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Abstract

Hepatic glycogen storage diseases constitute a group of disorders due to defects in the enzymes and transporters involved
in glycogen breakdown and synthesis in the liver. Although hypoglycemia and hepatomegaly are the primary manifesta-
tions of (most of) hepatic GSDs, involvement of the endocrine system has been reported at multiple levels in individuals
with hepatic GSDs. While some endocrine abnormalities (e.g., hypothalamic-pituitary axis dysfunction in GSD I) can be
direct consequence of the genetic defect itself, others (e.g., osteopenia in GSD Ib, insulin-resistance in GSD I and GSD
IIT) may be triggered by the (dietary/medical) treatment. Being aware of the endocrine abnormalities occurring in hepatic
GSDs is essential (1) to provide optimized medical care to this group of individuals and (2) to drive research aiming
at understanding the disease pathophysiology. In this review, a thorough description of the endocrine manifestations in
individuals with hepatic GSDs is presented, including pathophysiological and clinical implications.
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1 Introduction

Glycogen storage diseases (GSDs) are rare inherited meta-
bolic disorders due to a specific defect in enzymes or trans-
porters involved in glycogen breakdown and synthesis.
More than 12 GSD types are recognized causing various
symptoms depending on the location of the defect in the
glycogen metabolic pathway. Hepatic GSDs (collective
estimated incidence of ~3:100,000 newborns) are caused
by a specific defect in the liver and include GSD type 0Oa, Ia,
Ib, III, IV, VI, IX, and XI. Based on the ability to perform
mitochondrial fatty acid oxidation for ketone body produc-
tion, hepatic GSDs are further classified as ketotic (GSD 0Oa,
GSD III, GSD VI, GSD IX, GSD XI) or non-ketotic (GSD
Ia and GSD Ib). The major symptoms and signs in individu-
als with (most of the) hepatic GSDs are fasting intolerance,
hepatomegaly, growth retardation, elevated transaminases
and hyperlipidemia [1-4]. Additional findings characterize
specific hepatic GSD types (Table 1). Clinical, biochemical
and imaging features are traditionally employed for moni-
toring individuals with hepatic GSDs.

Dietary management including frequent feedings, regu-
lar uncooked corn starch (UCCS) intake, gastric-drip feed-
ing is the cornerstone of the treatment for hepatic GSDs [5,
6]. Pharmacological therapy (e.g., lipid-lowering drugs,
granulocyte colony-stimulating factor, ACE-inhibitors) can
correct secondary metabolic disturbances and/or prevent/

delay disease complications. Additional treatment options
(e.g. radiofrequency ablation, liver transplantation) can be
considered when previous options are not sufficiently effec-
tive [1].

Despite the treatment, individuals with hepatic GSDs
can experience metabolic decompensation [7] and develop
a number of (long-term) complications, including liver ade-
nomas and renal failure [8, 9]. Among those, disruption of
the endocrine system has been extensively reported at mul-
tiple levels in hepatic GSDs [10—14]. An overview on the
involvement of the different endocrine axes in individuals
with hepatic GSDs is provided, including pathophysiologi-
cal and clinical implications. A summary of major endocrine
manifestations observed in hepatic GSDs is presented in
Fig. 1; Table 2.

1.1 Hypothalamic-pituitary axis

Failure to thrive and short stature are frequent findings in
children with hepatic GSDs [8, 15]. Their prevalence spans
from 10% in GSD 0a [16] and GSD III [17] to 17% in GSD
IXb[18],27%in GSD Ia[19],30% in GSD IXa[18],38% in
GSD Ib [19], 52% in GSD VI [20], 57% in GSD IV patients
[21] and up to 90% of GSD XI individuals [22-25]. Ini-
tial growth retardation together with a late growth spurt are
common features. A subsequent catch-up growth is usually
observed when proper (dietary) treatment is initiated [26].

Table 1 Major geneti.c and clini-  Type OMIM  Gene Locus Protein defect Major distinguishing features
:Z:rfae;l;udrie;i:sfelsle(rgggsg;y;:sg:n Oa 240,600 GYS2 12pl12.2 Glycogen synthase LPostl-prandial. hyperglycemia and
ing intolerance, hepatomegaly }gfr actatefmhl a 1
(except GSD 0a), growth retarda- -Absence o epatomeg'fl Y .
tion, hyperlipidemia and elevated Ia 232,200 G6PCI 17q21.31  Glucose - Elevated lactate gnd uric acid .
transaminases constitute commor 6-phosphatase-q - Non-/hypo-ketotlc hypoglycemia
features of hepatic GSDs and catalytic subunit - R.enal disease
are not shown. Most common - Liver adenomas may develop
findings characterizing each GSD Ib 232,200 SLC3744 11q23.3 Glucose 6-phos- - Same as GSD Ia +neutropenia
subtype are shown. IBD: inflam- phate transporter  and IBD
matory bowel disease [Ia/1Ib 232,400 AGL 1p21.2 Glycogen deb- - Usually markedly elevated liver
ranching enzyme  transaminases
- (Cardio)myopathy (GSDIIIa)
- Liver cirrhosis may develop
v 232,500 GBE 3pl12.31 Glycogen branch- - Lack of severe hypoglycemia
ing enzyme until end-stage liver disease
- Liver cirrhosis may present early
in infancy
VI 232,700 PYGL 14g22.1 Liver glycogen - Hypoglycemia is usually mild
1Xa 306,000 PHKA2 Xp22.13  phosphorylase
IXb 261,750 PHKB 16q12.2 Phosphorylase
IXc 613,027 PHKC 16q11.2 kinase a subunit
Phosphorylase
kinase 8 subunit
Phosphorylase
kinase y subunit
X1t 227,810  SLC242 3926.2 GLUT2 - Post-prandial hyperglycemia

! also known as Fanconi-Bickel
syndrome

- Renal tubular disease (Fanconi
syndrome)
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Fig. 1 Endocrine manifestations of hepatic glycogen storage diseases
(GSDs). For each endocrine component, clinical and biochemical fea-
tures are presented. Specific GSD subtypes are indicated in brackets.
BMD: bone mineral density; GH: growth hormone; IR: insulin-resis-

However, some adult individuals can still experience short
stature despite adequate treatment compliance [15, 27].
The underlying mechanism is only partly understood
but it is assumed to result from the combination of chronic
hypoglycemia, lactic/keto-acidosis, and abnormal hormonal
response, including growth hormone (GH)-insulin-like
growth factor (IGF-1) axis alteration [14, 28-30]. The extent
of glucose metabolism derangement may explain why spon-
taneous catch-up growth can be observed even in untreated
children with ketotic GSD types, while it only occurs in
children with GSD I upon dietary treatment initiation [10,
31]. In GSD I disruption of gluconeogenesis results in the
accumulation of lactate with no (or little) increase in circu-
lating ketones. In ketotic GSDs gluconeogenesis is intact
(thus preventing hyperlactatemia) and circulating ketone
levels are increased; in these GSD subtypes ketones serve
as an alternative energy substrate thus sparing glucose [17].
Nonetheless, chronic ketosis as well as amino acid depletion
from gluconeogenesis could worsen growth pattern even in
ketotic GSD types [32, 33]. Indeed, chronic hypoglycemia
and metabolic (keto)acidosis can decrease the amplitude and
frequency of GH pulses in experimental metabolic acidosis
[34]. In humans, chronic metabolic acidosis is associated

{GSD |b*) -
Hypereamaofsmn%,SD 1a:GSD 1Xa*) &

-T2D melhtus(GSD Ia GSD Ib, GSD Il —

-Neonataldiabetes(GSD XI)

-Short stature (GSD 0a, GSD la, GSD Ib, GSD I,
GSD IV, GSD VI, GSD [Xa, GSD 1Xb, GSD XI) =
-GH deficiency {GSD la, GSD Ib, GSD Ill, GSD IV,
GSD VI. GSDIX. GSD XI)

-Thyroid autoimmunity and autoimmune

Sublinical hypothryoidism({GSD la*)

&%
<

OGTT hyperg oemxa (L_;SSD 0a, GSDXI)

-Delayed puberty (GSD la, GSD Ib,

GSD I, GSD VI.GSD IX)

-Hy ogonadotrop»c hypogonadism (GSD la, GSD Ib)
PCOs{GSD la, GSD Ib, GSD Ill, GSD VI, GSD 1X)

-Low BMD (GSD0a, GSD la. GSD Ib, GSD [lIl. GSDVI.

XN
Fractures (GSD la, GSD b.GSD I, GSD XI)
-Hypoposphatemic nckets and asteomalacia (GSD X1

tance; MS: metabolic syndrome; OGTT: oral glucose tolerance test;
PCOs: Polycystic ovaries; T2D: type 2 diabetes *only 1 individual
reported

with decreased serum IGF-1 concentration and is related to
a resistance to the hepatocellular action of GH [35]. Blunted
GH response can also result from elevated circulating free
fatty acids (FFA) [36], which is commonly observed in indi-
viduals with GSD I who display suboptimal glucose control
[10, 37].

Besides the above-mentioned “functional” GH defi-
ciency, growth retardation may also arise from impaired
GH secretion. This “structural” GH deficiency likely results
from (combination of) deranged glucose metabolism in
the pituitary gland or disease-induced pituitary autoim-
munity [38]. Indeed, GH deficiency has been variously
reported in individuals with inherited metabolic disorders
in which phosphorylated, simple carbohydrates accumu-
late, either due to the primary metabolic defect, or associ-
ated with dietary (over)treatment. Examples include GSD Ia
[29, 39, 40], GSD Ib [38, 41, 42], GSD III [43], GSD IXa
[44], GSD XI [45], phosphoglucomutase 1 deficiency (also
called PGM1-CDG) [46] and Fructose-1,6-Bisphosphatase
(FBPase) deficiency [47]. Interestingly, similar to the latter
two disorders, the authors have observed that individuals
with hepatic GSDs may display abnormal carbohydrate-
deficient transferrin testing. The question is to what extent
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an overarching pathophysiology mechanism may play a
(partial) role in the development of GH deficiency. Particu-
larly, in GSD Ib higher prevalence of anti-pituitary antibod-
ies has been detected, possibly resulting from immune cell
dysfunction observed in this disorder [38].

Additional endocrine imbalance may also contribute
to growth failure as an adaptation to glucose metabolism
derangement. Indeed, individuals with GSD I and poor
growth have been shown to exhibit low serum insulin con-
centration and higher mean 24-hour plasma cortisol levels
as compared to better grown individuals [14]. These find-
ings suggest that chronic hypoglycemia may affect multiple
endocrine axes in hepatic GSDs.

Both renal tubular dysfunction and impaired liver glu-
cose homeostasis may play a role in the development of
growth failure in GSD XI [11, 22-24, 48]. Whether failure
to thrive is the result of intestinal malabsorption by impaired
glucose transport across enterocytes and/or impairment of
monosaccharide transport in renal tubular cells together
with hyperaminoaciduria is not fully understood [24]. Fur-
thermore, glucose is an important energy source for the
metabolism and growth of chondrocytes. Perturbations of
glucose metabolism affect chondrocyte maturation and car-
tilage matrix production, suggesting a key role for glucose
metabolism during endochondral ossification [49]. Interest-
ingly, immunoreactivity of GLUT2 has been detected in the
hypertrophic zone of the epiphyseal growth plate in grow-
ing rats [50]. However, the impact of pathogenetic GLUT2
variants on cartilage development is yet to be elucidated.

In the medical care, besides traditional biomedical bio-
markers routinely employed for monitoring individuals
with hepatic GSDs, the following anthropometric param-
eters should be regularly assessed: (i) height; (ii) weight;
(iii) weight/height ratio or body mass index depending on
age; v) head circumference in children [5, 51, 52]. Changes
in growth trends may reflect either poor metabolic control/
overtreatment or disease progression prompting (dietary)
treatment adjustments [5, 33, 48, 51, 52]. Close clinical
and biochemical monitoring is particularly relevant during
periods of rapid growth [33]. Regular evaluation of glucose
homeostasis is recommended in patients with all hepatic
GSD types. Assessment of baseline IGF-1 levels as well as
provocative GH testing should be considered in individuals
with unexplained failure to thrive and short stature. Addi-
tionally, pituitary autoimmunity should be investigated in
individuals with GSD Ib displaying a growth defect [38].
Urine electrolytes and plasma carnitine should be monitored
in individuals with GSD XI [48].

Overall, adequate metabolic control together with opti-
mization of dietary treatment are paramount to possibly
ensure regular growth in individuals with hepatic GSDs [4,
5,8, 14,17, 19, 23, 31, 33, 51-55]. Catch-up growth as well

@ Springer

as recovery of height potential has been reported in vari-
ous hepatic GSD types when proper treatment is initiated
[11, 31, 48, 16, 55-59]. The goal of dietary treatment is to
maintain normal blood glucose and ketone concentrations
by providing appropriate amounts of complex carbohy-
drates. This can be achieved by (a combination of) frequent
feedings, UCCS and (nocturnal) gastric-drip feeding [5, 33,
48]. Children with ketotic GSDs should also be started on
a high protein diet to sustain gluconeogenesis [51, 60]. A
high-lipid diet may be of benefit in individuals with GSD
M1 [61]. Electrolytes, calcitriol, bicarbonate, and L-carnitine
should be supplemented in individuals with GSD XI [48].

Growth hormone (thGH) therapy is not routinely indi-
cated in hepatic GSDs unless GH deficiency has been
proven and only after nutritional therapy has been opti-
mized. Although rthGH can ensure proper growth in GSD
1[40, 41], GSD III [43] and GSD XI [45], this treatment is
concerning due to the potential increased risk of develop-
ing liver adenomas [4, 5, 33, 51, 52]. The possible mecha-
nism remains unresolved but is likely related to promotion
of tumor cell migration and/or energy rewiring in metaboli-
cally injured hepatocytes [27]. Furthermore, thGH therapy
may exacerbate (extreme) lipid [5, 43, 44] and ketone [4,
33] elevation. Hence, treatment with thGH should be cou-
pled with strict patient monitoring and use of lipid-lowering
agents if needed [41]. Although liver transplantation is a
potential treatment option in children with GSD 1 [6, 62, 64]
and GSD IV [52] displaying growth failure, the results after
liver transplantation reported in the medical literature point
in variable directions [63, 64].

1.2 Thyroid gland

Thyroid involvement has only been reported in GSD 1.
Thyroid autoimmunity with overt or subclinical hypothy-
roidism has been described in individuals with GSD Ib [13,
65]. Besides primary thyroid damage, enhanced thyrotro-
pin response to thyrotropin releasing hormone has been
observed in both GSD Ia and GSD Ib [13], suggesting that
concomitant damage at the level of the hypothalamus or
pituitary gland may exist in GSD 1. More recently, subclini-
cal hypothyroidism has been reported in one individual with
GSD Ia [66].

Although the mechanism underlying the development
of hypothyroidism in GSD Ib is not fully understood, it
appears to be related to the increased risk of autoimmunity
with abnormal T-cell function and neutropenia observed
in this disorder [67]. As for GSD Ia, whether the occur-
rence of hypothyroidism is the result of enzymatic defect
per se, chronic liver disease or incidental association
remains unclear. Interestingly, decreased hepatic triglycer-
ides content was found in G6pc~/'~-deficient mice treated
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with VK2809 (a liver-specific thyroid hormone receptor
B-agonist [68]), suggesting that thyroid dysfunction may
concur to the progression of liver disease in GSD 1. Future
studies elucidating the pathophysiology of hypothyroidism
in GSD I are warranted.

Based on the above-mentioned findings, early diagnosis
and treatment of thyroid disorders are paramount to improve
the prognosis of individuals with GSD I [8]. This is par-
ticularly relevant as the risk of autoimmunity increases as
patients progress into adulthood [69]. Annual monitoring of
TSH and fT4 levels and thyroid hormone supplementation
in case of hypothyroidism are recommended in individuals
with GSD I [1]. When a pregnancy is possible, pre-concep-
tional fT4 and TSH should be assessed, taking into account
the known influence of even subclinical hypothyroidism
on early fetal brain development and long-term cognitive
function [69, 70]. Overt hypothyroidism is associated with
increased rates of spontaneous abortion, premature delivery
and/or low birth weight, fetal distress in labor, and likely
gestational hypertension, emphasizing the importance of
thyroid balance before and during pregnancy [71].

1.3 Bone

Low bone mineral density (BMD) and higher risk of devel-
oping osteopenia (i.e. Z-score < 1.0) [72], osteoporosis (i.e.
Z-score <2.0) [73] and fractures have been reported in both
children and adult individuals with GSD type Oa [16], I [1],
I [2], VI [4, 33], IX [33, 74] and XI [23]. Fractures have
been observed in up to 17% of individuals with hepatic
GSDs [75, 76]. Hypoposphatemic rickets are commonly
found in untreated patients with GSD XI between 3 and
10 months of age [77]. Despite showing normal circulating
calcium levels, studies performed in individuals with GSD
I and GSD III suggest the presence of both reduced bone
deposition and increased bone remodeling [12, 78].

The pathophysiology of bone involvement in hepatic
GSDs appears to be multifactorial, stemming from the com-
bination of abnormal metabolic environment (e.g. elevated
lactate, elevated ketones), nutritional deficiency, and pos-
sibly hormonal imbalance as well as altered muscle physi-
ology [76, 78]. Both ketosis and hyperlactatemia exert
a detrimental effect on bone [79]. Hyperlipidemia is also
known to blunt bone anabolism [80]. Indeed, a correlation
between BMD and circulating lactate and/or triglycerides
has been reported in patients with GSD I and GSD 111 [12,
75, 78]. Notably, optimized metabolic control is associ-
ated with improved BMD [12]. Dietary treatment may also
contribute to low BMD. Reduced dietary calcium intake
[81, 82] as well as decreased circulating 25-OH vitamin D
levels have been observed [18, 75, 83]. Historical studies
reported that higher protein intake worsened bone health

[84, 85]. Yet, growing literature suggests that high-protein
diet may not have adverse effects on BMD [86—88]. Endo-
crine imbalance may also contribute to decreased BMD.
Decreased circulating parathyroid hormone (PTH), calcito-
nin and osteocalcin have been reported in individuals with
GSD I and GSD III [12, 78]. Similarly, GH deficiency [27,
29, 38, 40, 43], hypogonadism [89] as well as chronically
low insulin [14, 78] and/or elevated cortisol levels [90] may
play a role in the development of osteopenia/osteoporosis.
Furthermore, failure of glucose supply to the exercising
muscle together with impairment of the (endocrine regula-
tion of the) muscle-bone unit appear to be major contribu-
tors to low BMD in GSD III [78]. In these disorder IGF-1/
Insulin-like growth factor-binding protein 3 (IGFBP3) ratio
appears to be a reliable biomarker of reduced BMD [78].
A correlation between BMD and age at start and duration
of granulocyte colony-stimulating factor (G-CSF) treatment
was found in individuals with GSD Ib [12].

The pathophysiology of bone demineralization is differ-
ent in GSD XI, where patients are more prone to develop
hypocalcemia and hypercalciuria, hyperphosphaturia with
or without hypophosphatemic rickets in early childhood,
osteoporosis and osteomalacia [23, 24, 91-94]. Ketosis,
chronic metabolic acidosis with or without diarrhea, proxi-
mal renal tubular dysfunction, aberrant interplay among
PTH, vitamin D and FGF23 are possible contributing fac-
tors [77, 91].

In the medical care, measurement of BMD together with
circulating 25-OH vitamin D and dietary calcium and vita-
min D intake is recommended at the diagnosis in all indi-
viduals with hepatic GSDs [5]. Subsequent evaluations are
usually performed every 3—5 years or as clinically indicated
[1, 2]. Assessment of circulating 25-OH vitamin D levels
is indicated annually, or more frequently as needed [1, 2,
77]. Regular assessment of alkaline phosphatase, total cal-
cium, PTH, calciuria, and phosphaturia may be useful for
treatment monitoring [95]. Additional endocrine work-up
should be performed if clinically indicated. Dual-emission
X-ray absorptiometry (DXA) is the gold standard technique
for BMD assessment being usually performed at the hip.
L1-L4 vetrebrae should be considered in growing children
as the hip is not a reliable site. Being a safe, inexpensive and
nonradiation method for bone density assessment, Quantita-
tive Ultrasound (QUS) has been proposed as an alternative
method for low BMD diagnosis and follow-up in children
[12, 78]. Signs of hypophosphatemic rickets should be regu-
larly checked and promptly identified in all children, par-
ticularly those with GSD XI including: (i) swelling of joints;
(i1) bowing of the legs; (iii) pathological fractures; (iv) teeth
problems with a susceptibility to develop severe caries [24].

Good metabolic control, including adequate dietary
compliance has been shown to improve BMD in individuals
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with hepatic GSDs [2, 5, 96]. Given the restricted dietary
regimen, supplementation with calcium and/or multivita-
mins is strongly recommended to prevent osteopenia/osteo-
porosis in GSD I [5, 97]. Recommendations for vitamin
and mineral supplementation in other GSD types should be
based on individual patient diet and nutrient needs [33, 51].
Calcium supplementation should be tailored based on renal
function, given the risk of kidney stone formation [98]. If
necessary, supplementation of vitamin D can be prescribed
to ameliorate bone mineralization [2]. 1,25-dihydroxy vita-
min D is indicated in individuals with GSD XI [91, 92].
Particularly in individuals with GSD III, physical activity
should be encouraged in order to protect the bone [51, 81].

In individuals with GSD Ib under G-CSF treatment, the
risk of osteopenia/osteoporosis should be carefully moni-
tored. The demonstration of an association between osteo-
penia and G-CSF treatment suggests using the minimally
effective G-CSF dose. This association also adds to the
growing evidence pointing in favour of the use of empa-
gliflozin as a first line treatment for neutropenia/neutrophil
dysfunction in individuals with GSD Ib [99, 100]. In indi-
viduals with GSD XI sodium bicarbonate and phosphate
supplementation are additionally indicated to prevent bone
loss and hypophosphatemic rickets [24, 91] and to enhance
growth velocity [22, 24, 77]. Alkali supplementation (e.g.
in form of Shohl’s solution or bicarbonate solution) can be
considered to minimize the hypercalciuria [24, 77]. Phos-
phate should be supplemented as oral Joulie’s solution [92].

In principle, low BMD can lead to (recurrent) fractures
in both children and adults [101]. In the general population
bisphosphonates (BP) are indicated in children with osteo-
porosis and pathological fractures or vertebral fractures
regardless of Z-score [102]. However, an “acute phase reac-
tion” (e.g. fever, malaise, back pain, body pains, nausea,
and vomiting) following initial dose of BP is commonly
observed. Moreover, hypocalcemia can occur as a short-
term side effect related to BP therapy [103]. Hence, the role
of BP in asymptomatic individuals with hepatic GSDs and
decreased BMD is still controversial and currently there is
no recommendation for their use [78, 81]. However, there
is evidence of improvement of BMD in single individuals
with hepatic GSDs treated with BP [75, 76]. When con-
sidering whether to start a patient with hepatic GSD on
BP therapy, the following factors should be considered: (i)
individual’s age (currently there is no evidence-based data
to support their use in children); (ii) evidence of increased
bone destruction [75, 76].

1.4 Pancreas

Increased prevalence of insulin resistance (IR) and meta-
bolic syndrome (MS) has been reported in individuals with
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GSD Ia [11, 104-107]. Type 2 diabetes (T2D) mellitus has
been reported in individuals with GSD Ia [108-112] and
GSD Ib [113, 114] and found in up to 9% of individuals
with GSD III [17, 115-118]. However, diabetic ketoacido-
sis secondary to T2D has been observed in only one young
girl with GSD Ia [112]. Historical studies have also reported
increased glucagon levels in GSD I [60, 119-121]. Post-
prandial hyperglycemia and hyperlactatemia are common
findings in individuals with GSD 0a [16]. A combination of
chronic glycosuria and postprandial hyperglycemia together
with post-oral glucose tolerance test (OGTT) hyperglyce-
mia can be detected in GSD XI especially in the younger
patients [22, 77, 122]. Individuals with GSD XI may also
develop transient or permanent neonatal diabetes [123—127].

IR may result from the combination of several factors.
Dietary overtreatment (i.e. high carbohydrate/UCCS intake)
may lead to hyperglycemia, hyperinsulinaemia, obesity and
rebound hypoglycaemia [6, 82, 128]. In GSD la IR may also
develop as a consequence of the G6Pase-a deficiency per
se. GOP excess in endoplasmatic reticulum, may upregulate
the activity of 11B-hydroxysteroid dehydrogenase type 1
(11BHSD1) which results in increased conversion of inac-
tive cortisone in active cortisol [90, 106]. Increased circulat-
ing cortisol levels may lead to metabolic syndrome [129].
Furthermore, mitochondrial dysfunction as well as accumu-
lation of lipid metabolism by-products may contribute to IR
in GSD Ia [107, 130, 131]. Downregulation of the glucose
receptor on the B-cell membrane (GLUT2) as an adaptation
to hypoglycemic events may also accur leading to blunted
insulin secretion in response to transient elevations of blood
glucose [114]. Although pathophysiology of T2D in GSD I
and GSD III is strictly correlated to IR [108-110, 112, 114,
116-118, 132], additional determinants may also contribute
including (i) injured fatty liver [109, 110]; (ii) pancreatic
islet B-cell insufficiency as a results of recurrent pancreatitis
[109, 114] and (iii) liver cirrhosis in GSD III [133]. Notably,
T2D has been observed in two siblings with GSD Ib even
following liver transplantation, supporting this hypothesis
[113]. Increased glucagon levels have been found in indi-
viduals with GSD I [119-121, 134] but not in GSD III
[134]. This finding has been associated to hyperlactatemia
[119, 120] and may reflect preserved gluconeogenic amino
acids availability in GSD III [134].

Postprandial hyperglycemia in GSD 0a results from the
inability to store glucose as glycogen in the liver (due to gly-
cogen synthase defect) rather than impaired insulin secre-
tion [16, 135]. Pathogenesis of postprandial/post-OGTT
hyperglycaemia in GSD XI has been recently reviewed
[136]. While fasting hypoglycemia is due to impaired glu-
cose transport out of the hepatocytes, postprandial hyper-
glycemia likely results from hypoinsulinemia secondary to
altered sensitivity of pancreatic beta cells to glucose [122,
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123]. As such, insulin response is decreased but not absent
in these individuals [122]. Postprandial/post-OGTT hyper-
glycaemia has been especially observed in younger patients.
Likely glucose transport improves in older patients through
GLUT2-independent mechanisms (e.g. GLUT1, GLUT3)
[122, 123, 137]. This may also explain transient or perma-
nent neonatal diabetes which has been rarely reported in
GSD XI [123-127]. However it may be possible that some
cases with transient neonatal diabetes remain undiagnosed
[137]. More recently overexpression of circulating miRNAs
correlated with type 1 diabetes mellitus has been found in
one individual with GSD XI [136].

In the medical care, besides traditional biomedical
monitoring biomarkers the following parameters should
be regularly evaluated: (i) height; (ii) weight; (iii) weight/
height ratio or body mass index depending on age; ; (iv)
circulating insulin levels. Evaluation of circulating cortisol
and ACTH may be performed in individuals with GSD Ia
who display IR despite dietary optimization [90]. For early
detection and management of glucose intolerance an OGTT
may be considered [118]. Yet, OGTT remains contraindi-
cated in women with hepatic GSDs due to the increased risk
of hypoglycaemia [138].

Reaching appropriate diagnosis in a patient with hyper-
glycemia and glycosuria is essential. GSD 0a rather than
diabetes mellitus should be considered in the differential
diagnosis of postprandial hyperglycaemia when polyuria
and polydipsia are absent [139]. Given the association of
postprandial hyperglycaemia alternating with ketotic hypo-
glycaemia, GSD 0a and GSD XI could be reciprocally
misdiagnosed. However, postprandial hyperlactatemia is
observed in GSD 0a but not GSD XI [139].

Prevention of IR is paramount in hepatic GSDs. Due to
the risk of iatrogenic hyperinsulinism, regular diet assess-
ment is recommended and excess feeding/UCCS intake
should be avoided [5]. In this respect, a metabolic dietitian
should work closely with the patients to refine the dietary
plan. Continuous glucose monitoring (CGM) appears partic-
ularly helpful in optimizing dietary treatment. Indeed, CGM
allows unveiling both hypoglycemia and hyperglycemia
which may be missed by traditional capillary glucose moni-
toring [108-110, 140-146]. Overall, adequate metabolic
control together with regular reassessment of dietary plan
aim to ensure optimal outcome in individuals with hepatic
GSDs [6, 8, 17, 128]. Providing appropriate amounts of
UCCS and complex carbohydrates is particularly relevant
as glucose requirements decrease with age in individuals
with hepatic GSDs [128]. IR may worsen (cardio)myopathy
in GSD III by depleting energy substrates (i.e. fatty acids
and ketone bodies) and promoting glycogen storage [147].
Hence, dietary treatment paradigm is being revised for this
disorder with accumulating evidence indicating a benefit of

a high-fat low-carbohydrate diet [61, 148]. Whether simple
sugars (e.g. fructose, sucrose and galactose) should be life-
long restricted in GSD I to avoid rapid insulin secretion [5,
6, 149] is still controversial.

The optimal pharmacological treatment for IR in individ-
uals with hepatic GSDs is as yet undefined. Hypoglycemic
agents (e.g. insulin and insulin secretagogues) are not rou-
tinely indicated as they can precipitate hypoglycemia [16,
77, 150]. Nonetheless, single patients successfully treated
with voglibose [117], acarbose [110], insulin [112, 115,
116, 118], canagliflozin [110] and luseoglifiozin [132] have
been reported. The use of the sodium-glucose co-transporter
2 (SGLT2) inhibitors (e.g. empagliflozin, dapaglifiozin)
is widely spreading for treatment of neutropenia-related
symptoms in GSD Ib [99, 100, 151-155]. Additionally, one
adult patient with GSD XI treated with dapagliflozin dis-
played reduced glycogen content in shed urinary cells and
improved serum potassium and phosphate concentrations
[156]. Notably, side effects of SGLT2 inhibitors include
elevated lactate and ketoacidosis, especially under stress
conditions (e.g. intercurrent infections and major surgery)
[157] prompting careful monitoring.

1.5 Adrenal cortex

Limited data on adrenal cortex hormones are available in
hepatic GSDs. Two historical studies revealed an inverse
correlation between plasma cortisol levels and growth
parameters [10, 14] in GSD 1. More recently, systematic
adrenal cortex assessment has been performed in individu-
als with GSD I [90]. During normoglycemia, increased
baseline and ACTH-stimulated serum cortisol levels were
found in individuals with GSD Ia, while those with GSD
Ib exhibited decreased baseline serum cortisol levels [90].
Furthermore increased plasma corticosterone and epineph-
rine levels have been found in fasted GSD Ia mouse model
[158]. High midnight serum cortisol concentrations have
been detected in one untreated boy with GSD IXa who pre-
sented with Cushing-like appearance [159].

The mechanism leading to imbalanced cortisol levels in
GSD 1 is yet to be elucidated. Disrupted cortisol metabo-
lism may result from the G6P modulation of the ER-bound
enzyme 11B-HSDI1, which activates cortisone to cortisol
[160]. 11B-HSDI is typically expressed in glucocorticoid
receptor-rich tissues, such as the liver (where G6Pase-a is
also expressed), adipose tissue, lung and brain [161]. The
otherwise preserved adrenal cortex function suggests that
disrupted cortisol metabolism might be secondary to local
deregulation rather than hypothalamic-pituitary-adrenal axis
dysfunction. Increased cortisol regeneration may represent
a potential mechanism to divert lipid excess in GSDIa [90].
Indeed, administration of glucocorticoid receptor- antagonist
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mifepristone, has been shown to prevent Very-low-density
lipoprotein (VLDL) accumulation in g6pc™~ mouse [158].
In addition, recurrent hypoglycemia may likely result in a
“stress-induced Cushing syndrome” [159]. These observa-
tions warrant mechanistic studies, especially in light of the
ongoing, experimental AAV8-mediated gene therapy treat-
ment, which is currently in phase 3, in which temporary
treatment with corticosteroids is indicated (NCT05139316).
Currently, there are no recommendations on monitoring
of adrenal cortex function in patients with hepatic GSDs.
Hence, the need for such assessments remains on an individ-
ual basis. Evaluation of adrenal cortex function in individu-
als with hepatic GSDs displaying poor metabolic control is
worthy. Reaching good metabolic control may contribute to
reverse hypercortisolism [159]. Future studies investigating
the effects of agents modulating glucocorticoid metabolism
are warranted.

1.6 Gonads

Gonadal involvement has been documented in GSD type |
[89, 105, 162, 163], IIT1[105, 133, 164], VI[11], IX [11] and
XI [23, 24], including delayed puberty, hypogonadotropic
hypogonadism and Polycystic ovaries (PCOs).

Functional delayed puberty is a recognized feature of
untreated chronic diseases [165]. Consistently, delayed
puberty has been reported in GSD type I, I11, VI and IX and
XI, likely due to suboptimal metabolic control secondary
to poor dietary compliance [4, 5, 17, 22, 23, 31, 33, 51]. A
relationship between dietary treatment and pubertal devel-
opment has been described in several individuals [31, 55,
166, 167]. Failure to thrive together with delayed puberty
has been reported in a boy with GSD Ia following volun-
tary discontinuation of UCCS [166]. Catch-up growth and
pubertal development together with normalization of blood
testosterone levels were noticed in a 16-year-old boy diag-
nosed with GSD Ia following institution of dietary treatment
[167]. Although dietary treatment plays a role in growth and
sexual development, the mechanism underlying delayed
puberty in hepatic GSDs is still not fully understood. At
least in theory, delayed puberty may also result from hor-
monal imbalance observed in hepatic GSDs, involving
circulating insulin and cortisol levels [10]. A correlation
between serum insulin and cortisol levels and growth has
been demonstrated in individuals with GSD 1 [14]. Whether
such hormonal imbalance results from the enzyme defect
per se or is secondary to (poor) dietary treatment remains to
be elucidated.

Hypogonadotropic hypogonadism has been described in
males with GSD I, showing low luteinizing hormone (LH)
and follicular stimulating hormone (FSH), and correspond-
ingly low total testosterone levels [89]. All individuals
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displayed recurrent hypoglycaemia and elevated lactate
levels, suggesting a possible relation with suboptimal meta-
bolic control [89]. Indeed, chronic recurrent elevations of
cortisol in response to hypoglycemia may lead to suppres-
sion of gonadotropin-releasing hormone (GnRH), LH and
FSH release [168].

PCOs are more commonly observed in women with GSD
I, in whom they have been documented as early as 5 years of
age [5, 11, 105, 163]. Less frequently PCOs are reported in
other GSD types [11, 17, 33, 51, 105, 133]. Although PCOs
are main features of Polycystic ovary syndrome together
with hyperandogenism and irregular mensens, hyperan-
drogenism is an infrequent finding in hepatic GSDs [11,
105] being hirsutism reported in some women with GSDIII
[17, 51, 133]. Conversely, irregular menses and menor-
rhagia are commonly associated with PCOs in GSD type I
[162, 163] and less frequently in other GSD subtypes [17,
51, 133, 162].The mechanism underlying the development
of PCOs in hepatic GSDs remains incompletely understood.
Lower serum sex hormone-binding globulin (SHBG) levels
have been reported in individuals with GSD Ia displaying
an inverse association with intrahepatic lipid content, thus
supporting a connection between metabolic (im)balance
and circulating sex hormone levels [169]. Hyperinsulinism
is commonly observed in suboptimally treated individuals
[105] indicating a potential role for the diet in the develop-
ment of PCOs. Whether good dietary compliance is suffi-
cient to ensure adequate ovarian function in hepatic GSDs
is, however, unclear [163]. Interestingly, PCOs are also
observed in patients with Cushing’s syndrome [170]. There-
fore, imbalanced cortisol levels may also concur to PCOs
development in hepatic GSDs [90]. Future studies elucidat-
ing the underling mechanisms of PCOs are warranted.

In the medical care, besides traditional biomedical moni-
toring biomarkers, the following assessments should be reg-
ularly performed: (i) pubertal development in children and
adolescents; (ii) frequency and regularity of menses, uncov-
ering possible menorrhagia or irregular menstrual bleed-
ing; (iii) signs of hyperinsulinism and/or hypercortisolism
(e.g. increased weight and/or waist circumference and
altered systolic and/or diastolic blood pressure); (iv) signs
of hyperandrogenism, (e.g. acne, alopecia, and hirsutism)
[171]. Incorporating clinical and/or biochemical screening
of the hypothalamic-pituitary—gonadal axis is be important
in the management of hypogonadism in males with hepatic
GSDs [89]. Women with hepatic GSDs should be made
aware of the increasing risk of severe hypoglycaemia in the
premenstrual and luteal phase [172]. Pelvic ultrasonography
should be performed regularly in women with hepatic GSDs
to document PCOs [133].

Overall, adequate metabolic control is paramount to pos-
sibly ensure regular gonadal function in hepatic GSDs [4, 5,
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17,22,23,31,33,51, 163]. Indeed, puberty can be near nor-
mal with appropriate metabolic control [§8, 31]. Sex hormone
replacement is the most commonly employed treatment for
delayed puberty in the general population [173]. Yet, estro-
gen therapy is not routinely indicated in women with GSD
I as estrogens contribute to development of liver neoplasms
[174]. Although testosterone replacement therapy allows
development or maintenance of secondary sexual character-
istics in males with hypogonadotropic hypogonadism [89],
patients with hepatic GSDs should be carefully monitored
due to the stimulation of hepatocyte proliferation by andro-
gens [89, 174]. When indicated, transdermal estrogens are
preferred over oral preparations due to hepatic first-pass
metabolism [173]. Estrogen therapy in postmenopausal
women may increase the risk of venous thromboembolism
and stroke whereas reduces the risk of breast cancer and
bone fractures [175]. Conversely, testosterone replacement
therapy has not been associated with a significant elevation
in the rates of venous thromboembolism and cardiovascular
events [176, 177]. As oral testosterone may increase cardio-
vascular risk [178], intramuscular or transdermal adminis-
tration should be preferred [178].

Classical combined estrogen-progestogen contraception
as well as oral estrogens should be avoided in young women
with hepatic GSDs, given the high risk of adenomas onset
[5, 51, 179]. Progestin-only contraceptives may be consid-
ered [5, 51]. However, clinicians should be aware of the risk
for reduced BMD, which needs to be monitored [5, 51]. The
use of an intrauterine device should be avoided in GSD Ib,
given the high risk of infection [5].

Successful pregnancies have been reported in women
with GSD 0a [180], GSD I [151, 181-185], GSD III [186—
189], GSD VI [190] and GSD XI [191] either spontaneously
or after fertility treatment [190]. Male individuals with GSD
I, GSD III [56] and GSD XI [192] who became fathers have
been reported.

Pregnancy should be planned ahead of time and a care-
ful management by a multidisciplinary health care team
is required [184]. Good metabolic control together with
close blood glucose monitoring and regular adjustments in
diet and UCCS dosing are required before conception and
throughout pregnancy to ensure successful outcomes [138].
Indeed, maternal hypoglycemia may be associated with
intrauterine growth restriction and low birth weight [189].
Increasing protein intake may be necessary to provide an
alternate source for glucose via gluconeogenesis in ketotic
GSD types [33, 51]. Given the association between high
estrogen state during pregnancy and adenoma onset [179],
women with GSD I should be made aware of the increased
risk of enlargement and rupture of adenomas [163].

2 Conclusions

Hepatic GSDs are complex disorders, requiring a highly
specialized multidisciplinary team to achieve treatment
goals [2, 5, 6, 20, 33, 51, 52]. Their multisystem involve-
ment raises significant organizational, logistic, and financial
obstacles for affected families and healthcare providers. The
potentially life-threatening nature of hepatic GSDs symp-
toms and high variability in patients’ phenotypes, treat-
ment interventions and outcomes emphasize the need and
urgency for improved monitoring options.

The progress in dietary treatment as well as the availabil-
ity of appropriate tools to manage acute metabolic decom-
pensation [7] has shifted the clinical focus from “mortality”
to “morbidity”. As a result, a number of long-term compli-
cations have emerged, including those affecting the endo-
crine system. In this review we provided a comprehensive
summary of endocrine involvement in hepatic GSDs. Being
aware of the endocrine manifestations of hepatic GSDs
would have two main benefits: (i) optimized disease man-
agement, improving patient outcome and possibly allowing
standardization of clinical care; (ii) earlier identification of
hepatic GSDs in individuals displaying milder phenotypes;
this appears particularly relevant as such individuals may
first come to the (pediatric) endocrinologist attention with-
out having been referred by a metabolic specialist.

Disruption of the endocrine system may occur at mul-
tiple levels in hepatic GSDs resulting in various (serious)
clinical conditions. These include short stature, hypothy-
roidism, osteopenia/osteoporosis, IR and PCOs, among oth-
ers (Fig. 1; Table 2). Currently available evidence argues
in favour of regular screening for endocrine function in
individuals diagnosed with hepatic GSDs in order to start
prompt treatment. Appropriate treatment stems from the
exact knowledge of the mechanisms underlying each endo-
crine condition. Many endocrine manifestations (e.g. fail-
ure to thrive, osteopenia/osteoporosis, IR, delayed puberty)
share a multifactorial pathogenesis, thus complicating the
use of targeted approaches. In these cases, current manage-
ment strategy relies on optimization of (dietary) treatment
for hepatic GSDs. In specific cases (e.g. short stature, hypo-
gonadism) a distinct hormone deficiency can be identified,
supporting hormone replacement therapy. At least in theory
additional mechanisms may concur to endocrine dysfunc-
tion in hepatic GSDs, including relationship between energy
production and hormone synthesis, effect of toxic metabolite
accumulation or hormone/receptor glycosylation. Indeed,
depletion of gluconeogenic amino acid precursors (which
are employed for endogenous glucose production) may con-
tribute to growth failure in ketotic GSDs [134, 149, 193].
Nonetheless, (glycogen-derived) UDP-glucose is required
for glycosylation of glycoprotein hormones such as TSH,
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FSH and LH [194]. Elucidating such mechanisms may
improve current knowledge of disease pathophysiology and
potentially develop novel monitoring and treatment tools.

Several innovative treatment strategies are currently
being investigated for hepatic GSDs, including gene replace-
ment/base editing (NCT05139316, NCT05095727) [195],
anaplerotic therapy (NCT03665636) and drug repurpos-
ing (NCT04138251; NCT05960617, NCT04986735). The
aim of such approaches is to either restore energy balance
or prevent the accumulation of a toxic metabolite. Growing
evidence supports the efficacy of these treatments on “clas-
sical” disease manifestations (e.g. fasting intolerance, neu-
trophil dysfunction) [152, 196]. Whether these approaches
are also effective on (long-term) endocrine manifestations
in hepatic GSDs is yet to be determined.

Delivering standardized high-quality healthcare to
patients worldwide is among the top priorities for hepatic
GSDs [142, 197]. To this aim, current evidence on endo-
crine involvement in hepatic GSDs as well as management
suggestions were presented in this review. This work also
underlines the compelling need to strengthen multistake-
holder collaborative networks including both metabolic and
endocrine experts to optimize patient care.
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