,182 Approaches to this prob-
lem have included higher vector dosages,148,149 and early
re-administration of the vector, prior to the formation of
anti-AAV antibodies.150 These approaches have not com-
prehensively addressed the loss of efficacy in animal
models for genetic disease following neonatal administra-
tion of AAV vectors. However, the long-term benefits of
gene therapy in infant mice with Pompe disease
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confirmed the potential value of treatment early in
life.168,184,185

Preclinical data have suggested the early treatment
with gene therapy might be successful in Pompe disease;
however, the dose requirements will be higher for treat-
ment very early in life. One study directly compared the
efficacy of a potentially clinically feasible dose of an
rAAV8 vector in infant and adult GAA-KO mice.168 Bio-
chemical correction and muscle function were evaluated
50 weeks following intravenous administration of the
same absolute vector dosages at 10 days or 2 months of
age to assess the effects of gene therapy either early or
later in life. Unsurprisingly, the degree of biochemical
correction was greater in the adult-treated mice, because
AAV vector transduction is more stable in older animals
that have completed the rapid growth phase of infancy.
Furthermore, the weight-based vector dose for treatment
of infants was approximately threefold higher than for
adults.168 Given these data, the dose requirement to
achieve similar efficacy will be higher for the treatment
of young patients and the benefits from gene replacement
therapy early in life will be relatively less than those from
later treatment.

Genome editing has been demonstrated in an in vitro
experiment with human induced pluripotent stem cells
from a patient with Pompe disease.186 This study con-
firmed that integration of a GAA-expressing transgene in
the AAVS1 locus corrected GAA deficiency and decreased
glycogen content of patient cells. Nuclease-free strategies
have been developed for genome editing in hemophilia
B,187 which might decrease the risks from genome editing
by eliminating the need for double-stranded DNA breaks;
however, the transgene integration efficiency was less than
1% and potentially too low to treat liver metabolic diseases.
Thus, nuclease-mediated genome editing to create a liver
depot for the treatment of Pompe disease could enhance
the treatment of very young patients with Pompe disease.

3.3 | GSD III

GSD III is categorized based upon tissue involvement,
either liver and muscle (GSD IIIa) or only the liver (GSD
IIIb). Currently, no curative treatment is available for the
disease. Symptomatic treatment does not prevent ongoing
disease progression, including liver involvement and vari-
able myopathy or cardiomyopathy (see “Natural history
and animal models for the GSDs” section) and dietary
interventions do little to alter the long-term course and
morbidity of the disease.106,188,189 In the absence of an
effective therapy, patients with GSD III will continue to
experience progressive liver failure and muscle damage
accompanied by increased morbidity and mortality.

ERT is not a feasible treatment approach for GSD III
due to the lack of a natural receptor-mediated uptake of
the therapeutic enzyme from the blood into target tissues.
Chronic daily administration of rapamycin, an inhibitor
of the mammalian target of rapamycin, partially pre-
vented glycogen accumulation in skeletal muscle and
liver and reversed hepatic fibrosis in a canine model of
GSD IIIa,190 but this treatment is not ideal given the tox-
icity of chronic rapamycin use. Liver-targeted gene
silencing of GYS2 by lipid nanoparticle mediated delivery
siRNA prevented progression of glycogen accumulation
and fibrosis in the liver, but this treatment had no effect
on the muscle in a GSD IIIa mouse model.191 Gene ther-
apy with AAV vectors, AAV9 in particular, could provide
a treatment strategy for GSD III as AAV9 vectors can reli-
ably transduce both liver and muscle tissues. However, a
major challenge of using this approach for GSD III is the
inability to package the large (4.6 kb) human GDE cDNA
into a single AAV vector due to the size limitation of
AAV. To overcome this limitation, Vidal et al. reported
that liver-restricted overexpression of secretable human
GAA with an AAV vector in GSD IIIa mice reduced gly-
cogen content in liver but not in muscle.34 In the same
study, the authors used a dual overlapping AAV vector
system to split the human GDE cDNA into two halves
and package them into two separate AAV vectors. Upon
coadministration of the two AAV vectors, functional
hGDE expression was achieved in liver and muscle tis-
sues of GSD IIIa mice.34 However, this dual vector
approach requires administration of very high doses of
the two AAV vectors, which may potentially lead to
adverse hepatotoxicity or even liver failure in
patients.192,193 Recently, Lim et al. reported an innovative
gene therapy approach with AAV vectors expressing a
small bacterial GDE (Pullulanase derived from Bacillus
subtilis) in a mouse model of GSD IIIa.35 Intravenous
injection of an AAV9 vector containing a 2.2-kb codon-
optimized Pullulanase cDNA driven by the ubiquitous
CMV enhancer/chicken β-actin (CB) promoter (AAV-CB-
Pull) into infant GSD IIIa mice significantly decreased
(by 75–80%) glycogen accumulation in the heart and skel-
etal muscles (not in the liver) and significantly improved
muscle function after 10 weeks.35 Subsequent treatment
with an AAV8 vector (AAV- liver-specific promoter
[LSP]-Pull) containing an immunotolerant LSP further
reduced liver glycogen content by 75%, significantly
decreased liver size, and completely reversed hepatic
fibrosis.35 In a follow-up study, Lim et al. demonstrated
that intravenous injection of an AAV vector containing a
tandem LSP-CB dual promoter (AAV-dual-Pull) into
adult GSD IIIa mice effectively decreased Pullulanase-
induced cytotoxic T lymphocyte (CTL) response and
enabled persistent therapeutic Pullulanase expression in
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liver and muscle, accompanied by the reversal of liver
fibrosis and improved muscle function.194 In contrast, the
AAV-CB-Pull vector elicited a strong transgene-related
CTL response, resulting in only transient Pullulanase
expression in adult GSD IIIa mice. This study empha-
sized the value of liver-restricted transgene expression
using a LSP in preventing immune responses to gene
therapy.

3.4 | GSD IV

To date, gene therapy has only been investigated in the
Gbe1ys/ys mouse model. In 2019, Yi and colleagues
reported on a gene therapy study where 14-day-old
Gbe1ys/ys mice received a single intravenous injection of
AAV9 vector containing a CB promoter and human GBE
expression cassette (AAV9-CB-hGBE).195 At 3 months of
age (10 weeks posttreatment), treated mice exhibited
increased GBE activity in the brain, heart, and skeletal
muscles, but not the liver, yet this effect waned and only
the heart retained increased GBE expression by
9 months. Consistent with the GBE activity levels, the
AAV copy numbers (copies/nucleus) were reduced by
90% in the liver, heart, brain, and skeletal muscles. At
3 months of age, treated mice exhibited glycogen levels
comparable to WT levels in the quadricep and gastrocne-
mius muscles, and reduced glycogen levels in the brain and
liver. This trend was consistent in treated mice evaluated at
9 months, despite the lack of detectable GBE activity in
those tissues. Plasma biochemistry at treated mice at
9 months of age revealed reduction of liver transaminase
and creatine kinase, suggesting alleviation of tissue damage
in the liver and skeletal muscle. Additional studies are war-
ranted to determine the functional improvements as a result
of gene therapy in the Gbe1ys/ys mouse.

3.5 | GSD V

The ovine model for GSD V has recently been used to
develop treatments in two ways: first, by using gene ther-
apy to express muscle glycogen phosphorylase and sec-
ond, by using pharmaceuticals to cause regeneration of
muscles leading to re-expression of myophosphorylase in
muscles. Intramuscular injection of an adenovirus
5 and/or an AAV2 vector expressing myophosphorylase
caused expression of functional myophosphorylase in
sheep affected with GSD V.196 Interestingly, in the same
study, it was noted that damage to muscle fibers caused
by injection with positive control vectors expressing LacZ
caused re-expression of non-muscle isoforms of glycogen
phosphorylase. Other studies in the GSD V ovine model

have shown similar re-expression of non-muscle isoforms
of myophosphorylase using valproate and notexin.197,198

Recently, an AAV-mediated gene therapy was tested in
the PygmR50X/R50X mice. Intraperitoneal injection of an
AAV8 vector expressing mouse muscle glycogen phos-
phorylase driven by a synthetic muscle-specific promoter
(AAV8-tMCK-Pygm) into early postnatal PygmR50X/R50X

mice led to therapeutic levels of gene expression in hind
limb skeletal muscles at 8 weeks of age, accompanied by
reduced muscle glycogen levels, improved skeletal mus-
cle pathology, and enhanced functional performance in
voluntary wheel running.199

4 | CLINICAL TRIALS
INVESTIGATING GENE THERAPY
FOR GSD

4.1 | GSD Ia

A Phase I/II clinical trial investigating the safety and effi-
cacy of a single intravenous injection of an
AAV8-mediated G6PC replacement (DTX401) at various
doses (2.0 � 1012 GC/kg or 6.0 � 1012 GC/kg with or
without a prophylactic steroid regimen) in adults with
GSD Ia was completed in 2021 (Table 1; NCT03517085)
with an ongoing follow-up extension study monitoring
the long-term safety and efficacy in individuals that
received the DTX401 infusion (Table 1; NCT03970278).
As of April 2023, there is an active Phase III randomized,
double-blind, placebo-controlled clinical trial to deter-
mine the efficacy and safety of DTX401 in individuals
8 years and older with GSD Ia (Table 1; NCT05139316).

4.2 | Pompe disease

The minimum effective dose for a liver-expressing AAV8
vector, AAV2/8-LSPhGAA, was only 2 � 1011/kg body
weight in mice with Pompe disease,167,200 supporting the
potential benefits of a low dose appropriate for early
phase clinical trials. A Phase I clinical trial with
AAV2/8-LSPhGAA vector administered intravenously
(Table 1; NCT03533673) has enrolled adults with LOPD.9

The first cohort of that study demonstrated preliminary
safety as well as bioactivity, based upon the absence of
any related serious adverse events and upon the presence
of significantly increased muscle GAA activity after
52 weeks.201 As of January 2023, one additional study of
AAV vector gene therapy is currently recruiting infants
with Pompe disease (Table 1; NCT05567627). One
previous clinical trial enrolled five participants
(age 18–180 months old) in a study of an AAV1 vector
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injected in the diaphragm, and showed stable effects on
tidal volume for 180 days.202 Although promising, this
approach has been considered too invasive and localized
in its benefits to be developed as an effective therapy for
all patients. Consequently, there is an unmet need for the
development of genetic therapies to stably treat Pompe dis-
ease. Two additional studies have enrolled subjects, although
no data have been published (Table 1; NCT04174105 and
NCT04093349). In the absence of an effective gene therapy
for infants with Pompe disease, this population will continue
to experience progressive loss of muscle function accompa-
nied by increased morbidity and mortality.

5 | CURRENT CHALLENGES FOR
GENE THERAPY IN GSD

The challenges to the field that affect gene therapy are
also an issue for the GSDs. These mainly involve the limi-
tations of gene therapy with regard to efficacy and safety.
These challenges include dose requirements and immune
responses, which are linked, as well as other toxicities
that are specific to the vector systems. For example, T cell
mediated immunity against AAV capsid proteins has
been associated with the generally asymptomatic eleva-
tion of liver transaminases; however, transgene expres-
sion has been eliminated when immune suppression was
not effective against these immune responses.203 Such
hepatotoxicity could be more problematic in GSDs that
have liver-directed gene therapies and/or GSDs
that involve the liver, including GSD III.204 Another risk
is the potential for liver tumorigenesis, currently limited
to rodent studies with AAV vectors205; however, GSD I has
been associated with HCA and carcinoma formation.206 To
date preclinical experiments demonstrated that tumorigene-
sis was disease-related and not related to gene therapy in
GSD Ia.207 Higher dosages will be required to treat muscle
involvement in some GSDs, which has been associated with
acute toxicity in clinical trials of AAV9 vector-mediated
gene therapy for muscular dystrophy.208 Pre-existing anti-
bodies against the viral vector will prevent some patients
from being treated with gene therapy, until methods to
deplete antibodies and allow successful transduction of tis-
sues in these individuals are available.209 A recent study
demonstrated the ability to re-administer an AAV vector
efficaciously following an immune suppression consist-
ing of bortezomib and an anti-CD20 monoclonal anti-
body in mice with Pompe disease.210 Finally, other
vector systems have unique risks, including bone
marrow ablation for lentiviral gene therapy,177 and hep-
atotoxicity for adenoviral vector gene therapy.211 In
summary, each of these potential risks must be consid-
ered and weighed versus anticipated benefits during the

planning of clinical trials for GSDs, including disease-
specific risks.

6 | CONCLUSIONS REGARDING
THE STATE OF THE ART

Progress toward comprehensive understanding of the
genetic and biochemical bases of the GSDs has allowed
the development of resources needed to develop gene
therapy for these disorders, including animal models and
vectors for gene therapy. An extension of gene replace-
ment therapy to perform genome editing holds promise
for the stable correction of enzyme deficiencies underly-
ing GSDs, which will be critical to treatment early in life.
The limitations of these therapies have been recognized
during preclinical development, including the loss of
transgene expression due to cell division and the risks
of cytotoxic immune responses. Any AAV vector might
pose risks from integrating into an oncogene, which
could be increased from genome editing. Furthermore,
new risks have been recognized during clinical trials,
including unexpected toxicities that could complicate
clinical trials enrolling patients with GSDs. Despite these
limitations, gene therapy and genome editing hold great
promise for the treatment of GSDs and could address the
unmet need for new therapies for these conditions.
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