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BACKGROUND: Shortened telomere length (TL) is a genomic risk factor for fibrotic interstitial
lung disease (ILD), but its role in clinical management is unknown.

RESEARCH QUESTION: What is the clinical impact of TL testing on the management of ILD?

STUDY DESIGN AND METHODS: Patients were evaluated in the Columbia University ILD clinic
and underwent Clinical Laboratory Improvement Amendments-certified TL testing by flow
cytometry and fluorescence in situ hybridization (FlowFISH) as part of clinical treatment.
Short TL was defined as below the 10th age-adjusted percentile for either granulocytes or
lymphocytes by FlowFISH. Patients were offered genetic counseling and testing if they had
short TL or a family history of ILD. FlowFISH TL was compared with research quantitative
polymerase chain reaction (qPCR) TL measurement.

RESULTS: A total of 108 patients underwent TL testing, including those with clinical features
of short telomere syndrome such as familial pulmonary fibrosis (50%) or extrapulmonary
manifestations in the patient (25%) or a relative (41%). The overall prevalence of short TL
was 46% and was similar across clinical ILD diagnoses. The number of short telomere clinical
features was independently associated with detecting short TL (OR, 2.00; 95% CI, 1.27-3.32).
TL testing led to clinical treatment changes for 35 patients (32%), most commonly resulting
in reduction or avoidance of immunosuppression. Of the patients who underwent genetic
testing (n ¼ 34), a positive or candidate diagnostic finding in telomere-related genes was
identified in 10 patients (29%). Inclusion of TL testing below the 1st percentile helped
reclassify eight of nine variants of uncertain significance into actionable findings. The qPCR
test correlated with FlowFISH, but age-adjusted percentile cutoffs may not be equivalent
between the two assays.

INTERPRETATION: Incorporating TL testing in ILD impacted clinical management and led to
the discovery of new actionable genetic variants. CHEST 2024; -(-):---
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Take-Home Points

Study Question: What is the clinical impact of
telomere length testing on the management of
interstitial lung disease (ILD)?
Results: Telomere length testing improved genetic
testing interpretation and impacted clinical treatment
for 32% of patients with ILD, most often resulting in
reduction or avoidance of immunosuppression after
identification of short telomeres.
Interpretation: Clinical telomere length testing for
patients with ILD is feasible, actionable, and im-
pactful for clinical treatment.
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Fibrotic interstitial lung diseases (ILDs) are a
heterogeneous group of chronic scarring disorders of
the lungs associated with poor prognosis.1 Telomere
shortening has emerged as a shared genomic risk factor
for many different forms of fibrotic ILD, including
idiopathic pulmonary fibrosis (IPF),2-6 chronic
hypersensitivity pneumonitis (cHP),7-9 connective tissue
disease-related ILD (CTD-ILD),10 and unclassifiable ILD
(UILD).10,11 Although Clinical Laboratory Improvement
2 Original Research
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Amendments (CLIA) program-certified measurements
of telomeres are available, little is known about the
clinical impact of telomere length (TL) testing for
patients with fibrotic ILD in a real-world setting.

Telomeres are six-nucleotide repeats that serve as
protective caps at the end of chromosomes and shorten
with each cycle of cell replication. Inherited genetic
mutations in telomere-related genes can lead to
accelerated age-adjusted telomere shortening, a
progressive pulmonary fibrosis phenotype, and reduced
survival.2,7,10,12,13 In addition, emerging evidence
suggests that short TL itself is a pharmacogenetic risk
factor that is predictive of adverse events associated with
immunosuppression exposure for patients with either
IPF14 or non-IPF fibrotic ILD.8,15 Despite its potential as
a clinical tool, use of TL as a biomarker for fibrotic ILD
has been limited to research applications.

In this single-center observational study, we report the
diagnostic and clinical impact of incorporating CLIA-
certified TL measurement in the workup of patients with
fibrotic ILD. We describe the prevalence of short TL in
patients with fibrotic ILD and explore its resultant
impact on clinical treatment.
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Study Design and Methods
Study Design and Subjects

This retrospective observational study was approved by
the institutional review board at Columbia University
Medical Center (IRB AAAS0753), and each patient pro-
vided written informed consent to allow collection of
clinical data and biospecimens for genetic research. Sub-
jects were enrolled from those evaluated by the
Columbia University Medical Center/NewYork-
Presbyterian ILD clinic. Patient ILD diagnoses were
made according to consensus guidelines16 with multidis-
ciplinary discussion. Patient demographics, medications,
pulmonary function test results, CT imaging reports,
and laboratory test results were abstracted from medical
records. Familial pulmonary fibrosis (FPF) was defined
as having at least one first- or second-degree relative
with fibrotic ILD. Clinical features of short telomere syn-
drome (short telomere features), including the presence
of FPF and a personal or familial history of extrapulmo-
nary manifestations of a short telomere syndrome (eg,
premature graying before the age of 30 years, crypto-
genic cirrhosis, unexplained cytopenias, myelodysplastic
syndrome, and acute myeloid leukemia),17 were
abstracted from medical records. Characteristics of pa-
tients seen at the clinic during the same time period
but not enrolled in the study were obtained from elec-
tronic health records, using SlicerDicer.

Telomere Length Testing

Telomere length testing was conducted via flow cytome-
try and fluorescence in situ hybridization (FlowFISH) by
the CLIA-certified Johns Hopkins Molecular Diagnostics
Laboratory.18 The decision to send TL testing was left to
the discretion of the treating provider (Fig 1). Short telo-
meres were defined as having age-adjusted TL < 10th
percentile14,15 in either granulocyte or lymphocyte popu-
lations. All but one patient (n ¼ 107; 99%) underwent
research TL testing via quantitative polymerase chain re-
action (qPCR), using previously described methods.6

Clinical Management Changes Based on TL Testing

Clinical management changes after TL testing focused
on change in pharmacologic treatment strategy. Phar-
macologic change after identification of short TL in-
cludes cessation/de-escalation or avoidance of
immunosuppressants (ie, prednisone, mycophenolate,
or azathioprine) for cases in which immunosuppressants
are commonly used (ie, cHP,19 UILD,20 and CTD-ILD)
or early initiation of antifibrotics before confident diag-
nosis of IPF or progressive pulmonary fibrosis.16 With
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Figure 1 – Proposed approach for incorporation of genomic and genetic testing into interstitial lung disease (ILD) management. A clinical diagnosis of
fibrotic ILD is established on the basis of history, physical examination, pulmonary function testing, CT chest imaging, and histopathology. Patients
undergo routine treatment if receiving a fibrotic Q15ILD diagnosis with consensus role for or against immunosuppression without having familial pul-
monary fibrosis (at least one first- or second-degree relative with fibrotic ILD) or features of short telomere length (personal or family member with
graying before the age of 30 years, cryptogenic cirrhosis, unexplained cytopenia, or bone marrow failure including myelodysplastic syndrome and
leukemia). Telomere length testing is suggested for all others. Although this study used a telomere length cutoff of < 10th percentile as suggestive of
increased risk of adverse effects from immunosuppression, these risks exist along a spectrum and would be found to a greater degree with more extreme
telomere shortening, especially < 1st percentile. Sequential telomere length testing followed by genetic testing, as opposed to simultaneous testing, may
be a preferred strategy as detection of a telomere length < 1st percentile can help reclassify variants of uncertain significance to pathogenic/likely
pathogenic variants and can prioritize vendors that use a gene panel that is more inclusive of telomere-related genes. Genetic testing for patients with
familial pulmonary fibrosis in the absence of telomere shortening is indicated to rule out surfactant-related or mitotic spindle gene mutations. ILA ¼
interstitial lung abnormalities; PFT ¼ pulmonary function testing; TL ¼ telomere length. Q9
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identification of normal TL, management change
included empiric initiation/escalation of immunosup-
pression. Adjudication of management changes was
performed by consensus opinion of two ILD pulmonol-
ogists (treating and independent clinician). Discordant
cases were reviewed by a third ILD pulmonologist who
served as tiebreaker. The Cohen k statistic was calcu-
lated for each pair of pulmonologists and the range of
k statistics is reported.

Genetic Counseling and Testing

For patients with short TL or FPF, genetic counseling
was offered before genetic testing and return of results21

(Fig 1). All genetic tests were sent to CLIA-certified lab-
oratories that classified variants according to American
College of Medical Genetics and Genomics (ACMG)
criteria.22-24 Variants were manually reclassified to ac-
count for TL data as supporting evidence of pathoge-
nicity if < 10th percentile (PP4 moderate criteria)
or < 1st percentile (PP4 strong criteria) in genes linked
to both fibrotic ILD and telomere dysfunction (TERT,
TERC, RTEL1, PARN, NAF1, DKC1, TINF2, NOP10,
NHP2, ZCCHC8, and ACD).21 All gene panels included
TERT, TERC, RTEL1, PARN, DKC1, and TINF2. Almost
chestjournal.org
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all panels included NOP10 (94%), NHP2 (94%), and
ACD (94%), and most panels included NAF1 (74%)
and ZCCHC8 (68%). A positive diagnostic finding was
defined as a pathogenic or likely pathogenic variant. A
candidate diagnostic finding was defined as a variant of
uncertain significance (VUS) in a telomere-related
gene in a patient with granulocyte or lymphocyte
TL < 1st percentile given the specificity of this cutoff
for pathogenic telomere gene mutations.18,25 If genetic
testing yielded a positive or candidate diagnostic finding,
cascade genetic and TL testing was offered to family
members. All variant classifications were submitted to
ClinVar.26

Statistical Analysis

Baseline variables for short vs normal TL groups were
compared by Student t-test for continuous variables
and by c2 or Fisher exact test for categorical variables.
Analysis of variance was used to assess differences in
means among multiple groups. Correlation between TL
as a continuous variable by different cell populations
(lymphocytes vs granulocytes) or different methods
(FlowFISH vs qPCR) were assessed by measuring the
Pearson correlation.
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For our primary analysis, we quantified clinical manage-
ment changes stratified by clinical diagnosis. We per-
formed c2 testing to compare the proportion of
patients with treatment changes across clinical ILD diag-
noses. To assess interrater variability, we calculated the
Cohen k statistic for each ILD pulmonologist and report
a range of k values.

We performed univariable and multivariable logistic
regression to determine clinical features associated
with short TL. For multivariable analyses, we adjusted
for age,27 sex,28 race/ethnicity,27 IPF diagnosis,10 as
well as variables identified in univariable analyses. We
also performed sensitivity analyses by varying the defini-
tion of short telomeres as (1) < 1st percentile in
4 Original Research
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granulocytes or lymphocytes or (2) < 10th percentile
by qPCR.

Weassessed the sensitivity and specificity of qPCRTLmea-
sures for detecting FlowFISHTL at different percentile cut-
points (< 10thand< 1st percentile).Wealso compared the
sensitivity and specificity of qPCR vs FlowFISH for detect-
ing actionable genetic findings or identifying patients with
short telomere features. To assess agreement of categoriza-
tionbetweenqPCRandFlowFISHassays,we computed the
Cohen k statistic between the two assays at < 1st and <

10th percentile cutpoints.

All P values less than .05 were considered significant.
Statistical analyses were performed with R statistical
software, version 4.4.0 (R Foundation).
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Results
Between November 2021 and June 2023, 534 new
patients with fibrotic interstitial lung disease were
evaluated by the Columbia/NewYork-Presbyterian ILD
clinic. Of these, 125 patients (23%) completed CLIA-
certified TL testing and 108 consented to enroll in the
present study (e-Fig 1). Enrolled patients were
predominantly male (54%) with a median age of 68
(interquartile range [IQR], 62-74) years. Patients
received diagnoses of UILD (n ¼ 31), cHP (n ¼ 29), IPF
(n ¼ 27), CTD-ILD (n ¼ 16), and other (n ¼ 5)
(Table 1). Features of short telomeres were prevalent in
our cohort, including FPF (50%), and extrapulmonary
manifestations of short telomeres in the patient (25%) or
family member (41%) (Table 1). During the same time
period, patients with ILD without TL testing (n ¼ 409)
had a similar median age of 70 (IQR, 62-77) years and
proportion with an IPF diagnosis (20%) but included
fewer male patients (41%) (e-Table 1).

Telomere Length Measurement

Age-adjusted FlowFISH TL determinations in
granulocytes and lymphocytes were highly correlated
(R ¼ 0.77; P < .001). Overall, observed minus expected
age-adjusted TL measures in kilobases were lower in
granulocytes than lymphocytes (e-Fig 2). Some patients
had discordant TL < 10th percentile in only one cell
population (26%); most patients had concordant TL
measures in both cell populations > 10th percentile
(54%) or < 10th percentile (22%).

Prevalence and Clinical Predictors of Short TL

The overall prevalence for short TL in our cohort
was 46% with 50 of 108 patients with age-adjusted
TL < 10th percentile in either lymphocytes or
granulocytes. There was no difference in prevalence of
short TL by age, sex, or clinical ILD diagnosis (Table 1).
Patients with short TL had a different racial/ethnic
makeup (P ¼ .004) and greater number of short
telomere features (P ¼ .02) (Fig 2, e-Fig 3). No single
short telomere feature was enriched in patients with
FlowFISH TL < 10th percentile (Table 1) or < 1st
percentile (e-Table 2). In univariable analysis, a definite
usual interstitial pneumonia (UIP) pattern or CT
honeycombing was significantly associated with short
TL. Because of collinearity with CT honeycombing, we
excluded radiographic UIP in adjusted analyses. In
multivariable analyses, having multiple short telomere
features significantly increased the odds of identifying
short TL (OR, 2.00; 95% CI, 1.27-3.32; P < .01)
adjusting for age, sex, non-Hispanic White race/
ethnicity, smoking pack-years, honeycombing on CT
imaging, and IPF diagnosis (Table 2). CT
honeycombing, non-Hispanic White race/ethnicity, and
fewer smoking pack-years were associated with short TL
in adjusted analyses. The number of short telomere
features was also independently associated with TL < 1st
percentile in either lymphocytes or granulocytes by
FlowFISH (e-Table 3) and with TL < 10th percentile by
qPCR (e-Fig 4, e-Table 4).

Clinical Impact of TL Testing

There was good agreement of clinical impact as assessed
by independent reviewers (k, 0.73-0.81). We identified
35 cases (32%) in which management changes were
made after TL testing (Table 3). The most common
change involved reduction in immunosuppressants after
identifying short TL (n ¼ 22; 20%). Empiric initiation of
[ -#- CHE ST - 2 0 2 4 ]
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TABLE 1 ] Baseline Clinical and Genetic Characteristics Q10

Characteristic All (n ¼ 108)

Short Telomere
(< 10th Percentile)a

(n ¼ 50)

Nonshort Telomere
($ 10th Percentile)a

(n ¼ 58) P Valueb

Age (median, IQR) 68 (62, 74) 66 (60, 72) 68 (62, 74) .82

Male, No. (%) 58 (54%) 28 (56%) 30 (52%) .80

Race/ethnicity, No. (%) .004 Q11

White 67 (62%) 38 (76%) 29 (50%)

Hispanic 24 (22%) 11 (22%) 13 (22%)

Black 4 (4%) 0 4 (7%)

Asian 9 (8%) 1 (2%) 8 (14%)

OtherQ12 4 (4%) 0 4 (7%)

ILD diagnosis, No. (%) .81

IPF 27 (25%) 14 (28%) 13 (22%)

cHP 29 (27%) 12 (24%) 17 (29%)

UILD 31 (29%) 16 (32%) 15 (26%)

CTD-ILD 16 (15%) 6 (12%) 10 (17%)

Otherc 5 (5%) 2 (4%) 3 (5%)

Telomere length (kb),
(mean � SD)

GTL, age-adjusted observed
– expected

–0.97 � 0.86 –1.58 � 0.54 –0.54 � 0.58 < .001

LyTL, age-adjusted
observed – expected

–0.69 � 0.99 –1.43 � 0.75 –0.2 � 0.72 < .001

CT UIP pattern, No. (%)

Alternative diagnosis 56 (52%) 25 (50%) 31 (53%) .85

Indeterminate for UIP 17 (16%) 8 (16%) 9 (16%) 1

Probable UIP 17 (16%) 4 (8%) 13 (22%) .06

Definite UIP 18 (17%) 13 (26%) 5 (9%) .02

CT features, No. (%)

Ground-glass opacities 28 (26%) 13 (26%) 15 (26%) 1

Air trapping 28 (26%) 13 (26%) 15 (26%) 1

Traction bronchiectasis 80 (74%) 40 (80%) 40 (69%) .27

Honeycombing 32 (30%) 22 (44%) 10 (17%) .003

Pathologic UIP pattern,d

No. (%)
18 (67%) 12 (80%) 6 (50%) .10

Short telomere features,
No. (%)

Familial pulmonary fibrosis 54 (50%) 28 (56%) 26 (45%) .33

Personal extrapulmonary
signs of short TL

Premature graying 24 (22%) 15 (30%) 9 (16%) .10

Cirrhosis 3 (3%) 2 (4%) 1 (2%) .59

Hematologic disease 4 (4%) 3 (6%) 1 (2%) .33

Any 27 (25%) 17 (34%) 10 (17%) .07

Familial extrapulmonary
signs of short TL

Premature graying 33 (31%) 13 (26%) 20 (34%) .40

Cirrhosis 14 (13%) 11 (22%) 3 (5%) .02

(Continued)
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TABLE 1 ] (Continued)

Characteristic All (n ¼ 108)

Short Telomere
(< 10th Percentile)a

(n ¼ 50)

Nonshort Telomere
($ 10th Percentile)a

(n ¼ 58) P Valueb

Hematologic disease 6 (6%) 5 (10%) 1 (2%) .09

Any 44 (41%) 22 (44%) 22 (38%) .56

Total number of short
telomere features
(mean � SD)

1.28 � 1.02 1.54 � 1.16 1.05 � 0.83 .02

cHP ¼ chronic hypersensitivity pneumonitis; CTD-ILD ¼ connective tissue disease-related interstitial lung disease; GTL ¼ granulocyte telomere length;
ILD ¼ interstitial lung disease; IPF ¼ idiopathic pulmonary fibrosis; IQR ¼ interquartile range; LyTL ¼ lymphocyte telomere length; TL ¼ telomere length;
UILD ¼ unclassifiable interstitial lung disease; UIP ¼ usual interstitial pneumonia.
aTelomere length < 10th percentile for either lymphocytes or granulocytes as determined by FlowFISH.
bP values indicate differences between short and nonshort telomere groups.
cOther ILD diagnoses: idiopathic interstitial pneumonia (n ¼ 2), sarcoidosis (n ¼ 2), post-COVID fibrosis (n ¼ 1).
dPatients with surgical lung biopsy available (n ¼ 27).
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immunosuppressants after identifying normal TL
occurred in nine patients (8%). In sum, the initial
immunosuppressive strategy was heavily informed by
TL testing in 31 patients (29%). The proportion of
patients with treatment changes differed by ILD
clinical diagnosis (c2 P ¼ .01); most treatment
changes occurred in patients with cHP (52%) and
UILD (45%) (e-Fig 5).

We quantified active medications for each patient at the
time of TL testing compared with 3 months afterward.
Among non-IPF patients 3 months after TL testing, 15
of 45 normal TL patients (33%) were treated with
immunosuppressants compared with 6 of 36 short TL
patients (16%) (e-Table 5, e-Fig 6).
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Figure 2 – Clinical features and short telomeres. For patients with fibrotic inte
of having a telomere length < 10th percentile for either granulocytes or lymph
telomere features. Short telomere features include having a family history of fi
or family history of gray hair before age 30 years, cryptogenic cirrhosis or liver
and fluorescence in situ hybridization.
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Genetic Counseling and Clinical Genetic Testing

After TL testing, 46 patients with short TL or FPF were
referred for genetic counseling and testing and 34
patients completed genetic testing (Fig 3). Genetic
testing identified 13 patients with heterozygous variants
in telomere related genes (TERT, n ¼ 6; RTEL1, n ¼ 3;
PARN, n ¼ 1; TERC, n ¼ 1; NAF1, n ¼ 1; ACD, n ¼ 1).
Most variants (9 of 13; 69%) were initially classified as
variants of uncertain significance (VUS); two variants
were classified as likely benign and two variants as
pathogenic or likely pathogenic (e-Table 6). We applied
ACMG pathogenicity criteria,22-24 using TL shortening
as supporting evidence for single genetic etiology
(PP4 criteria for pathogenicity; TL < 10th percentile
TL Short TL

 = 24 n = 11 n = 3

50%

73%

100%

50%

27%

rt telomere features
2 3 3

rstitial lung disease (ILD) included in this study (n ¼ 108), the prevalence
ocytes by FlowFISH is shown for those having the number shown of short
brotic ILD in a related first- or second-degree family member, a personal
disease, or unexplained hematologic disease. FlowFISH ¼ flow cytometry
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TABLE 2 ] Logistic Regression Identification of Clinical Characteristics Associated With Short Telomere Length
(FlowFISH < 10th Percentile)

Characteristic

Univariable Analysis Multivariable Analysisa

OR 95% CI P Value OR 95% CI P Value

Age, y 1.00 0.96-1.04 .82 0.98 0.93-1.03 .43

Sex, male 1.19 0.56-2.55 .66 0.84 0.34-2.17 .72

Non-Hispanic White 3.17 1.41-7.45 .006 5.01 1.85-15.2 .002

Smoking pack-years 0.99 0.96-1.01 .36 0.97 0.93-1.00 .04

IPF (yes/no) 1.35 0.56-3.25 .50 0.51 0.16-1.49 .23

Definite UIP on CT chest scan 3.72 1.29-12.4 .02 . . .

CT honeycombing 3.77 1.60-9.42 .003 7.64 2.54-26.8 < .001

No. of STS featuresb 1.64 1.11-2.50 .02 2.00 1.27-3.32 .004

FlowFISH ¼ flow cytometry and fluorescence in situ hybridization; IPF ¼ idiopathic pulmonary fibrosis; STS ¼ short telomere syndrome; UIP ¼ usual
interstitial pneumonia.
aAll listed variables included in multivariable model.
bClinical features of short telomere syndrome include familial pulmonary fibrosis, personal or familial history of premature graying before age 30 years,
unexplained hematologic disease, and cryptogenic cirrhosis.
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[PP4 moderate criteria] or < 1st percentile [PP4 strong
criteria]) and reclassified two VUS as likely pathogenic
variants (see the online supplement). In total, a positive
diagnostic finding, defined as a likely pathogenic or
pathogenic variant in a telomere-related gene, was found
in four patients (TERT, n ¼ 2; PARN, n ¼ 1; RTEL1, n ¼
1). In addition, we identified a candidate diagnostic
finding, defined as a VUS in telomere-related genes with
TL < 1st percentile, in six patients (TERT, n ¼ 3; TERC,
n ¼ 1; NAF1, n ¼ 1; ACD, n ¼ 1). One patient had a
nondiagnostic VUS in TERT with TL between the 1st
and 10th percentile. TL testing enabled reclassification of
eight of nine variants originally classified as VUS into
actionable positive or candidate diagnostic findings. In
total, 10 of 34 patients (29%) had positive or candidate
diagnostic findings and were offered cascade testing of
relatives.
TABLE 3 ] Clinical Pharmacologic Changes After Telomere

Type of Treatment Changea
cHP

(n ¼ 29) (n

Stop, de-escalate, or avoid
immunosuppressants

10 (34%) 9

Avoid starting immunosuppressants 5 (17%) 6

Decrease dose of immunosuppressants 4 (14%) 2

Stop current immunosuppressants 1 (3%) 1

Start immunosuppressants 5 (17%) 3

Start antifibrotics 3 (10%) 2

Any change 15 (52%) 14

cHP ¼ chronic hypersensitivity pneumonitis; CTD-ILD ¼ connective tissue dise
UILD ¼ unclassifiable interstitial lung disease.
aImmunosuppressants: mycophenolate, azathioprine, or prednisone. Antifibrot
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Comparison of Age-Adjusted TL From FlowFISH
Assay With qPCR Assay

There was high correlation between qPCR TL with
FlowFISH TL in granulocytes (R ¼ 0.77; P < 2 � 10–16)
and lymphocytes (R ¼ 0.79; P < 2 � 10–16) (e-Fig 7).
The qPCR assay identified 24% of the overall cohort as
having TL < 10th percentile. Having qPCR TL < 10th
percentile was 47% sensitive and 95% specific for
FlowFISH TL < 10th percentile, and 87% sensitive and
86% specific for FlowFISH TL < 1st percentile (e-Fig 8).
Compared with qPCR < 10th percentile, FlowFISH <

10th percentile in lymphocytes had similar sensitivity
and specificity for identifying actionable genetic findings
and for identifying patients with short telomere features
(e-Fig 9). When comparing agreement between assays,
qPCR TL < 10th percentile had the best agreement with
FlowFISH TL in lymphocytes < 10th percentile
Length Testing

UILD
¼ 31)

CTD-ILD
(n ¼ 16)

IPF
(n ¼ 27)

Other
(n ¼ 5) All (n ¼ 108)

(29%) 1 (6%) 0 2 (40%) 22 (20%)

(19%) 1 (6%) 0 2 (40%) 14 (13%)

(6%) 0 0 0 6 (6%)

(3%) 0 0 0 2 (2%)

(10%) 1 (6%) 0 0 9 (8%)

(6%) 0 2 (4%) 1 (20%) 8 (7%)

(45%) 2 (13%) 2 (7%) 2 (40%) 35 (32%)

ase-related interstitial lung disease; IPF ¼ idiopathic pulmonary fibrosis;

ics: nintedanib or pirfenidone.
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IPF: 27

cHP: 29

UILD: 31
Short TL: 50

Normal TL: 58

Genetic testing: 34

No GC referral: 62

Declined GC: 4 P/LP: 4

Candidate VUS: 6

VUS: 1

Likely benign: 2

No variant: 21
Lost to follow-up: 7

Declined testing after GC: 1

Reclassify*: 9

CTD-ILD: 16

Other: 5
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Figure 3 – Genetic counseling referral and clinical genetic testing after telomere length testing. Sankey plot demonstrates the proportion of patients from
each interstitial lung disease diagnosis identified to have short vs normal telomeres. Subsequent referral to a genetic counselor and follow-up status after
telomere length testing is demonstrated, including results of genetic testing. A candidate diagnostic finding indicates variants of uncertain significance
with a telomere length below the 1st percentile. cHP ¼ chronic hypersensitivity pneumonitis; CTD-ILD ¼ connective tissue disease-related interstitial
lung disease; GC ¼ genetic counselor; IPF ¼ idiopathic pulmonary fibrosis; P/LP ¼ pathogenic/likely pathogenic; TL ¼ telomere length; UILD ¼
unclassifiable interstitial lung disease; VUS ¼ variant of uncertain significance. *Reclassification of variants accounting for telomere length as sup-
porting evidence of pathogenicity.
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(k ¼ 0.59) and FlowFISH TL in granulocytes < 1st
percentile (k ¼ 0.56) (e-Fig 10).
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Discussion
To our knowledge, this is one of the first studies to
systematically evaluate the implementation of TL testing
in the clinical treatment of patients with fibrotic ILD.
Given the emerging role of TL for aiding genetic
diagnosis,17,21 personalizing prognosis,2,27 and risk-
stratifying immunosuppressant therapy8,14,15 in fibrotic
ILD, we sought to understand the clinical impact of this
test in a real-world setting. We found a high prevalence
of short TL, defined as < 10th age-adjusted percentile by
FlowFISH, in nearly one-half of patients undergoing
testing. TL testing directly impacted the pharmacologic
treatment of 35 of 108 patients (32%) and led to
actionable findings by genetic testing for 10 of 34
patients (29%).

In our cohort of patients selected for TL testing, the
overall prevalence of short TL < 10th percentile for
either lymphocytes or granulocytes was 46%. This was
similarly high for patients with IPF (52%) and patients
without IPF (44%) and higher than in prior retrospective
studies that used qPCR-based percentiles.14,15 The high
prevalence of short TL in this cohort is likely due to
enrichment for patients with FPF or a personal or family
history of extrapulmonary manifestations of short
telomere phenotypes. We found that the number of
short telomere features, but not any single feature, was
associated with short TL. Prior reports have described
variable penetrance of individual extrapulmonary
8 Original Research
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manifestations of short TL29 even among carriers of
TERT and TERC mutations.30,31 As nearly one-half of
patients with ILD with FlowFISH TL < 10th percentile
did not have any short telomere features, noninherited
etiologies such as smoking,32 chronic infection,33 or
inflammation34 may contribute to their telomere
shortening.

In our study, changes in immunosuppression medical
therapy occurred predominantly in patients with cHP
and UILD, diagnoses for which no consensus first-line
therapy exists.20,35 Most often, the identification of short
TL led to cessation, reduction, or avoidance of
immunosuppression, consistent with retrospective
studies describing a harmful pharmacogenetic interaction
between short TL and immunosuppression in patients
with cHP8,15 and UILD.15 Patients with short TL may
have an intrinsic immunodeficiency that is unmasked by
exogenous immunosuppressants,36 leading practitioners
to consider alternative options such as antifibrotic
therapy. However, for patients with CTD-ILD with short
TL, practitioners often judged that the benefits of
immunosuppression outweigh the risks. Further studies
are needed to identify specific subsets of patients with ILD
for whom identification of short TL may shift clinical
equipoise toward avoiding immunosuppression and
favoring antifibrotics as first-line therapy.

Consistent with prior reports,37 our study identified
telomere gene mutations in patients across multiple ILD
diagnoses and highlights additional benefits of TL
testing by reclassifying these variants from VUS to
pathogenic or likely pathogenic. Curation of individual
[ -#- CHE ST - 2 0 2 4 ]
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variants into ACMG pathogenicity classes22-24 is often
limited by lack of supporting experimental or
phenotypic evidence. Patient-derived evidence of
telomere shortening offers preliminary functional
evidence in favor of pathogenicity (PP4 criteria) in
telomere-related gene variants.4,5 In the absence of
rigorous testing in experimental models (PS3 criteria),
which provides strong evidence of pathogenicity,24 wider
reporting of variants to curation databases such as
ClinVar26 can also help reclassify VUS if found in
multiple affected unrelated individuals (PS4 criteria).
Accurate reporting of ACMG pathogenicity class is
especially important because cascade testing of family
members is recommended for pathogenic or likely
pathogenic variants but not for VUS. Given the high
diagnostic rate of actionable mutations in our study,
genetic counseling and testing should ideally accompany
a finding of FlowFISH TL < 1st percentile. Additional
efforts are needed to expand the availability of genetic
counseling and to understand patient barriers to testing
so that the full benefit of TL testing can be realized. Until
then, referral to specialized centers with genetic
counseling expertise may be appropriate.

Our study identified similarly strong correlations between
variousmeasures of TL, whether between cell populations
by FlowFISH (granulocytes vs lymphocytes; R ¼ 0.77),
or between different assays (qPCR vs FlowFISH; R ¼
0.76-0.77). While the 10th age-adjusted percentile cutoff
for both assays showed comparable sensitivity and
specificity for associations with short telomere features or
actionable genetic findings, we find that absolute cutoffs
are not equivalent between the two assays. In this study,
we defined short TL as being less than the 10th percentile
based on multiple studies encompassing thousands of
patients with ILD that have identified this cutoff for both
qPCR and FlowFISH assays to be associated with risk of
pulmonary fibrosis,6,38,39 extrapulmonary
consequences,29,40,41 adverse outcomes,7,10,15,29,38,42,43 or
harm from immunosuppression.14,15 As with any
continuous assay, the association between risk and TL
exists along a spectrum, with more adverse events
associated with the shortest TL.2,7,11,13,27,44-46 Similarly,
dyskeratosis congenita is a rare syndromic disorder of
extreme telomere shortening for which lymphocyte TL<
1st percentile has a sensitivity of 97% and a specificity of
91% for differentiating patients from their unaffected
relatives.25 Further studies will be needed to identify
clinically relevant cutoffs for TL, recognizing that cutoffs
may depend on the type of measurement and the type of
cell measured.
chestjournal.org
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In our cohort, we identified a skew in the racial/ethnic
makeup toward more non-Hispanic White patients
found to have short TL. Discrepancies in TL by race/
ethnicity have been previously described in both
healthy28 and ILD populations.27 We identified fewer
cases of short TL among patients with ILD of Black,
Asian, and Hispanic racial/ethnic groups, consistent
with prior studies.28,47 This observation may be derived
from differences in genetic variation,42 epigenetic
inheritance,48 as well as medical33,49 and social
stressors,50 or to the control populations used to
validate FlowFISH nomograms. Additional studies are
needed to determine if race- and ethnicity-specific
reference panels could improve resolution for
identifying critically short TL in these populations.

Our study has several limitations. First, our study was
retrospective and theremay be inconsistencies in provider
assessment or patient recall of short telomere features.
Second, because our study was a single-center experience
and we did not perform TL testing on all patients, clinical
associations with short TL should be independently
validated. Third, the FlowFISH assay differs from the
qPCR assay for TL, from which most clinical outcome
data in ILD are derived. Applying the same age-adjusted
10th percentile cutoff for these two tests may yield
differences in ability to distinguish patients with ILD at
increased risk forworse outcomes. Fourth, only FlowFISH
measurements from one clinical laboratory were used;
these were not compared with other CLIA-certified
laboratories. Despite these limitations, we demonstrate
the feasibility of our approach to TL testing with a high
detection rate of short TL in an identifiable subset of
patients with ILD in a real-world setting. Although our
findings demonstrate short-term changes in clinical
management resulting fromTL testing, continued follow-
up of this cohort will determine how TL measurement
impacts long-term clinical outcomes. Future studies,
including randomized clinical trials, are needed to
quantify the clinical benefit of TL testing on relevant
outcomes like mortality and lung function decline.

In summary, we found that clinical TL testing in ILD is
feasible, actionable, and impactful for clinical
management. The real-world prevalence of short
telomeres is high in patients with fibrotic ILD with a
personal or family history suggestive of a short telomere
syndrome. TL testing not only impacted pharmacologic
treatment of non-IPF patients, but also led to
upclassification of telomere gene VUS to likely
pathogenic mutations or to candidate diagnostic
9
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variants. Thus, TL testing led to actionable results for
patients with fibrotic ILD and their family members.
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