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Abstract

Acute intermittent porphyria is an inherited error of heme synthesis. The

underlying pathophysiology, involving mainly hepatic heme synthesis, is

poorly understood despite its occurrence, and the severity of acute porphyria

attack is still difficult to control. A better understanding of the interactions

between heme synthesis and global metabolism would improve the manage-

ment of AIP patients. An untargeted metabolomic analysis was performed on

the urine of 114 patients with overt AIP and asymptomatic carriers using liquid

chromatography coupled to high-resolution mass spectrometry. The collected

data were analyzed by combining univariate and multivariate analyses. A total

of 239 metabolites were annotated in urine samples by matching chromato-

graphic and mass spectral characteristics with those from our chemical library.

Twenty-six metabolites, including porphyrin precursors, intermediates of tryp-

tophan or glycine metabolism and, unexpectedly, bile acids, showed significant

concentration differences between the phenotypic groups. Dysregulation of bile

acid metabolism was confirmed by targeted quantitative analysis, which

revealed an imbalance in favor of hydrophobic bile acids associated with

changes in conjugation, which was more pronounced in the severe phenotype.

Using a random forest model, the cholic acid/chenodeoxycholic acid ratio

enables the differential classification of severe patients from other patients

with a diagnostic accuracy of 84%. The analysis of urine samples revealed
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significant modifications in the metabolome of AIP patients. Alteration in bile

acids provides new insights into the pathophysiology of chronic complications,

such as primary liver cancer, while also providing new biomarker candidates

for predicting the most severe phenotypes.
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1 | INTRODUCTION

Acute intermittent porphyria (AIP) is an autosomal dom-
inant disorder caused by a defect in the third enzyme of
the heme biosynthesis pathway, hydroxymethylbilane
synthase (HMBS), which is encoded by the HMBS gene.
HMBS defects lead to a metabolic bottleneck, which is
responsible for the accumulation of delta-aminolevulinic
acid (ALA) and porphobilinogen (PBG). These metabo-
lites mainly produced by the liver are associated with the
onset of neurological symptoms: the acute porphyria
attacks (APA). APA is characterized by severe abdominal
pain, dysautonomic symptoms, and peripheral and cen-
tral neurological symptoms.1 In the liver, heme biosyn-
thesis is inducible. Thus a partial HMBS enzyme defects
become apparent when heme requirements increase, due
to the induction of the first enzyme, ALA synthase-1
(ALAS-1) at the transcriptional, translational and post-
translational levels.2 AIP is a rare disease with an esti-
mated prevalence of patient with current and past
symptoms of 5.9 per million in Europe.3 However HMBS
mutations have an estimated prevalence far higher, rang-
ing between 1/1786 and 1/1299, depending on the calcu-
lation method.4,5 HMBS mutation carriers are considered
to be overt patients if at least one APA was diagnosed
based on clinical and biological criteria. Most patients
suffer from one to a few attacks during their whole life,
but between 3% and 8% of patients present with recurrent
acute attacks at least four times per year.3,6 Furthermore,
the penetrance of HMBS variants is less than 1% in the
general population and the expressivity is extremely vari-
able and unpredictable, suggesting the existence of addi-
tional genetic or environmental factors modulating the
phenotype which are not yet fully understood. Preventive
measures for APA, such as avoiding porphyrinogenic
drugs, are highly restrictive and are applied indiscrimi-
nately to all patients, whereas only a minority of patients
present with acute symptoms.7 Recently, an innovative
treatment based on a small interfering RNA that inhibits
ALAS1 and specifically targets the liver has been com-
mercialized, with remarkable efficacy in reducing the
number of APA.8

Heme, porphyrins, and precursors, ALA and PBG, are
closely linked to intermediary metabolism since ALA
synthesis results from the condensation of succinyl-CoA
and glycine, two of its key metabolites. In addition, the
final heme product is a cofactor of many important meta-
bolic enzymes and consequently has a major role in liver
metabolism.9–11 Perturbations in other metabolic path-
ways have been previously reported in acute porphyria
(AP), such as imbalance between tryptophan and kynure-
nine in tryptophan metabolism, increased homocysteine
levels, mitochondrial energetic failure or modified gly-
cine concentrations in recurrent patients.11–16 Most of the
metabolic investigations in humans were performed on
blood using targeted tandem mass spectrometry coupled
with liquid chromatography (LC–MS/MS).15–17 One
untargeted approach involving NMR analysis in urine
was reported.13 Urine is recognized as the preferred fluid
in AP management. This is due to the ease of collecting
and shipping urine samples, but above all to the histori-
cal quantification of urinary ALA and PBG, the acute
attack biomarkers. Now, sensitive LC–MS approaches
enable their quantification in blood.18

The aim of this study was to explore, without any a
priori assumptions, the difference in urinary metabolic
profiles between asymptomatic carriers and overt
patients presenting with mild and severe phenotypes.
Our goal was to identify new biomarker candidates that
would help predicting disease onset, progression to recur-
rence and potential comorbidities severity while also bet-
ter delineating the underlying pathophysiological
mechanisms triggering an acute attack.

2 | MATERIALS AND METHODS

2.1 | Study design

The study design is summarized in Figure 1. For untar-
geted metabolomics, a first panel of 114 urine samples
was collected from either patients with overt disease or
patient with latent porphyria (LP) followed by the French
Center for Porphyria (Table S1). Specifically defined for
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this study because the number of patients in “active acute
porphyria” defined by Stein et al. is too restrictive,19 overt
disease refers to carriers of an HMBS deleterious variant
who experienced at least one APA clinically and biolog-
ically validated. In accordance with the definition pro-
posed by the international consensus, latent porphyria
refers to asymptomatic carriers of an HMBS deleterious
variant who never experienced an APA.19 Thirty inde-
pendent samples were collected in the latent porphyria
(LP) group and 84 in patient with overt disease, includ-
ing 64 outside of an APA (i.e., after a minimum of
3 weeks following the APA; hereafter designated as
OD) and 20 during an APA but before any treatment
(APA group). To clearly distinguish phenotypes we
choose to compare LP (defined by a PBG level above or
equal at 4 μmol/mmol Cr by the international consen-
sus) to an OD group including exclusively patients with
a residual PBG level above 10 μmol/mmol Cr between
APAs. Thus we excluded intermediary phenotypes
such asymptomatic high excreter, or asymptomatic
acute porphyria (according to the new nomenclature).
Finally we compared patients into LP, which had meta-
bolically inactive disease, and OD, which retained met-
abolic dysfunction between crises. Samples from the
LP and OD groups were all collected from different
patients. Ten patients has been sampled during an
attack (included in APA) and between attack (included
in OD).

To refine the study, OD was divided into two
subgroups with a mild phenotype (n = 46, designated
hereafter mOD, with less than one APA per year during
the last 5 years), and OD with a severe phenotype
(n = 18, “sOD” with at least one APA per year)
(Table S1). This subdivision allowed us to obtain well-
balanced groups for statistical analysis. Table S2 reports
the demographic and biological characteristics of each
group. Patients were recruited according to the sex ratio
of the groups. As the penetrance of AIP is nearly
maximal at age 40, 90% of the patients recruited in LP are
older than 40 years. The average ages of patients in LP
and mOD were similar, and those in sOD were younger.

Based on the results of the untargeted study, targeted
profiling of bile acids (BA) was conducted using a second
cohort of samples. BA profile analysis, which is more rel-
evant in blood, was performed in 74 blood samples
matching (sex and age) with the untargeted study groups
(20 patients in LP, 20 patients in mOD, 16 patients in
sOD and 18 patients in an additional treated OD group).
Urine BA profiling was also performed on a representa-
tive sample of the first urine cohort used for the untar-
geted approach (Figure 1). BA targeted analysis was
completed with an additional group (18 blood and
10 urine samples) of severe patients treated with givo-
siran (Givlaari®; Alnylam Pharmaceuticals, Cambridge,
MA, USA), called gOD (Figure 1 and Table S3). Blood
was collected as part of routine care with a clot activator

FIGURE 1 Summary of all samples used for the untargeted and targeted analyses.
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to obtain serum. In gOD, treatment started at least
6 months before the first sampling. All the patients in
gOD exhibited a very severe phenotype before treatment
initiation.

2.2 | Untargeted metabolomics using
liquid chromatography coupled to high-
resolution mass spectrometry

Prior to analysis, the urine samples were standardized to
the specific gravity by dilution to adjust to the same opti-
cal density (1.045). Then, the samples were diluted 1/3 in
the mobile phase before injection into the liquid chroma-
tography coupled to high-resolution mass spectrometry
(LC–HRMS) system. The quality control (QC) samples
were prepared by mixing 20 μL of each extracted sample.
QC samples were injected every five samples.

The analytical conditions were previously described20

and are summarized in Appendix S1. Briefly, untargeted
metabolomics experiments were performed by LC–HRMS
using a combination of two complementary chromato-
graphic methods, namely, reversed-phase chromatogra-
phy (C18 chromatographic column) and hydrophilic
interaction chromatography (HILIC), for the analysis of
hydrophobic and polar metabolites, respectively. LC–
HRMS experiments were conducted on an Ultimate 3000
chromatographic system (Thermo Fisher Scientific)
coupled to Exactive/Q Exactive high-resolution mass
spectrometers from Thermo Fisher equipped with an
electrospray ionization (ESI) source and operating in the
positive- and negative-ion modes for C18 and HILIC sep-
arations, respectively (designated hereafter as C18(+)
and HILIC(�), respectively).

2.3 | Data processing and metabolite
annotation

The data were processed on the Workflow4Metabolomics
(W4M) platform (workflow4metabolomics.usegalaxy.fr)
(Figure S1).21,22 In particular, automatic peak detection,
integration and alignment rely on XCMS algorithms to
construct a data matrix of feature intensities (areas associ-
ated with retention times RT and m/z).23 Then, the data
were filtered based on the chromatographic peak area ratio
of biological to blank samples (>3), the coefficient of varia-
tion of metabolic features in QC samples (<30%) and the
correlation between chromatographic peak areas and QC
dilution factors (>0.7). Annotation of metabolite features
was first performed using our spectral database (compris-
ing more than 1000 metabolites) according to accurately
measured masses and chromatographic retention times

(RTs).20 The retention time tolerances were ±15 s and 90 s
for the C18(+) and HILIC(�) modes, respectively.

After statistical analysis (described in Section 2.5), the
quantification and annotation of each metabolite of inter-
est were confirmed as follows: chromatographic peaks
were integrated manually in all biological and QC samples
using TraceFinder software (Thermo Fisher Scientific,
Courtaboeuf, France) (Figure S1). Confirmation of metab-
olite annotation was then accomplished by LC–MS/MS
experiments using a Dionex Ultimate chromatographic
system combined with a Q Exactive mass spectrometer
(Thermo Fisher Scientific) operated under nonresonant
collision-induced dissociation conditions using higher-
energy C-trap dissociation. Metabolite identification was
based on the matching of at least two orthogonal criteria
among accurate measured mass ((m/z), retention time and
MS/MS spectrum) to those of an authentic chemical stan-
dard analyzed under the same analytical conditions, as
proposed by the Metabolomics Standards Initiative.24 The
statistical analyses were then rerun on these checked inte-
grations to obtain the final results (Figure S1).

2.4 | Bile acid profiling

Bile acids (BAs) in the serum and urine of patients were
analyzed using high-performance liquid chromatography
coupled to tandem mass spectrometry (HPLC–MS/MS),
as previously described using a QTRAP 5500 (Sciex) and
detailed in Appendix S1.25

2.5 | Statistical analysis

Comparisons between biological and demographic char-
acteristics and bile acid concentrations were performed
using either a Mann–Whitney hypothesis test or a
Kruskal–Wallis test associated with Dunn's multiple
comparison test (depending on the number of groups to
compare) or a Pearson correlation test with Prism 7 soft-
ware (GraphPad Software, Inc., San Diego, CA, USA)
(Figure S1).

Statistical analyses of the metabolomic data were con-
ducted on the W4M online platform. The data were first
log-transformed to obtain Gaussian-like feature distribu-
tions. Then, univariate hypothesis testing was performed
by using either Student's t test or analysis of variance
(ANOVA) followed by Tukey's post hoc test (depending
on the number of groups to be compared). The p values
were adjusted to control the false discovery rate (FDR) by
using the method of Benjamini and Hochberg.26 Multi-
variate analysis consisted of data exploration with princi-
pal component analysis (PCA), followed by machine
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learning with partial least squares–discriminant analysis
(PLS–DA) and orthogonal PLS–DA (OPLS–DA).27 The
latter approach (OPLS–DA) facilitates interpretation
(compared to PLS–DA) since OPLS–DA models contain
only one predictive component in the case of a single
response. The predictive variable importance in projec-
tion (VIP) from OPLS–DA models was used as the multi-
variate metric to rank the features. Both univariate
(FDR < 0.05) and multivariate (VIP > 1.5) criteria were
used to select the metabolites of interest. A metabolite set
enrichment analysis (MSEA) was performed using Meta-
boAnalyst 5.0 with the Small Molecule Pathway Database
(SMPDB) as the reference.28

The biosigner approach was used to identify a signifi-
cant signatures of bile acids enabled to distinguish

between severe (sOD) and nonsevere patients (including
LP and mOD group) (Figure S1).29 This approach consists
of selecting markers that significantly contributed to the
predictive performance either with PLS–DA, a random
forest, or a support vector machine classifier.

3 | RESULTS

3.1 | Untargeted metabolomics of urine
samples

LC–HRMS metabolomic analysis revealed 7168 analyti-
cally relevant features (3921 in C18(+) mode and 3247 in
HILIC(�) mode). Comparison with an in-house spectral

FIGURE 2 Supervised multivariate analysis of annotated features of phenotypical groups. (A, B) Comparison of four subgroups:

patients with latent porphyria (LPs, red +), patients with overt disease outside of attack (OD), mild (mOD, blue sky +), severe (sOD, deep

blue+) and patients during an acute attack (APA) (green +). (A) PLS–DA score plots in C18(+) acquisition mode. (B) PLS–DA score plots in

HILIC(�) acquisition mode. (C, D) Comparison of patients with latent porphyria (LPs red +) with all patients with overt disease (OD: mild

and severe) collected outside of an attack: Blue +. (C) OPLS–DA score plots in C18(+) acquisition mode; (D) OPLS–DA score plots in HILIC

(�) acquisition mode. The 95% confidence region for each group (respectively, for all samples) is shown as a colored (respectively, black)

ellipse.
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library allowed the annotation of 239 distinct metabolites
(Table S4). Supervised multivariate analysis of the anno-
tated metabolites revealed partial overlap between the
different groups, suggesting phenotypic continuity
between the metabolomes (Figure 2A,B). The two
extreme groups, LP and APA, were clearly separated, but
OD in which samples were collected outside of an APA
(in either mOD or sOD) were not separated (Figure 2).
Interestingly, PLS–DA performed on the whole metabo-
lomic dataset (combining annotated and unannotated
variables) provided similar results, thus showing that the
set of annotated metabolites is representative of
the whole dataset (Figure S2A,B).

This discrepancy in the metabolome between the
samples collected during an APA and those collected
between APAs (i.e., OD) was then more thoroughly
investigated by univariate hypothesis testing. Eighty-
eight metabolites from APA samples (data not shown)
and only 16 from OD were differentially expressed com-
pared with those in LP (Table 1). Among these metabo-
lites, 13 overlapped in both comparisons (data not
shown). Given the large number of variables which dif-
fered with the other groups, meaning that this

metabolome was strongly different, APA group was
excluded from the rest of the analysis. In order to focus
on understanding the metabolic conditions associated to
the onset of an attack, we compared the data from the
OD groups (both mOD and sOD) to those from LP using
OPLS–DA and t-tests (Welch version for unequal vari-
ances). These analyses revealed strong differences
between symptomatic and asymptomatic patients, with
Q2Y values (proportion of variation explained by the
model estimated by cross-validation) of 0.542 and 0.610
in the C18(+) and HILIC(�) modes, respectively
(Figure 2C,D). In addition, OPLS–DA provided a predic-
tive VIP for each annotated feature.

An ANOVA comparing pairwise the LP group with
mOD and sOD highlighted five significant metabolites in
C18(+) mode and nine in HILIC(�) mode (Table 1). As
the post hoc tests did not reveal any significant difference
between mOD and sOD, a simple t test comparing all the
OD groups with LP was performed and revealed signifi-
cant differences in four other metabolites (Table 1). Only
PBG and N-acetyl-glutamine showed a significant change
in both acquisition modes. All metabolites with signifi-
cant variations were decreased in the OD group, except

TABLE 1 Results from univariate analysis of annotated metabolites.

Acquisition mode Metabolites

ANOVA
Post-hoc test (p)

t-Test (p) Fold change

p
LP
vs. mOD

mOD
vs. sOD

sOD
vs. LP LP vs. OD 10^(Δlog mean)

Positive Porphobilinogen <10�4 <10�4 1 <10�4 <10�4 150.3

N-acetylisoleucine 0.008 0.043 1 0.047 0.001 0.6

Kynurenine 0.008 0.011 1 0.17 0.001 2.8

3-Hydroxy-isovaleric acid 0.013 0.019 1 0.17 0.001 0.7

N-acetyl-glutamine 0.034 0.106 1 0.07 0.009 0.6

Cotinine 0.15 0.517 1 0.17 0.034 24.6

Negative Aminolevulinic acid <10�4 <10�4 0.387 <10�4 <10�4 3.8

Porphobilinogen <10�4 <10�4 1 <10�4 <10�4 520.5

Glycodeoxycholic acid 0.001 0.001 1 0.048 <10�4 0.0

Glycolic acid 0.004 0.003 1 0.141 <10�4 0.6

N-acetyl-glutamine 0.02 0.189 1 0.039 0.007 0.6

Glycocholic acid 0.005 0.05 0.853 0.026 <10�4 0.2

Indolelactic acid 0.02 0.132 1 0.048 0.007 1.6

Methyluric acid 0.025 1 0.407 0.039 0.201 0.7

N-acetyl-phenylalanine 0.047 1 0.407 0.05 0.201 1.3

Dihydroxybenzoic acid 0.121 0.6 1 0.141 0.041 0.4

N-Acetyl-lysine 0.129 0.2 1 0.689 0.041 0.7

Adipic acid 0.163 0.233 1 0.689 0.041 0.8

Note: Comparison of metabolite signals (peak areas) between patients with latent porphyria (LP) and patients with mild (mOD) and severe (sOD) overt disease
(outside of attack) by ANOVA. Comparison of metabolite levels between patients with latent porphyria (LP) and patients with overt disease (OD by t tests). The

fold change between OD and LP is expressed as 10^ (log mean OD � log mean LP). Significant p-values are presented in bold (p < 0.05).
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for ALA/PBG-porphyrin precursors, kynurenine, indole-
lactic acid, cotinine and N-acetylphenylalanine which
were increased. Results of cotinine, smoker marker, con-
firmed the high prevalence of smokers in OD group, 48%
versus 5% in LP.

By combining these relevant data with predictive
VIP > 1.5 from OPLS–DA and p values <0.05, a signature
of 26 relevant metabolites in the comparison of LP group
versus OD group was highlighted and is reported in
Figure 3. With the highest predictive VIP and a very low
p value, the expected AIP markers ALA and PBG allowed
us to validate the overall methodology as positive
controls.

Among these metabolites of interest, kynurenine,
indolelactic acid and hydroxykynurenine are involved in
tryptophan metabolism, and creatine, guanidinoacetic
acid and glycolic acid are closely linked to glycine, the
precursor of the heme pathway. Cotinine, a specific bio-
marker of smoking, was significantly upregulated. Unex-
pectedly, three bile acids, glycodeoxycholic acid,
glycocholic acid and cholic acid, were also among the
most relevant metabolites.

A metabolite set enrichment analysis (MSEA) allowed
us to highlight the metabolic pathways most affected by
the disease by taking into account the metabolic link
between all the annotated features (Figure 4). As ALA
and PBG levels were used as criteria for the study design,
these variables were excluded from this analysis. Bile acid
biosynthesis was found to be, by far, the most quantita-
tively and significantly altered pathway between LP and
OD, with an enrichment ratio >10 and a 3-log higher
p value difference compared to the second most signifi-
cant metabolic pathway.

3.2 | Targeted bile acid analysis

The results from the statistical analysis comparing the
metabolic profiles of LP group to those of OD groups
revealed one particular metabolic pathway: bile acid
(BA) biosynthesis (Table 1 and Figures 3 and 4). Hence,
a complementary metabolomic analysis was conducted
by specifically targeting bile acids in LP and OD groups.
Therefore, another cohort involving 74 blood samples

FIGURE 3 Graphical representation of features of interest resulting from untargeted analysis. Features were selected based on a

maximal p value = 0.05, provided by a t test comparing asymptomatic carriers versus overt patients or a minimal predictive VIP at 1.5,

provided by OPL–DA, by comparing latent porphyria (LP) and overt disease (OD). The features associated with a significant p value

provided by an ANOVA, comparing the LP group and the subgroups of OD (mOD and sOD) are labeled with *. Significant features in both

acquisition modes were distinguished by (+) for C18(+) and (�) for HILIC(�).
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was included in the second stage. The initial study
design was replicated to compare the LP group with
mOD and sOD groups using the same inclusion criteria
and matching in terms of patient demographics and
characteristics (Figure 1; Tables S2 and S3). For data
comparison purposes, BAs were also quantitatively pro-
filed in the same urine samples used for the untargeted
analysis. Overall, the results obtained in urine for the
three bile acids detected in the untargeted study by the
semiquantitative LC–HRMS method and BA-targeted
quantification showed a good correlation (Spearman
r > 0.67) (Figure S3). Besides validating the results of
the HRMS screening, those data also helped to specify
the annotation of glycodeoxycholic acid, the isomer at
m/z 448.306 (negative mode), which was the best corre-
lated when comparing the two methods (r = 0.7625
vs. 0.2401 and 0.2821 for the other two isomeric glyco-
chenodeoxycholic acid and glycoursodeoxycholic acid,
respectively).

Although not significant, the total blood BA concen-
tration tended to increase with disease severity

(Figure 5A). Bile acid biosynthesis comprises two parallel
pathways providing two primary BAs (and consequently
two secondary BAs), which can be distinguished only by
the presence or absence of a hydroxyl group (OH) on car-
bon 12α (Figure 5D). The HO-C12α/non-HO-C12α ratio
in the primary BAs, the CA/CDCA ratio, decreased sig-
nificantly in sOD group compared to mOD and LP
groups (Figure 5B). In secondary BAs, the DCA/LCA
(deoxycholic acid/lithocholic acid) ratio significantly
decreased when comparing sOD to LP, and it was close
to the significance threshold when comparing mOD
group to LP (Figure 5C). A lower ratio strongly suggested
a higher concentration of the more hydrophobic forms
(CDCA and LCA) compared to the other forms. Circulat-
ing BAs are mostly conjugated, with the relative quantity
of conjugated BAs increasing in mOD and sOD groups
compared to that in LP patients (Figure 6A). Tauroconju-
gated BA concentrations were significantly greater in
mOD and sOD groups than in LP, while glycoconjugated
and sulfoconjugated BA concentrations were significantly
greater only in the sOD group (Figure 6B–D).

FIGURE 4 Graphical representation of a quantitative metabolite set enrichment analysis (MSEA). The data were log-transformed and

mean centered. The reference library used was the Small Molecule Pathway Database (SMPDB).
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Tauroconjugated BAs in urine showed the same profile
as those in blood. The glycoconjugation level of BAs
decreased in mOD urine, but most of the urinary BAs
from almost all sOD were sulfoconjugated (Figure 6E–G).

To investigate the possible direct impact of AIP path-
ophysiology (i.e., abnormal heme metabolism induc-
tion) on BA metabolism, we added a group of severe
patients treated with givosiran (gOD). This small inter-
fering ribonucleic acid downregulates ALAS1, which
leads to a significant decrease in acute attacks in severe
patients by repressing the first stage of the metabolic
pathway.8 Blood BA levels were significantly greater in
gOD group than in LP and mOD but not in sOD
(Figure S4). As in sOD group, the HO-C12α/non-HO-
C12α ratios were lower in gOD than in LP. Compared
with LP, patients in gOD exhibit similar results than
sOD, with an increase in all conjugated BAs in the blood
and systematic sulfoconjugation in urine. Interestingly,

givosiran did not restore the BA concentrations within
severe patients.

3.3 | CA/CDCA as a predictive biomarker
of disease severity

To further identify a BA signature predicting severity, the
biosigner recursive feature selection approach was applied
between severe and non-severe patients (including LP
and mOD groups). Among the set of features consisting
of the BA and BA subgroup concentrations and ratios, a
signature of a single variable, the CA/CDCA ratio, was
repeatedly selected with the random forest classifier, pro-
viding a diagnostic accuracy of 0.84 (arithmetic mean
between sensitivity and specificity) and an area under the
receiving operating characteristic curve (AUROC) of 0.89
(Figure 7).

FIGURE 5 Quantitative and qualitative changes in blood bile acid levels between asymptomatic carriers and mild and severe patients.

(A) Total bile acid concentrations in blood. (B) 12α-OH/non-12α-OH ratio in blood primary bile acids (CA, cholic acid; CDCA,

chenodeoxycholic acid). (C) 12α-OH/non-12α-OH ratio in secondary bile acids (DCA, deoxycholic acid; LCA, lithocholic acid. Box plot

representing the mean and 25th and 75th percentiles. The Kruskal–Wallis test and post hoc Dunn's multiple comparison test were used to

compare data between groups. Significant p values are indicated by *p < 0.05; ****p < 0.0001. (D) Scheme of bile acid synthesis from

cholesterol (G, glyco; T, tauro).
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4 | DISCUSSION

This work reports the first untargeted urinary metabolo-
mic study of AIP patients using high-resolution mass
spectrometry. Our analytical and statistical approaches
were validated, on the one hand, on the analytical side,
by the high statistical significance associated with
increased concentrations of the acute porphyria markers
ALA and PBG in overt patients and, on the other hand,
on the overall process, by the identification of metabolites
belonging to the affected metabolic pathways previously
described in OD group: the tryptophan pathway and gly-
cine metabolism.11,13

During episodes of neurovisceral crisis, the metabolic
profile changes considerably, with 88 metabolites (on a
total of 239 identified metabolites, i.e., 36%) showing sig-
nificantly different concentrations during the APA com-
pared with LP. Therefore the analysis of the APA
metabolome would be too complex and beyond the scope
of this study and will have to be the subject of a further
dedicated study.

Significant differences in the metabolome were
highlighted between asymptomatic patients and overt
patients. Subgroup analysis between mOD and sOD
groups revealed similar metabolomes. This finding also
suggested that the metabolic mechanisms that promote

FIGURE 6 Impact of the AIP phenotype on bile acid conjugation. (A) Proportion of conjugated bile acids in blood. (B) Blood

concentration of tauroconjugated bile acids. (C) Blood concentration of glycoconjugated bile acids. (D) Blood concentration of

sulfoconjugated bile acids. (E) Relative concentration of tauroconjugated bile acids in the urine. (F) Relative concentration of

glycoconjugated bile acids in the urine. (G) Urine relative concentration of sulfoconjugated bile acids. Box plot representing the mean and

25th and 75th percentiles. The Kruskal–Wallis test and post hoc Dunn's multiple comparison test were used to compare data between

groups. Significant p values are indicated by *p < 0.05; **p < 0.01; ***p < 0.001.
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these crises are similar in both groups. Thirty-eight unan-
notated features exhibited equivalent predictive VIPs and
low p values for ALA and PBG. After excluding all
adducts and in-source fragments of ALA and PBG at the
same retention time, we identified approximately 30 dis-
tinct unannotated features showing similar variations
than ALA and PBG (i.e., significant fold change >100
and predictive VIP > 4), which should be considered part
of future structural identification work.

Our in-house chemical database covers the majority
of known human metabolic pathways; thus, annotated
feature analysis, including MSEA, can highlight signifi-
cant changes occurring in almost all metabolic pathways.
Annotated metabolite analysis did not reveal differences
in metabolite concentrations higher than those observed
for ALA and PBG, the reference pathological metabolites
that are considered responsible for APA symptoms. How-
ever, among the annotated metabolites, several differ-
ences between asymptomatic carriers and patients with
overt disease were observed and could be interpreted as

consequences of the heme metabolism disorder. Alter-
ations in tryptophan have already been described in AIP
and are thought to be the consequence of a complex
mechanism combining a slight decrease in heme-
dependent enzyme activity (e.g., indoleamine
2,3-dioxygenase, tryptophan 2,3-dioxygenase) and inflam-
mation.11,15 The reduced concentration of metabolites
related to glycine metabolism (creatine, guanidinoacetic
acid or glycolic acid) in patients with overt disease, can
be interpreted as a consequence of a lack of glycine avail-
ability, consumed by active heme biosynthesis. However
one finding could highlight a cause of overt disease trig-
gering. The high mean of the cotinine, a smoking marker
cotinine was found in OD group, half of whom was
smokers compared with 5% in LP group. This expected
results suggest that patients must be advised to stop
smoking.

For the first time, our study showed bile acid metabo-
lism alterations in AIP patients. This finding was the
most significant and striking results of the entire analysis.

FIGURE 7 ROC curve of predictive classification in the severe group, using a random forest model trained on the CA/CDCA ratio

(16 severe patients (sOD) vs. 40 nonsevere HMBS mutation carriers, i.e., LP and mOD).
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Three BAs were identified by HRMS: cholic acid (CA),
glycocholic acid (GCA) and glycodeoxycholic acid
(GDCA). A targeted LC–MS/MS method subsequently
confirmed these data and thus confirmed the quantitative
ability of the untargeted analysis. The use of a quantita-
tive LC–MS/MS method targeting up to 28 BAs enabled
us to explore deeply BA metabolism in a comprehensive
and specific manner. Interestingly, in severe patients,
despite a global tendency toward an increase in BA con-
centration, the identified alterations consisted mainly in
a change in the type of BAs. A misbalance between the
two parallel pathways of BA biosynthesis, with and with-
out HO-C12α, underlined an increase in the proportion
of hydrophobic BAs (chenodeoxycholic acid, CDCA and
lithocholic acid, LCA). This abnormal characteristic was
illustrated by the CA/CDCA ratio, which was identified
as the most relevant marker of the clinical severity of
AIP, with a high AUC (≈0.9), while no biological severity
marker has been described for AIP until now. In addi-
tion, we found an alteration in BA conjugation associated
with the degree of severity. Tauroconjugation increased
in all OD groups, while glyco- and sulfoconjugation
increased specifically in severe patients. Thus, mild
patients exhibited a specific profile of conjugation with
mostly tauroconjugation. Conjugation increases BA solu-
bility and promotes its urinary elimination. Tauroconju-
gated BAs have been reported to have lower toxicity than
glycoconjugated BAs.30 These observations led us to
hypothesize that different kinds of conjugation take part
in a protection mechanism with different levels of effi-
cacy against the accumulation of hydrophobic forms.

Bile acids can be conjugated with glycine and taurine
by amidation and/or with sulfonate groups. Glycine is a
precursor of heme biosynthesis. Consequently, heme
pathway induction in AIP may reduce the availability of
glycine.13 Sulfo-conjugation involves the universal sulfo-
nate group donor 30-phosphoadenosine 50-phosphosulfate
(PAPS), which can be provided by cysteine and taurine.31

Homocysteine, a sulfur-containing amino acid, is a pre-
cursor of cysteine generated by transsulfuration reac-
tions, and a high but moderate level of homocysteine was
detected in the blood of AP patients.16 Moreover, an
increase in tauroconjugation associated with the activa-
tion of methionine/homocysteine metabolism leads to
increased taurine, as previously reported in alcoholic
liver disease.32 Thus, the availability of substrates for BA
conjugation can be impacted in AIP. Other metabolic
links between heme and BAs could include the targeting
of the bile acid-activated nuclear receptor farnesoid X
receptor (FXR) on ALAS-1 or the high preponderance of
CYP-heme proteins in pathways providing different BAs
from cholesterol.33

In AIP patients, there is a greater incidence of hepato-
cellular carcinoma (HCC) than in the general population,
which is associated with high ALA and PBG levels.34 Sev-
eral metabolomic analyses revealed blood bile acids as
significant markers of HCC.35,36 A misbalance in conju-
gation with a greater proportion of taurine-conjugated
BAs observed in our patients has already been reported
at the early stage of HCC.37 Thus, our findings of abnor-
mal BA profiles in AIP patients with high levels of ALA
and PBG led us to hypothesize that the dysregulation of
BA conjugation plays a role in the mechanism of AIP
carcinogenesis.

In AIP, the disorder consists of a partial defect of the
HMBS leading to liver ALAS1 induction, as illustrated by
the high concentrations of ALA and PBG in AIP patients.
SiRNA-ALAS1 therapy (givosiran) efficiently reverses this
pathophysiological mechanism by reducing ALA and
PBG accumulation.8 The lack of a givosiran effect on res-
cuing BA metabolism allowed us to exclude a direct link
between ALAS1 induction and BA disorders, and in fact,
patients treated with givosiran showed a similar or even
more pronounced bile acid pattern than those in sOD
group. Finally, in the absence of prospective data, we
cannot determine whether the bile acid profile is a conse-
quence or cause of AIP severity.

This study has several limitations, such as the small
size of the cohort, which is a common feature in studies
on rare diseases. This prevents perfect age matching
between the groups in our study, yet the impact on bile
acids is slight as profiles vary little in adulthood. There is
a continuum of phenotypes associated with AIP. It
is therefore difficult to create homogeneous groups,
which may reduce the power of the study. As a prelimi-
nary non-targeted metabolomics study, further works are
required to validate CA/CDCA as a relevant marker of
disease severity in a replicative and prospective cohort.
Secondly and as mentioned above, a comparative analysis
of APA metabolome with heathy subjects and inter-crisis
samples from AIP patients would allow to understand
pathophysiology of the attack and recurrence of APA.
Indeed, healthy controls were not necessarily required in
the present study which focused on the determinisms of
clinical phenotype between HMBS mutation carriers.
Their inclusion would allow to better understand the
metabolic storm which occurs during the APA. And
finally, a larger study including the excluded asymptom-
atic high excreters or asymptomatic acute porphyria in
remission would allowed to refine the metabolome over-
view of AIP.

In conclusion, an untargeted LC–HRMS metabolo-
mics approach was applied to inherited hepatic metabolic
heme disorders. This analysis showed that metabolomes
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differed according to whether the patient was in or out of
attack, and according to the patient's phenotype (latent
or overt disease). Some of the metabolic variations identi-
fied were already mentioned in literature, as tryptophan
an glycine metabolism. But this study also revealed find-
ings in an unexpected hepatic metabolic pathway. For
the first time, qualitative modifications of bile acids have
been described, highlighting an interaction between two
important metabolites in the liver: heme and bile acids.
Regardless of the origin of this BA disorder, this study
provides new insights which might be involved into the
pathological mechanism of HCC onset in AIP patients.
Furthermore, these results open the possibility of predict-
ing the severity of the disease and, more broadly, demon-
strate the relevance of untargeted metabolomics for
better delineating inherited disorders.
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