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Abstract

Background

Advances in Next Generation Sequencing have made rapid variant discovery and detection

widely accessible. To facilitate a better understanding of the nature of these variants, Ameri-

can College of Medical Genetics and Genomics and the Association of Molecular Patholo-

gists (ACMG-AMP) have issued a set of guidelines for variant classification. However, given

the vast number of variants associated with any disorder, it is impossible to manually apply

these guidelines to all known variants. Machine learning methodologies offer a rapid way to

classify large numbers of variants, as well as variants of uncertain significance as either

pathogenic or benign. Here we classify ATP7B genetic variants by employing ML and AI

algorithms trained on our well-annotated WilsonGen dataset.

Methods

We have trained and validated two algorithms: TabNet and XGBoost on a high-confidence

dataset of manually annotated, ACMG & AMP classified variants of the ATP7B gene associ-

ated with Wilson’s Disease.

Results

Using an independent validation dataset of ACMG & AMP classified variants, as well as a

patient set of functionally validated variants, we showed how both algorithms perform and

can be used to classify large numbers of variants in clinical as well as research settings.

Conclusion

We have created a ready to deploy tool, that can classify variants linked with Wilson’s dis-

ease as pathogenic or benign, which can be utilized by both clinicians and researchers to

better understand the disease through the nature of genetic variants associated with it.
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Introduction

Wilson’s Disease (WD) is a rare autosomal recessive disorder characterized by the presence

of pathogenic mutations in the copper-transporting ATP7B gene. Located on chromosome

13q14.2, ATP7B spans 21 exons, encoding a 1465-amino-acid copper-transporting ATPase

[1]. Altered gene function in WD results in copper accumulation in the liver and brain,

leading to impaired functions and movement disorders. WD patients exhibit pathogenic

mutations causing reduced serum holo-ceruloplasmin production. Excessive copper depo-

sition induces oxidative stress, contributing to clinical problems like cirrhosis and fulmi-

nant hepatitis. Neurological complications arise from copper deposits in specific brain

regions, leading to movement disorders and associated symptoms [2]. This complex inter-

play of genetic factors and copper metabolism underscores the multisystemic impact of

WD.

WD is an underdiagnosed and treatable genetic condition with an estimated worldwide

prevalence of around 13.9 per 100,000, derived from known pathogenic variants [3]. Several

recent publications have highlighted an estimated carrier frequency of 1 in 90 individuals [4–

6]. The known prevalence and carrier frequency of WD however, are confined to a few specific

populations [7, 8] while in large populations like India, they remain unexplored. This opens

up a unique opportunity to understand the genetic architecture of the disease in populations

rich in genetic diversity such as India.

The recent availability of a framework for the interpretation of pathogenicity of genetic var-

iants put forward by the American College of Medical Genetics and Genomics and the Associ-

ation of Molecular Pathologists (ACMG & AMP) has opened up a unique opportunity to

create a standardised system for interpretation of genetic variants for clinical diagnosis and

genetic counselling. To assist in a better understanding of variant pathogenicity, our group has

recently put together one of the most comprehensive collections of genetic variants classified

according to the ACMG & AMP Guidelines [9], in form of the WilsonGen database, a robust

compilation of all publicly reported ATP7B variants exhaustively collected from literature and

across 9 large databases [10], making it the largest, most comprehensive database of it’s kind,

to the best of our knowledge.

While classification according to the ACMG & AMP guidelines is time-consuming and at

times limited by literature and experimental evidence to confirm the pathogenicity, a number

of variants remain unclassified as variants of uncertain significance (VUS). This significantly

impacts the ability to classify variants, especially from unique population groups and rare vari-

ants identified from patient cohorts.

The advent of machine learning approaches in clinical medicine have accelerated the ability

to analyse and interpret medical data and have been extensively used in a number of scenarios,

including the rapid classification of large numbers of variants. The widespread application of

such approaches in genomics however, has been limited by the lack of gold-standard datasets

for training. The availability of WilsonGen database thus provides a unique opportunity in this

aspect.

Here, we describe a machine learning approach trained on a gold-standard ACMG-classi-

fied variant dataset for pathogenicity in the ATP7B gene for accurate classification of variants.

We also use the approach for reclassification of VUS variants in public datasets so as to enable

quick variant interpretation in clinical and research settings. To the best of our knowledge,

ours is the only approach based on a manually ACMG-classified dataset, dedicated specifically

to WD variants. A public implementation of the algorithm is available at: https://github.com/

aastha-v/WilsonGenAI.
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Materials and methods

Datasets

The variants and their pathogenicity ascertained according to the ACMG and AMP guidelines

and available in the WilsonGen database were taken up for analysis. This dataset contained a

total of 1458 genetic variants manually classified according to the ACMG & AMP guidelines.

Non-exonic variants were removed due to lack of sufficient training data, as were VUS vari-

ants. This resulted in a variant dataset of 723 unique variants, out of which 410 were annotated

as pathogenic, 167 as likely pathogenic, 9 as benign and 137 as likely benign. Fig 1 offers an

overview of our entire workflow.

Variant parameters

The variant VCF was run through the ANNOVAR [11] tool, which annotated the variants

with allele frequencies (AF) from three global population and subpopulation datasets: Gno-

mAD [12], 1000Genomes [13] and GME [14]. We further added the position of the first

Fig 1. The overview of the workflow followed for model development and variant classification with TabNet and

XGBoost models.

https://doi.org/10.1371/journal.pone.0303787.g001
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amino acid change for each variant as “Start_pro”, which would offer positional data along

with “Start” which marked the position of nucleotide change. Further, we added the categorical

attributes “Pfam_imp_domain” that would indicate whether the variant overlapped with an

important protein domain based on the Pfam database, as well as “LoF_HC_Canonical” cate-

gorical attribute which would indicate if the variant was a high-confidence loss-of-function

variant present in a canonical transcript. The exonic function (e.g. frameshift insertion/dele-

tion. Stopgain/Startloss etc.) was further encoded into numbers. Feature selection was per-

formed manually with all features with missing values that exceeded 80% for each class being

removed. Finally, all /likely pathogenic variants were encoded as “1” and all benign/likely

benign variants as “0”. A total of 73 attributes were thus obtained and are detailed in S1 Table.

AI models

For our analysis, we considered two state-of-the-art deep and machine learning models,

namely TabNet and XGBoost, to train on the ACMG-classified gold standard dataset.

We had previously utilized the Weka suite [15] to test the performance of several algorithms

including NaiveBayes, SMO, J48, and RandomForest on the dataset available to us then, com-

prising of 725 variants split into 70% train—30% test datasets. Traditionally, tree ensemble

models are recommended for classification and regression problems with tabular data [16].

Our results proved to be in concordance, since RandomForest and J48 outperformed others.

We thus chose to work with the XGBoost classifier, which is one of the most widely used gradi-

ent-boosted decision trees, especially for tabular datasets. XGBoost is reported to perform faster

and better than other models such as RandomForest for missing data, and with class imbal-

anced datasets. It also has in-built regularization which prevents overfitting, which models like

RandomForest can be prone to. The XGBoost algorithm creates decision trees in sequential

form, wherein increased weights of incorrectly predicted variables are fed into the next tree.

The algorithm has been created to handle sparse data effectively, which mirrors real-world situ-

ations where data is often found to be missing or containing frequently repeating values.

Additionally, we chose to also utilize the novel deep learning neural network TabNet [17],

which was specially created for tabulated datasets. TabNet has been reported to outperform

tree methods including XGBoost for certain tabular datasets [18]. Unlike other deep learning

models, TabNet mimics the learning of decision trees, through the use of its transformer archi-

tecture, enabling the model to quickly decipher complex data patterns. TabNet uses sequential

attention to choose features at each decision step. Feature selection is done instance-wise, i.e. it

could be different for each variant in the training dataset. To the best of our knowledge, this is

the first implementation of TabNet for the classification of variants based on their

pathogenicity.

Since the performance of the two models with respect to each other seems to vary based on

datasets used [16], we decided to include results from both models for assessment.

Hyperparameter selection and cross validation

Our models were run with different input parameters until convergence. The best performing

model by accuracy was taken up. The PyTorch [19] implementation of Google’s TabNet was

used for model creation, while Anaconda [20] was used to enable the use of Scikit-learn, Pan-

das, Matplotlib and Seaborn to enable analysis and visualisation for both models.

For TabNet, SimpleImputer was used to replace missing data with a constant value. Further,

the model’s mask_type parameter was set to ‘entmax’, which showed a better overall perfor-

mance than the default ‘sparsemax’. The ‘weights’ parameter was set to ‘1’ to address class

imbalance, while the batch size was set at the maximum recommended 10% of the total data
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size at 72. A maximum of 1000 epochs were allowed with a patience (i.e. the number of epochs

to wait for improvement before terminating the training run) of 100.

For XGBoost, the hyper-parameters were selected and evaluated using a 5-fold cross valida-

tion (CV) approach. A randomized search on the hyperparameters was performed using Ran-

domizedSearchCV (CV = 5). Class imbalance was corrected using the scale_pos_weight

parameter set at 3.95. The following hyper-parameters were finally used (Table 1):

The mean cross_val_score function (CV = 10) was used to test model performance for both

models across multiple test/train splits. Several models with and without the hyperparameters

determined during tuning, were tested for performance using accuracy metrics described

below. The best performing model was then selected.

Independent validation dataset

An additional number of 420 variants were curated from published literature not included in

the WilsonGen database till 2022. The variants were classified according to the ACMG & AMP

guidelines as described previously. The dataset comprised of 31 variants which were annotated

as pathogenic, 29 which were likely pathogenic, 96 were likely benign, and the remaining vari-

ants were classified as VUS. Thus we had a total of 156 variants in our independent test dataset.

Accuracy estimates

The following accuracy estimates were used to evaluate the performance of the models: a) Sen-

sitivity b) Specificity c) Accuracy d) Positive Predictive Value (PPV) e) Negative Predictive

Value (NPV), and f) Matthews Correlation Coefficient (MCC). All data used in this study is

freely accessible at: https://clingen.igib.res.in/WilsonGen/ The source code of both our models

is available at https://github.com/aastha-v/WilsonGenAI. The models have been standardized

on Ubuntu 18 LTS. The instructions and code for the preprocessing pipeline, variant classifica-

tion through our models, as well as for generating one’s own models are also freely included.

Patient data validation

Generating variants and functional validation. ATP7B plasmid (pLB1080; Addgene)

was subjected to site-directed mutagenesis (SDM) according to the manufacturer’s instruction

(Agilent, 200522) using the set of primers shown in Table 2.

To understand the impact of WT (wild type) ATP7B and its protein mutants, knock-out

HepG2 cells were cultured under the standard conditions. Different plasmids were transfected

using lipofectamine-3000 (Thermo Scientific, L3000008). Post 24 hours, cells were treated

Table 1. Model hyperparameters used for the XGBoost model.

Hyperparameter Value Hyperparameter Value Hyperparameter Value

base_score 0.5 gpu_id -1 min_child_weight 1

booster gbtree grow_policy depthwise’ missing nan

callbacks None importance_type None monotone_constraints ()

colsample_bylevel 1 interaction_constraints ’ n_estimators 50

colsample_bynode 1 learning_rate 0.25 n_jobs 0

colsample_bytree 0.9 max_bin 256 num_parallel_tree 1

early_stopping_rounds None max_cat_to_onehot 4 predictor auto

enable_categorical FALSE max_delta_step 0 random_state 0

eval_metric None max_depth 6 reg_alpha 0

gamma 0.2 max_leaves 0 reg_lambda 1

https://doi.org/10.1371/journal.pone.0303787.t001
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with 500 μM CuCl2 for 6 hours and replaced with fresh media. After 18 hours, spent media

was collected to estimate the exported copper using the manufacturer’s protocol (Sigma,

MAK127). The colorimetric data of the assay was analyzed using an unpaired-t-test, with a p-

value<0.05 considered statistically significant for all three sets of experiments.

Results

Both models performed best with a 70–30% train-test split. The TabNet model additionally

split the 30% test set into 50% train and 50% validation subsets during training.

Accuracy estimates

TabNet. Although the model was set to run at a maximum of 1000 epochs, it stopped the

training at 187th epoch with the best accuracy of 99% on the validation and 97.24% on the test

sets respectively. The overall MCC was 0.92. The Precision, Recall and F1 scores are shown in

S2 Table. S1 Fig shows the accuracy and Fig 2 the Area Under the Curve (AUC) plot; the

receiver operating characteristic curve (ROC) was 0.996. Further, S2 Fig shows the confusion

matrix for our test data; out of 109 variants taken as part of the 50% test subset data, the model

accurately predicted 84 as pathogenic and 22 as benign. The Precision-Recall curve is shown

in S3 Fig, with the overall area under the precision-recall curve (AUPRC) determined to be 1.

The model learning rate and loss are plotted in S4 Fig. Additionally, the model Specificity, and

its Negative Predictive Value (NPV) were both 1.

XGBoost. The XGBoost model had an overall accuracy on the test set of 0.986175, AUC

0.9926 and MCC of 0.952773. Fig 2 shows the AUC plot, while S2 Fig depicts the confusion

matrix. The Precision, Recall and F1 scores are shown in S2 Table. The Precision-Recall curve

is shown in S3 Fig, with the overall AUPRC determined to be 1. Additionally, the model Speci-

ficity was 0.989, and its NPV was 1.

Validation in an independent set of variants classified according to the

ACMG & AMP guidelines

After removing all non-exonic variants, we had a total of 96 benign/likely benign variants

clubbed together as benign, and 60 pathogenic/likely pathogenic variants clubbed together as

“pathogenic”. Upon running our models on the data, the TabNet model accurately classified

all correctly, while XGBoost correctly classified 60 variants as pathogenic and 95 as benign, as

shown in the confusion matrices in S5 Fig. Scatterplots of class probability vs the actual

ACMG class for each model across all 156 variants are shown in S6 and S7 Figs for TabNet

and XGBoost respectively.

Comparison with CADD

Both our models performed better than CADD, which only had scores for 53 out of the 156

variants included in the independent ACMG-qualified test set. TabNet had an overall accuracy

on the test set of 1, and XGBoost of 0.9935, while CADD only had an overall accuracy of

Table 2. Primers used in site-directed mutagenesis.

Variants Forward Primer (5’—3’) Reverse Primer (5’—3’)

c.2564C>T (S855F) CTCCTGTGATGAGGAACTCATCAGCCATGGTATT AATACCATGGCTGATGAGTTCCTCATCACAGGAG

c.813C>A (C271X) GCCTCCGCAGTCTCCACCACAGCCA TGGCTGTGGTGGAGACTGCGGAGGC

https://doi.org/10.1371/journal.pone.0303787.t002
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0.9811 on the limited number of variants it predicted. A complete comparison between the

Accuracy, PPV, NPV and MCC is shown in S3 Table.

Comparison with other models

To the best of our knowledge, ours are the only models trained on an ACMG/AMP gold stan-

dard dataset specifically created for ATP7B variants linked with Wilson’s Disease. While other

deep learning models based on ACMG/AMP guidelines such as RENOVO [21] and MLVar

[22] exist, they are either not trained on manually classified variants/attributes, or do not fol-

low a disease-specific approach. As each disease follows different genetic mechanisms, general-

ization for all is difficult to achieve by a single model. We have, however included scores

generated by running RENOVO, as well as pre-determined scores obtained for 11 other

Fig 2. The receiver operating characteristic curve for (A) the TabNet and (B) the XGBoost model.

https://doi.org/10.1371/journal.pone.0303787.g002
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models including AlphaMissense, REVEL, SIFT, Polyphen2, Eigen-PC, LRT, MutationTaster,

FATHMM, PROVEAN, MetaLR, and MutationAssessor [23–33] in S3 Table, and as S8 Fig.

Our models were able to outperform the others over the combined metrics of Accuracy, PPV,

NPV, and MCC.

Reclassification of VUS variants

We collected all ATP7B variants of unknown significance and conflicting or missing classifica-

tion from the ClinVar [34] database as well as our in-house data and used the model to reclas-

sify them. Out of 977 exonic variants, TabNet reclassified 736 variants as pathogenic and 241

as benign. XGBoost on the other hand reclassified 800 as pathogenic and 177 as benign. Over-

all, a 91.4% concordance in predictions (726 pathogenic and 167 benign variants) was

observed between the two models. The complete list of these variants and their reclassification

can be accessed in S4 Table.

Scatterplots of class probability vs the predicted class for each model across 251 exonic VUS

variants that were a part of our validation dataset are shown in S9 and S10 Figs for TabNet and

XGBoost respectively.

Patient data validation

Impacts of WT ATP7B protein variants in cellular copper excretion. The copper assay

data for the ATP7B variants, S855F and C271X (positive control for impaired ATP7B) showed

reduced copper levels in the media in comparison to the WT ATP7B (Fig 3). This implies that

WT ATP7B promotes the excretion of excess copper in the media while mutants, S855F and

C271X show impaired protein function.

We ran both our models on each of the variants: both models accurately identified the con-

trol C271X variant as pathogenic, and also classified S855F as pathogenic. Thus, both our mod-

els tested on functionally proven data provide accurate classifications of the variant.

Feature importance and computational efficiency

The feature importance of the top 20 features are depicted in S11 Fig. The larger the score, the

higher the impact of the feature on the model. Both models had 10 features in common, rely-

ing on Loss of function (LoF) information, wherein a genetic lesion prevents the formation of

a normal gene product thereby leading to disease. They also take into account the genomic

position of the mutation (Start: nucleotide), which could dictate a pathogenic effect. Addition-

ally they rely on global prevalence of variants (1000Genomes AF -ALL)—the number of high

frequency disease causing variants is usually small, i.e. most pathogenic variants are rarely

prevalent. The remaining features common to both models consist of pathogenicity scores

obtained from 7 prediction tools (MetaSVM, MCAP, MutPred, SIF4G, REVEL, PolyPhen2

HDIV, and MutationTaster). Additional details of these features can be seen in S1 Table.

The XGBoost model additionally relies on the exonic function of the variant (Function), i.e.

the nature of the effect the variant has (a stopgain/loss variant for example, would have a larger

effect on the protein than a synonymous variant). It also takes into account the allele frequen-

cies reported in the GnomAD database, which is a larger population dataset. Finally, it also

considers conservation scores (Siphy 29way logOdds and MutationAssessor) that dictate how

conserved a given site is among mammals, indicating a potentially important location, and

thus a potentially more disruptive effect, as well as additional pathogenicity scores (DANN,

MetaRNN, and BayesDel).

The TabNet model additionally considers variant prevalence in Gnomad (GnomadAF—

Raw) and the Northeast African subset of the Greater Middle East populations (GME AF—
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NEA), as well as pathogenicity and conservation scores (LRT, integreated_fitCons, PrimateAI,

Eigen-PC-raw coding, and LIST-S2).

Thus both models take a well-rounded approach, and consider different aspects that deter-

mine variant pathogenicity, and are thus able to make reliable predictions. Further, the train

Fig 3. Copper exposure in ATP7B Knock-out HepG2 cells overexpressed with the plasmid containing wildtype

and mutant ATP7B gene. The copper transport activity of ATP7B mutants S855F and C271X is significantly impaired

in comparison to the wild-type ATP7B, where N = 3, ** denotes p value less than 0.01 and *** denotes p value less than

0.001.

https://doi.org/10.1371/journal.pone.0303787.g003
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dataset labels have been determined through ACMG classification that take into account all

aspects of relevant biological data including functional and segregational evidence. As such the

models capture patterns among the attributes that lead to these classifications.

The complete time taken to process a VCF file into suitable input, and then train a model

was plotted for each model separately, and are shown in S12 Fig.

Discussion and conclusion

In our work we have created two tools that can be used to classify variants of the ATP7B gene

linked with Wilson’s Disease. While tree-based XGBoost is one of the most reliable algo-

rithms for tabular data, our study shows that TabNet, a deep learning model designed specif-

ically for tabular data, slightly outperforms it in the classification of ATP7B variants. We

have trained these models on a dataset classified through the application of ACMG guide-

lines, the gold standard in variant classification. Additionally, the data is a robust compila-

tion of all publicly available variants of the gene exhaustively collected from literature and

across 9 large databases. Thus the models were trained on accurately classified variants that

capture all currently known types of exonic variants associated with Wilson’s Disease, due to

which we anticipate the models to be able to generalize to newly reported variants in the

future. We have shown our models’ accuracy through functional validation as well as com-

parison with other models. Finally, to address the large numbers of already reported variants

of uncertain significance, we have collected and classified 977 exonic variants through both

models; the predictions achieved a 91.4% concordance across 726 pathogenic and 167 benign

variants. We have made these predictions openly available, along with their class probabili-

ties to facilitate a better understanding of variant pathogenicity for clinicians and

researchers.

Clinical diagnosis of Wilson’s Disease is often challenging due to the heterogenous nature

of symptoms it presents with. Genetic testing has thus been included in the diagnosis process

as part of the Leipzig scoring system [23]. Additionally, testing can also rule out other genetic

disorders such as some congenital disorders of glycosylation that mimic Wilson disease, but

are not caused by ATP7B variants [35]. Since early diagnosis may prevent patients ever becom-

ing symptomatic, infant and newborn screening, as well as family screening also become

important. Accurate clinical interpretation of variants is therefore essential for diagnosis. Our

models offer a means of applying learning of patterns based on classification by ACMG rapidly

to a large number of variants, which otherwise is a time consuming and expertise-dependent

process. Given the complex nature and varied mechanisms of genetic diseases, adopting a gen-

eralized approach to classifying causative variants is ill advised. We have shown this through

the superior performance of our models over other general ACMG based models. To the best

of our knowledge, no other models based on the ACMG classification of Wilson’s disease vari-

ants currently exist.

We believe therefore, that our models can be utilized for the rapid classification of Wilson’s

Disease variants for better understanding of their pathogenicity in both research and clinical

settings.

Limitations: Even though the WilsonGen database is an exhaustive compendium of cur-

rently known and classified variants, the number of classified exonic variants still remains

small. ACMG classification of variants is also a time-consuming process, and thus a newer

dataset may take time to make. We have thus been able to test model generalization on a data-

set of 156 test variants. Additionally, the functional classification of ATP7B variants is still

ongoing. Upon its completion, a clearer picture of which of the two models has performed bet-

ter will be able to be obtained.
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Supporting information

S1 Fig. Train and validation accuracies of the TabNet model across 187 epochs.

(TIF)

S2 Fig. Confusion matrix depicting the models’ predictions on the 30% test data. Fig A rep-

resents TabNet while B represents XGBoost.

(TIF)

S3 Fig. The Precision-Recall curve of both the models.

(TIF)

S4 Fig. The model learning rate and loss of the TabNet model across187 epochs.

(TIF)

S5 Fig. Confusion matrix of predictions made on the ACMG-qualified independent valida-

tion dataset comprising of 156 variants. Fig A represents TabNet while B represents

XGBoost.

(TIF)

S6 Fig. Scatterplot of class probability vs the actual ACMG class for the TabNet model

across the validation set of 156 variants.

(TIF)

S7 Fig. Scatterplot of class probability vs the actual ACMG class for the XGBoost model

across the validation set of 156 variants.

(TIF)

S8 Fig. Barplot comparing the accuracy, MCC, NPV and PPV of 13 models with TabNet

and XGBoost. Abbreviations: MAssessor—MutationAssessor; MTaster—MutationTaster.

(TIF)

S9 Fig. Scatterplot of class probability vs the predicted class for the TabNet model across

all VUS variants 251 exonic VUS variants that were a part of the validation dataset.

(TIF)

S10 Fig. Scatterplot of class probability vs the predicted class for the XGBoost model

across all VUS variants 251 exonic VUS variants that were a part of the validation dataset.

(TIF)

S11 Fig. Plot depicting the feature importance of the top 15 features of each model. The x-

axis for XGBoost plots F-score, while that of TabNet plots scores for each feature.

(TIF)

S12 Fig. Plot depicting the complete time taken to process a VCF file into suitable input, and

then train a model was plotted for (A) TabNet and (B) XGBoost respectively.

(TIF)

S1 Table. A complete list of the 73 features used in training the model, along with the

ACMG attribute they provide information about, along with their description, as well as

their datatype.

(XLSX)

S2 Table. The classification report with the Precision, Recall and F1 scores for the TabNet

model (A) and XGBoost model (B) respectively.

(XLSX)
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S3 Table. Comparison of the performance of both models against 13 other models on the

independent test dataset.

(XLSX)

S4 Table. A list of 977 exonic variants of uncertain significance reclassified by our models

TabNet (A) and XGBoost (B). Variants highlighted in bold represent concordance between

predictions from both algorithms. Table (C) describes the nucleotide and protein changes in

HGVS nomenclature, and also describes each variant’s exonic function.

(XLSX)
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