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Proteome alterations in erythrocytes with PIEZO1 gain-of-function
mutations
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Key Points

• Erythrocytes of
patients with DHS
showed alteration of
several processes
such as ion transport,
proteasome, and
vesicle-mediated
transport.

• The alteration of the
vesicle-mediated
transport was
functionally
demonstrated by an
increased vesiculation
rate in patients with
DHS.
3-m
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Gain-of-function mutations in PIEZO1 cause dehydrated hereditary stomatocytosis (DHS) or

hereditary xerocytosis, an autosomal dominant hemolytic anemia characterized by high

reticulocyte count, a tendency to macrocytosis, and mild jaundice, as well as by other

variably penetrant clinical features, such as perinatal edema, severe thromboembolic

complications after splenectomy, and hepatic iron overload. PIEZO1 mutations in DHS lead

to slowed inactivation kinetics of the ion channel and/or facilitation of channel opening in

response to physiological stimuli.

To characterize the alterations of red blood cell proteome in patients with mutated PIEZO1,

we used a differential approach to compare the proteome of patients with DHS (16 patients

from 13 unrelated ancestries) vs healthy individuals. We identified new components in the

regulation of the complex landscape of erythrocytes ion and volume balance mediated by

PIEZO1. Specifically, the main impaired processes in patients with DHS were ion

homeostasis, transmembrane transport, regulation of vesicle-mediated transport, and the

proteasomal catabolic process. Functional assays demonstrated coexpression of PIEZO1 and

band 3 when PIEZO1 was activated. Moreover, the alteration of the vesicle-mediated

transport was functionally demonstrated by an increased vesiculation rate in patients with

DHS compared with healthy controls. This finding also provides an explanation of the

pathogenetic mechanism underlying the increased thrombotic rate observed in these

patients.

Finally, the newly identified proteins, involved in the intracellular signaling pathways

altered by PIEZO1 mutations, could be used in the future as potential druggable targets in

DHS.
 February 2024
Introduction

PIEZO1 is a mechanosensitive nonspecific cation membrane channel expressed in several tissues in
which it plays a crucial role in various physiological processes as a sensor of mechanical forces.1-8 In
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red blood cells (RBCs), it is involved in the regulation of hydration
and cellular volume. Indeed, gain-of-function (GoF) mutations in
PIEZO1 cause dehydrated hereditary stomatocytosis (DHS) or
hereditary xerocytosis, autosomal dominant hemolytic anemia
characterized by high reticulocyte count, a tendency to macrocy-
tosis, and mild jaundice,9-13 as well as by other variably penetrant
clinical features, such as perinatal edema, severe thromboembolic
complications after splenectomy, and hepatic iron overload.12,14

The phenotype of patients with DHS ranges from asymptomatic
to mild anemia.15,16 The main characteristic of the erythrocyte of
DHS is cell dehydration caused by the loss of cellular potassium,
which can be assessed by atomic absorption spectroscopy,
osmotic fragility, or ektacytometry. PIEZO1 mutations in DHS lead
to slowing of inactivation kinetics of the ion channel and/or facili-
tation of channel opening in response to physiological stimuli.1,17-19

It is a key sensor of erythrocyte membrane curvature, signaling
modulation of intracellular ion content and cell volume as a function
of mechanical forces and constraints in capillaries and venules.

PIEZO1 protein exhibits a unique propeller-shaped, 3-bladed
homotrimer. Each subunit of the homotrimer contains a peripheral
blade containing 38 transmembrane helices, a C-terminal domain,
a C-terminal extracellular domain, an anchor, and a 90 Å long beam
on the intracellular side. The N-terminal blade is involved in the
mechanosensing module, the beam and anchor form the trans-
duction module, and the C-terminal accounts for the ion-
conducting pore module.19-25

An association of PIEZO1 mechanoreceptor with resistance to
erythroid invasion by malarial parasites was observed in vitro and in
mice.26 Indeed, the PIEZO1 E756del reduces the severity of
Plasmodium falciparum infection in patients with DHS, possibly
reflecting decreased RBC surface expression of the plasmodial
virulence factor, PfEMP.27,28 Recent evidence highlighted the role
of PIEZO1 in the regulation of iron metabolism in humans and mice.
Patients with DHS can exhibit hyperferritinemia (and even hemo-
siderosis) accompanied by very low values of plasma hepcidin.29,30

PIEZO1 influences erythropoiesis because its activation during
erythroid differentiation slows differentiation and reticulocyte
maturation.31 To characterize the alterations of RBC proteome in
patients with mutated PIEZO1, we used a differential approach to
compare the proteomes of patients with DHS with those of healthy
individuals. The data improved our knowledge through the identi-
fication of new actors in the regulation of the complex PIEZO1-
mediated landscape of RBC ion and volume balance. These
newly identified players in intracellular signaling pathways aid
further understanding of the pathogenetic mechanism of DHS and
are potential future druggable targets.

Material and methods

Participant recruitment and sample collection

Overall, 16 patients with a clinical and molecular diagnosis of DHS,
and 9 age- and gender-matched healthy control participants (HCs)
were included in this study. The average age of participants was
24.0 ± 18.8 years for HCs (5 females and 4 males) and 22.1 ±
17.8 years for patients with DHS (7 females and 9 males). DHS
diagnosis was based on history, clinical findings, laboratory data,
and genetic testing. The local university ethical committee
approved the collection of the patient data (DAIMedLab, “Federico
2682 ANDOLFO et al
II” University of Naples; N252/18). Blood samples were obtained
from the patients after they had given signed informed consent, in
accordance with the Declaration of Helsinki. Two additional
patients with DHS (patient identifying numbers DHS17 and
DHS18) were enrolled for the functional analysis (vesiculation
assay).

RBC membrane preparation and immunoblotting

The standard Ficoll-Hypaque (1.077-0.001 kg/L; Sigma-Aldrich,
Milan, Italy) density gradient centrifugation method was used to
isolate erythrocytes and reticulocytes. The isolated RBCs were
diluted in Tris-buffered saline (TBS) to normalize the number of
cells on hematocrit values of HCs and patients. Then, RBC cells
were lysed by 3 freeze-thaw cycles in 5mM KH2PO4 containing a
protease inhibitor cocktail (set III, animal-free Calbiochem; Merck
KGaA, Darmstadt, Germany). The membrane fraction was sedi-
mented by lysate centrifugation at 36 000 g for 20 minutes at 4◦C.
Erythrocyte membrane extracts (80 μg protein) were loaded on
sodium dodecyl sulfate polyacrylamide gels, transferred onto pol-
yvinylidene difluoride membranes (BioRad, Milan, Italy), and incu-
bated with mouse anti-BAND3 glycoprotein antibody (dilution,
1:5000; GTX11012; GeneTex) and mouse anti-ABCB6 antibody
(dilution, 1:1000; 101-10003; Raybiotech, Inc). Mouse anti–β-actin
antibody (1:12000; SAB1305554; Sigma Aldrich, Milan, Italy) was
used as a control for equal loading. Incubation with horseradish
peroxidase–conjugated antirabbit immunoglobulin (1:4000) (GE
Healthcare, Amersham, United Kingdom) and horseradish
peroxidase–conjugated antimouse mmunoglobulin (1:4000) (GE
Healthcare) was performed, and labeled bands were visualized
(Supersignal West Pico Chemiluminescent Substrate Kit; Thermo
Fisher Scientific, Miami, FL). Densitometric analysis was performed
with the BioRad Chemidoc using Quantity One software (BioRad).

Protein sample preparation for proteomics analysis

RBC membranes were pooled and washed in phosphate-buffered
saline (PBS). Proteins were extracted by adding 5% sodium
dodecyl sulfate (BioRad), followed by sonication with 3 pulses of 3
seconds for a total of 5 cycles. Protein extracts were quantified by
bicinchoninic acid assay (Thermo Fisher Scientific). The equivalent
of 50 μg of each protein sample was digested by trypsin onto S-
Trap filters,32 per the manufacturer’s protocol (ProtiFi, Huntington,
NY). Peptide mixtures were dried in a SpeedVac system (Thermo
Fisher Scientific) and 5 μg of each sample was thereafter sub-
jected to a clean-up by using the zip-tip C18 protocol (Merck,
Milan, Italy).

LC-MS/MS analyses and protein identification and

quantification

Equal amounts of membrane protein extracts were hydrolyzed with
trypsin on S-Trap cartridge and the obtained peptide mixtures were
analyzed on a LTQ Orbitrap XL (Thermo Fisher Scientific) coupled
to the nanoLC system nanoEasy II. Samples were fractionated onto
a C18 capillary reverse-phase column (200 mm, 75 μm, 5 μm)
working at a flow rate of 250 nL/min, using a linear gradient of
eluent B (0.2% formic acid in 95% acetonitrile) in eluent A (0.2%
formic acid in 2% acetonitrile in liquid chromatography mass
spectrometry [LC-MS] grade [Merck]) from 5% B to 50% B in
195 minutes. Tandem mass spectrometric (MS/MS) analyses were
27 JUNE 2023 • VOLUME 7, NUMBER 12



D
ow

nloaded from
 http://ashpublications.org/bloodadvances/article-pdf/7/12/2681/2061166/blooda_adv-2022-008673-m

ain.pdf by guest on 23 February 2024
performed using the data-dependent acquisition mode: 1 MS scan
(mass range from 400 to 1800 mass-to-charge ratio [m/z]) was
followed by MS/MS scans of the 10 most abundant ions in each
MS scan, applying a dynamic exclusion window of 40 seconds. All
samples were run in technical duplicates. For more detail refer to
the supplemental Methods.

Multiple-reaction monitoring analyses

Multiple-reaction monitoring (MRM) analysis was carried out for the
validation of some proteins found to be differentially expressed in
the untargeted proteomic analyses. Specifically, 50 μg of cell
lysates obtained from different samples were digested by trypsin
onto S-Trap filters, as described earlier. For further details refer to
the supplemental Methods.

Functional enrichment analyses

Differentially expressed proteins identified in all sets of analyzed
samples were collected in a unique list, which was analyzed using
the ClueGO app of Cytoscape. A nonredundant biological pro-
cesses database of Gene Ontology (GO) was employed by
applying the Benjamini-Hochberg correction with a P value < .05.
For domain-specific functional enrichment analysis, we used
PANTHER software to identify slim biological processes of the GO
database. Terms with false discovery rates of ≤0.05 and an
enrichment factor of >5 were selected for the bubble plot repre-
sentation by the Prism software (GraphPad Software, San Diego,
CA).

Immunofluorescence

Peripheral blood from HCs was treated with vehicle (dimethyl
sulfoxide), 2.5 μm Yoda1 (10 minutes), or 2.5 μm Yoda1
(20 minutes). Thereafter, RBCs were fixed for 5 minutes in meth-
anol and washed in 50 mM PBS/NH4Cl. After washing in 1.5 mg/
mL EDTA/PBS, blocking was performed with 1% bovine serum
albumin/PBS. RBCs were immunologically stained with rabbit anti-
PIEZO1 antibody (1:100) (15939-1-AP; Proteintech); mouse anti-
BAND3 (BIII-136) antibody (dilution, 1.100 GTX11012; GeneTex),
and secondary antibodies (1:100) (Alexa Fluor 488 antirabbit, and
Alexa Fluor 568 antimouse, Life Technologies). Coverslips were
mounted on microscope slides with 5 uL of moviol. Cells were
imaged using a ZEISS LSM980 confocal microscope with Air-
yscan 2 super-resolution, equipped with an oil immersion plan 63×
objective. The following settings were used: green-channel exci-
tation of Alexa488 by the argon laser 488 nm line was detected
with the 505 to 550 nm emission bandpass filter. Red-channel
excitation of Alexa546 by the helium/neon laser 543 nm line was
detected with the 560 to 700 nm emission bandpass filter (using
the Meta monochromator). For the quantification of colocalization,
12 independent images for each condition were acquired, with a
mean of 7 erythrocytes (standard deviation = ± 3.8) for each
acquisition. The intensity values of green (PIEZO1) and red (band
3) channels were extracted to calculate Pearson correlation coef-
ficient of merged regions by Zeiss-ZEN colocalization software.

Extracellular vesiculation assay

Extracellular vesiculation was induced by calcium and ionophore
treatment as previously described,33 with minor modifications.
Briefly, RBCs from both HCs and patients with DHS were pelleted
and then resuspended in 9 volumes of TBS. CaCl2 (Sigma) at a
27 JUNE 2023 • VOLUME 7, NUMBER 12
final concentration of 1 mM and ionophore A23187 (5 μM) (Sigma
Aldrich) were used. In addition, samples from both HC and patients
with DHS were treated with 5 μM of Yoda1 and then incubated at
37◦C for 30 minutes under constant agitation. Treated RBCs were
pelleted at 16 000 g for 20 minutes, after which the supernatant
was centrifuged for 30 minutes at 16 000 g. The final vesicle pellet
was resuspended in an appropriate volume of TBS. Finally, the
samples were stained with CD47 (Thermo Fisher Scientific) and
glycophorin (Thermo Fisher Scientific) and analyzed by
fluorescence-activated cell sorting.34

Statistical analysis

Statistical significance of the difference in protein expression was
determined using Student t tests. Statistical significance of multiple
comparisons was calculated using analysis of variance (ANOVA),
and the post hoc correction was performed using Tukey multiple
comparison tests. A 2-sided P value < .05 was considered sta-
tistically significant.

Statistical analysis for the relative protein quantification based on
the calculation of label-free quantitation intensities was carried out
by MeV software using an unpaired t test with a P value < .05. Fold
changes (FCs) of statistically significant proteins were calculated
for each group of DHS samples as log2 of the ratio of averaged
label-free quantitation intensities of patients vs HCs. Specifically, all
proteins with log2FC < 0.5 (−0.5) were considered to be down-
regulated, whereas proteins with log2FC > 0.5 (+0.5) were
reported as upregulated.

Results

Clinical and genetic findings

We analyzed samples from 16 patients with 13 unrelated ances-
tries and different PIEZO1 genotypes. Clinical findings of these 16
patients with DHS stratified based on their genotype is summarized
in Tables 1 and 2.14,26,35-38 Specifically, 87.5% of cases exhibited
missense variants, whereas 12.5% showed in-frame deletions.
Herein, we report unpublished data from 8 patients and 2 addi-
tional PIEZO1 variants not yet associated with DHS1 (c.6205G>A,
p.Val2069Met; c.4274G>A, p.Ser1425Asn) (Table 1). In agree-
ment with the autosomal inheritance pattern of DHS, 11 patients
showed pathogenic variants in heterozygous state whereas 5 were
in homozygous state.

As previously described, the mutations were distributed along the
entire coding sequence of the gene. Specifically, in most of the
cases (75%) the variants localized in the mechanosensing module
(a repetitive structural unit called the transmembrane helical unit
[THU], or Piezo repeat; ie, THU4, THU5, THU7, THU8), in only
12.5% of cases the mutations localized in the transduction module
(Anchor), whereas in the remaining 12.5% of cases, the mutations
localized in the ion-conducting pore (cover of the channel [CAP]
and a beam, roughly at the bottom of the third Piezo repeat or THU
[CLASP]).

Differential proteomic analysis in patients carrying

PIEZO1 mutations

Differential proteomic analyses were carried out on erythrocyte
membrane proteins from patients with DHS (n = 16) and HCs (n =
9). Differentially expressed proteins were identified, and analyses
RED CELL PROTEOME IN PATIENTS WITH MUTATION IN PIEZO1 2683



Table 1. Genetic features of the patients with PIEZO1 variants analyzed in this study

Patient ID HGVS (Coding)* HGVS (protein) RefSeq ID HGMD Zygosity Protein domain Protein domain function

Published patient

data (Y/N) Published variant

DHS1 c.6328C>T p.Arg2110Trp rs776531529 CM1911800 Het Anchor Transduction module Y 12,35

DHS2 c.1815G > A p.Met605Ile - CM1911750 Het THU4 Mechanosensing module Y 12,38

DHS3 c.2268_2270delGGA p.Glu756del rs572934641 CD184712 Het THU5 Mechanosensing module N 26

DHS4 c.2268_2270delGGA p.Glu756del rs572934641 CD184712 Het THU5 Mechanosensing module N 26

DHS5 c.4766C>T p.Thr1589Ile rs534283978 CM1914354 Het Close to CLASP Ion-conducting pore N 36

DHS6 c.5195C>T p.Thr1732Met rs139051768 CM200163 Het THU8 Mechanosensing module N 35

DHS7 c.2005G>T p.Asp669Tyr CM1817546 Het THU4 Mechanosensing module Y 14

DHS8 c.2005G>T p.Asp669Tyr CM1817546 Het THU4 Mechanosensing module Y 14

DHS9 c.1815G > A p.Met605Ile - CM1911750 Het THU4 Mechanosensing module Y 38

DHS10 c.6205G>A p.Val2069Met rs199752762 - Het Close to Anchor Transduction module N -

DHS11 c.6796G>A p.Val2266Ile rs546338962 CM187363 Het CAP (CED) Ion-conducting pore Y 37,38

DHS12 c.4274G>A p.Ser1425Asn rs772788410 - Hom THU7 Mechanosensing module N -

DHS13 c.4274G>A p.Ser1425Asn rs772788410 - Hom THU7 Mechanosensing module N -

DHS14 c.5389C>T p.Arg1797Cys - CM187402 Hom THU8 Mechanosensing module Y 37

DHS15 c.5389C>T p.Arg1797Cys - CM187402 Hom THU8 Mechanosensing module Y 37

DHS16 c.5389C>T p.Arg1797Cys - CM187402 Hom THU8 Mechanosensing module N 37

CED, C-terminal extracellular domain; Het, heterozygous; Hom, homozygous; N, not; Y, yes; HGVS, Human Genome Variation Society.
*The transcript reference of the PIEZO1 gene is NM_001142864.4
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Table 2. Clinical features of the patients with PIEZO1 variants analyzed in this study

Code

Age Gender RBC Hb Hct MCV MCH MCHC ARC Total bilirubin LDH Ferritin

y M/F ×106/μL g/dL % fL pg g/dL ×103/μL mg/dL U/L μg/L

DHS1 50 M 4.4 14.9 44.2 100.0 33.7 33.7 380.0 5.7 335.0 1180.0

DHS2 35 M 4.6 16.0 43.7 94.4 34.6 36.6 130.0 2.8 210.0 293.0

DHS3 49 M 5.7 16.8 47.1 82.6 29.4 35.6 113.0 1.1 251.0 294.0

DHS4 18 F 5.1 13.4 40.0 92.0 29.1 31.6 69.0 1.5 530.0 126.0

DHS5 36 M 2.7 8.6 26.8 99.9 32.2 32.2 905.0 7.3 192.0 32.0

DHS6 53 M 5.0 15.1 46.0 93.1 30.3 32.5 442.0 2.3 8.9 789.0

DHS7 30 F 3.4 13.5 37.7 111.0 40.0 38.2 - - 1.4 775.0

DHS8 20 F 3.6 11.9 33.2 92.2 33.1 36.0 - - 235.0 312.0

DHS9 13 F 4.0 13.0 0.0 88.4 - 36.7 217.0 13.0 - -

DHS10 15 F 6.1 10.8 33.9 55.2 17.6 31.9 896.0 1.3 210.0 31.5

DHS11 14 F 2.8 10.9 31.4 110.0 38.2 34.6 535.0 1.9 253.0 355.0

DHS12 1 M 3.0 8.8 26.7 89.7 29.6 33.0 127.0 0.6 307.0 556.0

DHS13 6 F 3.8 11.0 34.6 91.9 29.2 31.8 189.0 0.4 328.0 48.3

DHS14 3 M 3.6 11.7 33.8 94.0 31.5 33.5 165.0 4.6 315.0 488.0

DHS15 4 M 3.8 11.7 34.8 90.7 30.5 33.7 145.0 4.3 250.0 72.0

DHS16 6 M 4.2 12.8 37.8 90.7 30.6 33.8 266.0 1.4 316.0 68.0

ARC, absolute reticulocyte count; F, female; Hb, hemoglobin; Ht, hematocrit; LDH, lactate dehydrogenase; M, male; MCH, mean corpuscular hemoglobin; MCHC, mean corpuscular
hemoglobin concentration; MCV, mean corpuscular volume.
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produced a unique list of 171 total proteins (supplemental Table 2).
The identified proteins were subdivided based on the localization of
the mutations in the different domains of PIEZO1 (Figure 1A).
Among the 171 differentially expressed proteins, 142 were upre-
gulated, and 29 were downregulated. A total of 139 proteins were
altered in a specific domain, whereas 40 proteins were shared
between different domains (Figure 1A).

The largest number of differentially expressed proteins belonged to
the THU7 and THU8 domains. Functional enrichment analysis
highlighted that most of the upregulated proteins were linked to a
few molecular processes, independent of the position of mutations
(Figure 1B). The most enriched molecular processes were exocy-
tosis, vesicle-mediated transport to the plasma membrane, vesicle
budding from the membrane, P-type adenosine triphosphatase
(ATPase)-coupled transmembrane transporter activity, and regula-
tion of oxidative stress. Exocytosis is the last step of the secretory
pathway that involves the fusion of vesicles with the plasma
membrane. RBCs experience membrane loss by exocytosis, both
in vivo and during storage, by the blebbing of microvesicles from
the tips of echinocytic spicules.39

Rab5c was 1 of the most upregulated proteins in patients with
DHS compared with HCs. Members of the Rab protein family are
small guanosine triphosphatases of the Ras superfamily that are
thought to ensure fidelity in the process of docking and/or fusion of
vesicles with their correct acceptor compartment. Rab5c-mediated
endocytic trafficking is also essential in hematopoietic stem and
progenitor cell development.

The most upregulated proteins within the regulation of oxidative
stress process were basigin (BSG), protein disulfide-isomerase
(P4HB, also called PDI), peptidyl-prolyl cis-trans isomerase A,
and thioredoxin (TXN). P4HB/PDI regulates the formation and
27 JUNE 2023 • VOLUME 7, NUMBER 12
rearrangement of disulfide bonds. This protein is present in the
human erythrocyte membrane. In sickle cell disease, cell surface–
associated PDI shows increased activity that is related to the
regulation of erythrocytes oxidative stress and hydration status.40

TXN is 1 of the main antioxidants with a scavenger function of
reactive oxygen species, and its levels are increased in oxidation
damage during inflammation disease.41 Peptidyl-prolyl cis-trans
isomerase A induces the chemotaxis and signaling by its peptidyl-
prolyl isomerase activity or by binding basigin protein, thus regu-
lating reactive oxygen species production and, therefore, the
oxidative stress and the inflammatory response.42

The functional process named ATPase-coupled transmembrane
transporter activity includes a large number of proteins involved in
the transport of ions; ATPase plasma membrane Ca2+ transporting
1 (ATP2B1, PMCA1); ATPase plasma membrane Ca2+ trans-
porting 4 (ATP2B4, PMCA4); ATPase Na+/K+ transporting subunit
alpha 1 (ATP1A1); aquaporin-1 (AQP1), a water-specific channel;
solute farrier Family 40 member 1 (SLC40A1) or ferroportin (FPN),
that is, the only known vertebrate iron exporter; and ATP-binding
cassette subfamily B member 6, mitochondrial (ABCB6), whose
mutations are causative of another hereditary RBC membrane
transport defects, the familial pseudohyperkalemia. In addition, we
observed upregulation of the solute carrier family 4 member 1
(SLC4A1, band3), the major mediator of the exchange of chloride
with bicarbonate across plasma membranes; lysine deficient pro-
tein kinase 1 (WNK1); and odd-skipped related transcription factor
1 (OSR1); all of which are known to be involved in cation
homeostasis and trafficking regulation.

Intriguingly, among all significant biological processes, we found a
single downregulated cluster into which almost all the down-
regulated proteins converged; this regulation of hematopoietic
RED CELL PROTEOME IN PATIENTS WITH MUTATION IN PIEZO1 2685
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stem cell differentiation functional group includes almost only
proteasome 20S subunits (PSMA1, PSMA3, PSMA6, PSMA7, and
PSMB1) that were all downregulated in patients with DHS
compared with HCs.

We further subdivided our case series into 2 main groups based on
the different mutated domains, the mechanosensing module
(domains THU4, THU5, THU7, THU8, and CLASP), and the
transduction module/ion-conducting pore, which included only 2
patients. The functional enrichment analysis allowed the associa-
tion of specific functional processes with each domain. The ion
homeostasis/transmembrane transport processes were prevalently
impaired in patients carrying mutations in the transduction module/
ion-conducting pore domain; conversely, the mechanosensing
2686 ANDOLFO et al
module was found mainly associated with regulation of the vesicle-
mediated transport process. The only process common to both
groups was the proteasomal protein catabolism process, as was
expected from the recurrent identification of downregulated pro-
teasomal subunits in a large portion of patient samples
(supplemental Figure 1).

PIEZO1 GoF mutations cause increased

phosphorylation of OSR1

Four different proteins (WINK1 and OSR1, both related to the
dysregulation of the cation transport pathway; RAB35 and RAB8A,
related to the vesicle/endocytosis process) were validated by using
an innovative method based on MS/MS MRM. Briefly, for each
27 JUNE 2023 • VOLUME 7, NUMBER 12
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protein, at least 3 prototypic peptides were selected and at least 3
transitions per protein were monitored. Total transition areas
normalized to endogenous actin signals were used for the statis-
tical analysis and fold-change calculations. Based on differential
proteomics data, RAB35, RAB8A, and WINK1 were upregulated in
the patients with DHS when compared with HCs; whereas OSR1
was overexpressed only in patients carrying mutations in the
mechanosensing module of PIEZO1 (Figure 2A-B). Moreover,
further investigation of OSR1 and WNK1 was carried out for 3
reasons: (1) band 3 interacts directly with WNK1, (2)
deoxyhemoglobin-induced displacement of WNK1 from band 3
initiates a signaling cascade resulting in phosphorylation/activation
27 JUNE 2023 • VOLUME 7, NUMBER 12
of OSR1 and phosphorylation/activation of NKCC1, and (3)
mutations leading to either elimination or augmentation of the
deoxyhemoglobin binding site on band 3 cause dissociation of
WNK1 from band 3.43 Therefore, we assayed the level of phos-
phorylation of OSR1 on threonine 185 (ie, the site of phosphory-
lation by WNK1 kinase).44 in patients with DHS carrying PIEZO1
variants in the mechanosensing module. MRM relative quantifica-
tion data on tryptic peptide (185 to 202), which contains threo-
nine185 showed that, besides the expected accumulation of
nonphosphorylated peptide in patients with DHS compared with
HCs, the phosphorylated form is more abundant in patients car-
rying PIEZO1 variants in the mechanosensing module (Figure 2B).
RED CELL PROTEOME IN PATIENTS WITH MUTATION IN PIEZO1 2687
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PIEZO1 GoF mutations induce an augmented

production of extracellular vesicles

The vesicle pathway involvement was further analyzed by studying
the extracellular vesicle (EV) content in blood samples from 2 HCs
treated with PIEZO1 activator, Yoda1, to mimic the function of
PIEZO1 mutations and in 2 patients (DHS17 carrying the variant
p.Gly1394del and DHS18 carrying the variant p.Lys2502Arg).
Using fluorescence-activated cell sorting analysis, we analyzed the
percentage of cells that were double positive for the CD47 and
CD235a markers, representing the population of EVs. We found
that, at steady state, the 2 patients presented an increased per-
centage of cells double positive for CD47 and CD235a markers
and, therefore, an increased level of EVs (Figure 3A-B). After the
treatment with CaCl2 and Yoda1, HCs showed an increased level
of EVs compared with nontreated samples. Patient DHS17 pre-
sented an increased percentage of EVs compared with HCs, even
after tretament with CaCl2 and Yoda1; in contrast, patient DHS18
only showed a trend of increased EVs levels, although not statis-
tically significant (Figure 3A-B).

PIEZO1 GoF mutations cause colocalization of

PIEZO1 with band 3

To validate the deregulation of transmembrane transporter activity,
we focused our attention on band 3, the most representative
protein of the plasma membrane of RBCs, and ABCB6, strictly
related to PIEZO1 by causing another RBC membrane defect.
Western blotting analysis confirmed the upregulation of both band
3 and ABCB6 proteins in the patients with DHS compared with
HCs (Figure 4A). We hypothesized that the upregulation of band 3
2688 ANDOLFO et al
in patients with DHS could be related to enhanced interaction
between PIEZO1 and band 3. Thus, we analyzed the protein
localization of band 3 and PIEZO1 by super-resolution confocal
microscopy in the erythrocytes of HCs at the steady state and
during a time course (10 and 20 minutes) of treatment with Yoda1
(chemical activator of PIEZO1) to mimic the hyperactivation of the
channel present in the patients with GoF variants in PIEZO1. We
observed a significant positive correlation between an increased
time of exposure to Yoda1 and improved colocalization of band 3
and PIEZO1 at the plasma membrane of RBCs (Figure 4B-C).

Discussion

PIEZO1 protein reportedly functions as a pore-forming mechano-
sensitive ion channel in a wide range of animals.45 It is distributed
mainly in nonsensory tissues, regulating osmotic homeostasis,
proprioception, and light touch in humans.46

PIEZO1 has been linked to different human diseases, such as DHS
caused by GoF mutations and congenital lymphatic dysplasia
owing to loss-of-function mutations.16 Currently, most of the DHS
causative variants have not yet been characterized. To understand
the pathogenic mechanisms underlying PIEZO1 GoF variants, we
analyzed the plasma membrane proteome of RBCs isolated from
patients with DHS compared with that in HCs. We enrolled 16
patients with DHS with mutations localized in different domains of
the PIEZO1 protein, spanning THU (mechanosensing module), the
transduction module (Anchor), and the ion-conducting pore (CAP
and CLASP). We found 171 differentially expressed proteins (142
were upregulated and 29 downregulated) between patients
and HCs. The most impaired biological processes were
27 JUNE 2023 • VOLUME 7, NUMBER 12
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ATPase-coupled transmembrane transporter activity, exocytosis,
vesicle-mediated transport to the plasma membrane, and vesicle
budding from the membrane, which are all connected to alterations
of intracellular protein trafficking. The proteins belonging to these
processes are transmembrane channels involved in the transport of
ions across the membrane, such as ATP2B1, ATP2B4, ATP1A1,
RHCE, ATP7A, SLC16A1, SLC29A1, and AQP1. These findings
demonstrated that PIEZO1 GoF mutations contribute to altered
ionic homeostasis by directly or indirectly affecting the expression
of other ion channels. The increased expression of AQP1 corre-
lates with the dehydration of the RBCs observed in DHS.

Of note, FPN was upregulated in patients with DHS compared with
controls. FPN is highly abundant in erythrocytes and protects them
against oxidative stress and malaria infection.47 FPN occurs at
54 000 copies per cell, an amount greater than that of the integral
RBC membrane protein component, glycophorin C. FPN is critical
for exporting free iron generated by hemoglobin autoxidation to
maintain the integrity of mature RBCs. Interestingly, FPN activity is
inhibited by hepcidin, the key regulator hormone of iron homeo-
stasis, also in mature RBCs. Therefore, the increased level of FPN
could be related to the lower levels of plasma hepcidin
27 JUNE 2023 • VOLUME 7, NUMBER 12
encountered in patients with DHS.29 Moreover, in RBCs of
patients with DHS there are elevated levels of calcium,1 an
important FPN cofactor stimulating iron efflux by carrying out a
regulatory function in FPN-mediated iron efflux.48 The combined
and additive effects of both hepcidin and dysregulated calcium
levels in patients with DHS could strictly be related to the altered
expression level of FPN.

In addition, ABCB6 was overexpressed in DHS compared with
controls. ABCB6 is an erythrocyte membrane ABC transporter
protein bearing the Langereis blood group antigen system in RBCs
and porphyrin transporter. GoF mutations in ABCB6 cause iso-
lated familial pseudohyperkalemia (included in the large class of
hereditary stomatocytosis), a dominant RBC trait characterized by
cold-induced “passive leakage” of RBC potassium ions into
plasma. Overexpression of this protein in RBCs could enhance
potassium efflux and induce hyperkalemia as recurrently found in
patients with DHS with pleiotropic syndrome.10

The erythrocyte anion exchanger (AE1, SLC4A1, band 3), the most
abundant protein in the RBCs membrane with 106 copies per
erythrocyte, also showed increased expression in DHS compared
RED CELL PROTEOME IN PATIENTS WITH MUTATION IN PIEZO1 2689
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with HCs. Specific mutations in the SLC4A1 gene result in several
erythrocyte diseases, that is, hereditary spherocytosis or hereditary
stomatocytosis and/or kidney disease dominant distal renal tubular
acidosis.15 The overexpression of band 3 could potentiate the ion
unbalance in RBCs of patients with DHS. Besides a functional
interaction between band 3 and PIEZO1, we hypothesize a
possible physical interaction. Therefore, a colocalization analysis by
super-resolution confocal microscopy of RBCs from HCs treated
with the PIEZO1 activator Yoda1 to mimic the alterations of
PIEZO1 found in patients with DHS was performed. Interestingly,
an increased colocalization of PIEZO1–band 3 was detected when
2690 ANDOLFO et al
the RBCs were treated with Yoda1. This finding suggests a
possible interaction of these 2 proteins when PIEZO1 is opened
and activated. Thus, band 3 could participate in the complex
pathological mechanism of ion balance alteration in DHS through
both a direct and indirect action on ion homeostasis. Moreover, it is
interesting to note that PIEZO1 can both curve the lipid mem-
branes and respond directly to the changes in membrane tension
associated with changes in membrane curvature.49 The curvature
of the membrane induced by PIEZO150 likely requires strong
protein-lipid interactions to anchor the bilayer around the curved
shape of PIEZO1. In addition, the function of band 3 may be
27 JUNE 2023 • VOLUME 7, NUMBER 12
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influenced by the interactions between band 3 and lipids or lipid
domains in the plasma membrane.51 Indeed, the curvature of the
membrane induced by PIEZO1 seems to get closer to band 3 and
could regulate its activity.

Furthermore, we found upregulation of WNK1 and OSR1, both
involved in cation homeostasis and trafficking regulation in RBCs.
Deoxyhemoglobin (but not oxyhemoglobin) binds to the cyto-
plasmic domain of band 3 and displaces WNK1 kinase from its
docking site on band 3. The displacement of WNK1 kinase acti-
vates OSR1 by phosphorylating threonine 185, which in turn
phosphorylates and activates NKCC1, leading to an influx of NaCl
and KCl into the cell whenever O2 levels decrease. In this manner,
the O2 content of the erythrocyte can modulate erythrocyte volume
during RBC transit in the vasculature.43 The increased levels of
WNK1, OSR1, and phosphorylated OSR1 may have a synergic
effect on the dysregulation of NaCl and KCl influx in RBCs of
patients with DHS.

In patients with DHS, we identified several upregulated proteins
belonging to the vesiculation process. To assess whether the
increased level of these proteins could be involved in the alter-
ations of vesicle production, we analyzed the EVs content in HCs
and patients with DHS. We demonstrated, to the best of our
knowledge, for the first time, an increased level of EVs in both HCs
treated with Yoda1 (mimicking the PIEZO1 activation) and patients
with DHS compared with nontreated samples. RBC-derived
EVs are secreted during erythropoiesis, physiological cellular
aging, disease conditions, and in response to environmental
stressors. Under physiological and pathological conditions, RBC-
derived EVs loaded with proteins, lipids, and microRNAs might
be vital for communication with the endothelium to regulate NO
and O2 homeostasis, redox balance, and immunomodulation.
Furthermore, RBC-derived EVs are critical to the dysregulation of
hemostasis and demonstrate relevant procoagulant effects in
several disease states.52 Moreover, RBC-derived EVs are involved
in the complex iron metabolism process because they carry ferritin
and express transferrin receptors.53 The increased level of RBC-
derived EVs in patients with DHS could explain the increase in
severe thromboembolic events after splenectomy, and studying this
aspect could open new avenues in the pharmacological treatment
of these complications.

Several proteins involved in the oxidative stress process were
upregulated, whereas a single downregulated cluster, called
regulation of hematopoietic stem cell differentiation, mainly
included proteasome subunits. Proteasomes are multicatalytic
complexes with important roles in the protein control of the RBC
membrane proteome. The 20S complex is the proteolytic core of
the proteasome, equipped with 3 proteolytic activities: caspase
like, trypsin like, and chymotrypsin like. Misfolded proteins are
transferred in the 20S cylinder after being selected by 19S regu-
latory complexes that recognize ubiquitinated molecules. There is a
time-dependent translocation and/or activation of the proteasome
in the membrane of RBC and a tight connection of activity with the
27 JUNE 2023 • VOLUME 7, NUMBER 12
oxidative burden of RBCs. In RBCs of DHS, downregulation of
proteasomes could account for an impairment of protein control in
addition to increased oxidative stress. This finding is very different
compared with other anemias such as sickle cell disease and
glucose-6-phosphate dehydrogenase deficiency,54 and raises a
question about the possible role of PIEZO1 as a regulator of the
proteasome.

To the best of our knowledge, this study identified for the first time
alterations within the RBC proteome of patients affected by DHS. It
showed new pathophysiological mechanisms in DHS and identified
potentially targetable proteins in this condition characterized by the
absence of therapeutical options.
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