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Revolutionizing Wilson disease prognosis: s
a machine learning approach to predict acute-
on-chronic liver failure
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Abstract

Background and objectives Wilson disease (WD), an inherited copper metabolism disorder, is a cause of acute-
on-chronic liver failure (ACLF), posing life-threatening risks due to rapid progression. This study aimed to develop a
machine learning (ML)-based model to predict ACLF risk in WD patients.

Methods We retrospectively analyzed 3692 WD patients (Leipzig score >4) from The First Affiliated Hospital of Anhui
University of Chinese Medicine (2014-2024), including 104 ACLF and 104 non-ACLF cases. The original data set was
randomly divided into the training and test cohorts in a ratio of 7:3. Demographic, biochemical, and ultrasound

data were collected. Six ML algorithms (LR, SVM, KNN, ExtraTrees, XGBoost, LightGBM) were applied to construct a
predictive model, with SHAP explaining feature importance.

Results The XGBoost model achieved optimal performance (AUC: 0.998, accuracy: 0.968). Key predictors included
TBA, APTT, diagnosis age, onset age, Hb. Elevated TBA, APTT and diagnosis age correlated with higher ACLF risk, while
reduced onset age and Hb indicated poorer outcomes. Additional parameters (TT, CI~, CER and hepatic imaging
features) also contributed modestly to predictions.

Conclusions The ML-based model effectively predicts WD-ACLF risk, with XGBoost demonstrating superior
performance. TBA, APTT, diagnosis age, onset age and Hb emerged as critical biomarkers, offering actionable insights
for early clinical intervention.
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Introduction

Wilson disease (WD) is an autosomal recessive disorder
caused by a pathogenic variant in the ATP7B gene encod-
ing a copper transporter protein. The main mechanism is
the impairment of hepatic cuprocyanin synthesis and bil-
iary copper excretion [1]. Its most common pathological
changes include pathologic deposition of copper ions in
the liver, basal ganglia and kidney, and this imbalance in
metal homeostasis can induce progressive tissue damage
[2]. About 62—-85% of WD patients may manifest symp-
toms of liver disease, with highly heterogenous clinical
outcomes. Although early chelating agents can strongly
improve the prognosis of most patients, 8-15% of WD
patients may develop acute-on-chronic liver failure
(ACLEF), a complication with a 28-day mortality rate of
approximately 85-95%, recognized as the leading cause
of WD-related deaths [3]. A decade-long retrospective
study (2014—-2024) conducted at the First Affiliated Hos-
pital of Anhui University of Chinese Medicine showed a
2.8% incidence of WD-ACLF among 3692 WD patients,
which presented similar epidemiological characteris-
tics to HBV-ACLF. However, few therapeutic options
for WD-ACLF are available. Although liver transplan-
tation can improve the survival outcome of patients, its
application is limited by donor shortage and the risk of
immunosuppression. Traditional scoring systems such as
model for end-stage liver disease or Child—Pugh are not
specific enough for WD-ACLF, which makes progno-
sis prediction difficult. In addition, WD-ACLF presents
with a rapid onset and a short diagnostic window period.
Therefore, a biomarker-driven early warning assess-
ment model for WD-ACLF was constructed to guide the
application of interventions through a multidimensional
clinical management strategy, thereby improve patient
survival outcomes and minimize the need for liver
transplantation.

Machine learning (ML) techniques can facilitate risk
stratification of complex diseases by integrating mul-
timodal data and dynamic time-series analysis. In the
field of neurodegenerative diseases, deep learning archi-
tectures have transitioned from the traditional diagnos-
tic approaches to the precision medicine paradigm. For
example, in Parkinson's disease and Alzheimer's disease,
ML models have significantly improved the accuracy
of early diagnosis and the feasibility of individualized
treatment by integrating multimodal data (e.g., imag-
ing, genomics, and clinical indicators) [4, 5]. A previous
study performed ML-based risk stratification for WD cir-
rhosis [6]. Other studies on ACLF have mainly focused
on the viral and alcoholic liver disease aspects, and no
model has been developed to facilitate prediction of the
development of WD-ACLE, which delays the initiation of
clinical intervention and increases the mortality rate of
WD-ACLFE.
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In this study, we integrated artificial intelligence algo-
rithms with multimodal clinical data (covering demo-
graphic baseline, hepatobiliary, pancreatic and splenic
ultrasound, blood and urine tests, etc.) to identify the
most important indicators associated with WD-ACLF
and to construct predictive models for the occurrence of
WD-ACLE. This dynamic stratification model addresses
inherent constraints of conventional static scoring sys-
tems through precise identification of high-risk cohorts,
facilitating targeted interventions to reduce mortality
and improve quality of life in Wilson disease.

Methods

Data collection and processing

In this study, a retrospective cohort analysis was con-
ducted wusing a multidimensional data collection
approach to obtain data of neurological inpatients at the
First Affiliated Hospital of Anhui University of Chinese
Medicine from an electronic medical record system. The
search involved the use of terms such as “Hepatolenticu-
lar degeneration” or “Wilson disease’, combined with the
International Classification of Diseases (ICD), with the
relevant ICD-10 code of E83.0, and the time window was
from January 2014 to December 2024. A total of 3692
patients with WD were enrolled in the study, among
which 104 patients with WD-ACLF were included. To
achieve number matching, 104 patients without ACLF
were randomly selected and assigned to the control
group. Twenty cases of WD-ACLF and 25 cases of WD-
nonACLF hospitalised at the Affiliated Hospital of the
Institute of Neurology, Anhui University of Traditional
Chinese Medicine, between January 2022 and December
2024, were used to validate the model's external validity.
All patients were given a unique hospitalization identifi-
cation code to ensure the independence and traceability
of case data. The study was reviewed and approved by the
Ethics Committee of the First Affiliated Hospital of Anhui
University of Chinese Medicine (No. 2024AH-13), and
was performed according to the requirements of the Dec-
laration of Helsinki by employing the triple desensitiza-
tion (ID substitution, date offset, and blurring of sensitive
information). The ethics committee waived the require-
ments of informed consent and clinical trial registration.
To mitigate the impact of invalid variables on model cal-
culations, relevant literature was identified to select sta-
tistically significant variables in each study, and variables
that were closely associated with disease from the institu-
tion's existing programmes were combined. Some base-
line data of the patients, liver and kidney function, blood
routine, coagulation function, ceruloplasmin(CER), 24-h
urine copper and liver, gallbladder and spleen ultrasound,
etc., which were finally selected as clinical observation
indicators.Liver and kidney function, blood routine,
coagulation function, CER and other indicators were
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examined on the day the disease appeared or the follow-
ing day.

Case selection criteria

The WD inclusion criteria were based on the EASL 2012
Clinical Practice Guidelines [7], as well as a Leipzig Scale
assessment, which was independently performed by two
neurologists of associate title or above, with a total score
of >4 on the scale. Liver diseases caused by factors such
as hepatitis, schistosomiasis infection and alcohol poi-
soning were excluded from the study. At the same time,
basic consistency in treatment modalities was main-
tained for the included patients. This included the use of
zinc gluconate tablets and chelators, while irregular use
was excluded.

Research design and predictive variables

The endpoint indicator of our study was the occurrence
of ACLE, diagnosed based on the APASL 2019 version of
the diagnostic criteria [8]. The ACLF group was further
stratified into the ACLF and non-ACLF groups following
the ACLF diagnosis within 72 h of admission. Moreover,
baseline parameters, laboratory indicators, and hepato-
biliary, pancreatic, and splenic ultrasound were used as
predictors.

Data preprocessing

During the preprocessing stage of data, outliers in the
dataset were screened and excluded, and missing val-
ues were estimated. Regarding the variables subtypes,
we used the median filling method for estimation, while
for continuous variables, we randomly selected values
near the mean to be filled within the range of variance.
To improve accuracy and reliability of the estimated data,
the estimation error was controlled within 3% by com-
paring the key statistical indicators such as mean, median
and standard deviation before and after estimation. To
further verify the robustness of the estimated data, a ML
cross-validation methodology was employed to ensure
the scientific nature of the data processing and enhance
the reliability of the prediction model through multiple
iterations of validation.

The original data set was randomly divided into train-
ing and test datasets at the ratio of 7:3 (See supple-
mentary Table 1), in which all samples in the training
dataset were employed to construct the model and per-
form parameter optimization, while the test dataset was
used as independent validation samples to objectively
determine the actual predictive capacity and generaliz-
ability of the model. This division was adopted to ensure
that the model could fully learn the data features dur-
ing the training process, and the independent test data-
set validation effectively avoids the model overfitting
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phenomenon, eventually enhancing the reliability and
scientific rigor of the evaluation results.

Establishments of the clinical model

In this study, a multi-stage modelling strategy was
employed to construct the WD-ACLF risk prediction
model. Initially, we screened the predictors through step-
wise regression: one-factor logistic regression for initial
screening, followed by multifactor regression modelling.
Next, we integrated the logistic regression (LR), support
vector machine (SVM), K-nearest neighbors (KNN),
Extremely randomized trees (Extra Trees), eXtreme Gra-
dient Boosting (XGBoost), and Light Gradient Boosting
Machine (LightGBM) six algorithms to develop the com-
posite model. The selected algorithms encompass diverse
modeling approaches to capture complex data patterns
and enhance predictive accuracy. Specifically: SVM excel
in high-dimensionality and small-sample scenarios due
to their maximum-margin classification principle. Light-
GBM/XGBoost leverage decision tree ensembles for
superior performance on heterogeneous data, with accel-
erated training through histogram-based optimization.
KNN provides a non-parametric, interpretable baseline
method.Random Forest and Extra-Trees fortify model
resilience by aggregating multiple decorrelated decision
trees.This comprehensive evaluation protocol ensures
robust identification of optimal WD-ACLF predictors.
Using stratified randomization, the dataset was parti-
tioned 7:3 into training (model development) and testing
(independent performance validation) subsets. Parameter
tuning was performed using the five-fold cross-validation
in the modelling phase, and the final model discrimina-
tive efficacy was determined based on the AUC value of
the ROC curve. To identify the key variables, the con-
tribution of each indicator to the prediction results was
quantified using a feature correlation matrix, which visu-
alizes the strength of the role of key biomarkers. This
multidimensional validation system enhanced the mod-
el's goodness-of-fit on the training dataset and validated
its clinical utility through independent testing.Leveraging
SHapley Additive exPlanations (SHAP) values, we quan-
tified the marginal contribution of individual predictors
to model outputs and visualized non-linear feature-target
relationships through dependency plots, overcoming lim-
itations of correlation-based interpretation.

Model evaluation indicators

The optimal model configuration after hyper-parameter
optimization was employed for the training, and efficacy
validation was implemented in an independent valida-
tion cohort. The model evaluation system consisted of
six dimensions of clinical efficacy: sensitivity (Sn) reflects
the ability to detect diseases, specificity (Sp) measures
the accuracy of identifying healthy samples, positive



Rao et al. Journal of Translational Medicine (2025) 23:999

predictive value (PPV) and negative predictive value
(NPV) characterize the clinical credibility of diagnostic
results. The AUC is calculated to comprehensively assess
the discriminative power of the classifier, while accu-
racy (Acc) serves as a global performance benchmark.
The mathematical expression formula for each index are
shown below:

TP

Sn = TP FN

g TN
"T TN+ FP

TP
PPV = ——~
v TP+ FP

TN
NPV = 3N T FN
TP+ TN

Acc =
TP+ FN+ TN+ FP

Statistics

In this study, we performed data analysis using Python
statistical modelling tool library statsmodels (V0.13.2),
and statistically significant associations between the
variables of interest were determined at P<0.05. For
numerical variables, data distribution characteristics
were first tested for normality, and the unpaired t-test
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was employed if the assumption of normality was me.
Variables that did no show normal distribution were ana-
lyzed using the Mann—Whitney U-test and presented as
the median (interquartile spacing). For categorical vari-
ables, the Pearson chi-square test was applied when the
expected frequency was equal to or greater than 5, and
the Fisher exact probability method was utilized when
the cell expectation was less than 5.

Results

Clinical features of patients

The flow chart of this study is shown in Fig. 1. A total of
568 patients with WD were enrolled in the study, among
which 104 patients had ACLF. In addition, 104 patients
without ACLF were randomly selected and assigned
to the control group, 111 (53.3%) were male patients,
97 (46.6%) were female patients, the male to female
ratio was not statistically significant (P>0.05). The first
symptoms were divided into hepatic and cerebral types,
with 148 patients (71.1%) having the hepatic type and
60 patients (28.8%) with the cerebral type. In the WD-
ACLF group, 75 patients (72.1%) had the hepatic type
and 29 patients (27.8%) had the cerebral type. Compared
with the WD non-ACLF group, patients in the WD-
ACLF group were significantly older age at the onset age
(18.5 years vs. 11.5 years, P<0.0001) and at the diagnosis
age (20 years vs. 12 years, P<0.0001), with a higher pro-
portion of males (54.8% vs. 45.1%), and a longer disease
duration (11.5 years vs. 8 years, P<0.0001). In addition,
there were more patients with abnormal hepatic volume
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Fig. 1 The flowchart of this study
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in the WD-ACLF group (52.8% vs. 0.9%, P<0.0001), and
hepatic capsule was significantly different between the
groups (81.7% vs. 13.4%, P<0.0001). The distribution of
Hepatic Parenchymal Echogenicity was significantly dif-
ferent among the groups (100% vs. 77.8%, P<0.0001), and
most of the patients had splenomegaly (96.2% vs.38.5%,
P<0.0001), exhibited a widened Portal Vein Diameter
(11.63 vs. 10.29, P<0.0001). Notably, the ALB (28.12
vs. 42.44, P<0.0001); RBC (2.96 vs. 4.53, P<0.0001),
Hb (97.5 vs. 130.5, P<0.0001), and PLT (86.5 vs. 203,
P<0.0001) were significantly decreased, probably due to
the anemia caused by liver failure. The concentrations of
PT (26 vs. 32, P<0.0001), FBG (1.14 vs. 2.29, P<0.0001)
were decreased, APTT (42.9 vs. 11.3, P<0.0001) and TT
(23.55 vs. 20.3, P<0.0001) were increased, indicating that
the coagulation function was affected. Further analysis
revealed that the liver function markers (e.g., DBIL, IBIL,
TBA, ALT, AST, GGT, LDH, and ALP) were significantly
elevated, but ALP, TG, TC HDL-C, and LDL-C were
significantly decreased. Liver fibrosis markers (PIIINP,
LN, HA, CIV) were significantly increased, while the
24-h urine copper concentration was elevated (696 vs.
657.7, P=0.0071) and CER was also increased (0.079 vs.
0.022, P<0.0001). The detailed parameters are shown in
Table 1. These variable can be used to predict the risk of
WD-ACLF (See supplementary Table 2).

Model performance

The reliability of the constructed model was tested in a
rigorously designed cohort. Notably, there was no gen-
der difference in ACLF patients and non-ACLF patients,
indicating that the interference of confounding factors
was balanced between the groups. Based on multimodal
clinical data (covering baseline parameters, laboratory
indicators, hepatobiliary-pancreatic-spleen ultrasound,
etc.), the predictive efficacy of six algorithms (LR, Extra
Trees, LightGBM, SVM, XGBoost, and KNN) was com-
pared using an integrated learning framework. Analysis
of the experimental data showed that the LR test dataset
had an AUC of 0.962 and an accuracy of 0.937, indicat-
ing that the LR model could effectively discriminate
between the target classes. The AUC and accuracy of the
training dataset were close to 1, and while the sensitivity
of test dataset was 0.935 and specificity was 0.937, with
a PPV and NPV of 0.935, indicating that the model was
balanced in the positive and negative class prediction,
avoiding the risk of misjudgment due to bias. We further
observed that the XGBoost algorithm showed optimal
overall performance in the independent validation set:
as shown in Table 2, the test P values of XGBoost in the
training and test datasets are 0.968 and 0.631 (threshold
P>0.05), respectively, indicating that its predicted prob-
ability is highly consistent with the actual event distri-
bution and has excellent calibration performance. The

Page 5 of 12

integrated calibration curve indicated that the predicted
values were in good agreement with the observed values
between the training and testing cohorts of the XGBoost
algorithm. These data suggested that the XGBoost model
exhibited optimal overall performance in the training and
test cohorts, and the calibration curves in both cohorts is
shown in Fig. 2a, b. The area under the receiver operating
characteristic curve of the working characteristics of the
subjects was 0.998 (95% confidence interval (CI) 0.993—
1.000) (Fig. 2c, d), the Acc was 0.968 (95% CI 0.953—
1.015), the Sn and Sp were 0.968 and 0.969, respectively,
while the positive and negative predictive values were
0.968 and 0.969, respectively (see Table 3 for details).
The decision curve analysis (DCA) was adopted to assess
each model. As shown in Fig. 2e, f, DCA revealed that
XGBoost had the best performance, with a significantly
higher net benefit compared with the other methods in
the range of medium and high-risk thresholds. This con-
firmed that XGBoost could effectively integrate non-lin-
ear associations between copper metabolic abnormalities
and organ function indicators when dealing with multidi-
mensional medical data, providing a high-precision tool
for early warning detection of WD-ACLE. Furthermore,
to verify the model's general applicability, external valida-
tion was conducted in this study. This demonstrated that
XGBoost still performed optimally, with an area under
the curve (AUC) of 0.974 (95% CI 0.928-1.000), an Acc
of 0.956, a Sn of 0.920 and a Sp of 1.000, as well as a PPV
and NPV of 1.000 and 0.909(Fig. 3 and Table 4).

Identification of predictive factors for the WD-ACLF
prediction model

Based on the SHAP interpretability framework, the fea-
ture contribution of XGBoost classifiers was analyzed
from the global and individual perspectives. The wider
the distribution of the region, the greater its impact
(detailed information is shown in Fig. 4A). Then, the
average absolute value of SHAP value of each feature was
calculated by combining the degree of influence of each
feature in the machine learning model on the predic-
tion results and plotted as a bar chart (detailed informa-
tion is shown in Fig. 4B). By quantifying the contribution
of the features, the influence ranking of each feature in
the machine learning model was visually demonstrated,
which provided an important basis for the model's inter-
pretability. Based on Gini impurities, the most impor-
tant predictors in the prediction model were found to be
TBA, APTT, diagnosis age, onset age, Hb.

Discussion

In this retrospective case—control study design, a ML
prediction model for WD-ACLF was constructed for the
first time, which underscored the utility of the integration
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Table 1 Comparison of clinical characteristics between the two groups of WD patients

Feature name WD-ACLF WD non-ACLF P

N 104 104

Sex (man/woman) 57/47 54/50 0.6767
Initial presentation type (Cerebral type/Hepatic type) 29/75 31/73 0.7595
Age 33 19 <0.0007%***
median [IQR], year [27,40] [14, 32]

Onset age 185 1.5 <0.00071***
median [IQR], year [13,29] [5.75,21]

Diagnosis age 20 12 <0.00071***
median [IQR], year [14,30] [6,21]

Disease duration 1.5 8 <0.0001%**
median [IQR], year [3.75,19] [4.75,13]

Ascites 17 0 <0.00071***
median [IQR], mm [0,48.5] [0]

Hepatic volume (Normal/Abnormal) 49/55 103/1 <0.0007***
Hepatic capsule (Smoothing/Non-smoothing) 19/85 90/14 <0.0007***
Coarse and hyperechoic liver parenchyma (Yes/No) 103/1 10/94 0.0053**
Distribution of Hepatic Parenchymal Echogenicity (Regularity/Irregularity) 0/104 23/81 <0.0007***
Splenomegaly (Yes/No) 100/4 40/64 <0.0007***
Portal Vein Diameter (mm) 11.63+2.03 10.29+2.08 <0.0001%**
ALB (g/L) 28.12+6.05 4244 +3.86 <0.0007***
LDL-C (mmol/L) 1.67+0.84 2.57+0.58 <0.00071%**
RBC (107 12/L) 296+0.7 453+057 <0.0007***
PT 26 32 <0.0007%***
median [IQR], s [19.68, 39.58] [30.3,33.7]

APTT 429 11.3 <0.0007***
median [IQR], s [25.85,65.55] [10.8,11.9]

T 2355 203 <0.00071***
median [IQR], s [20.38, 25.13] [19.58,20.9]

FBG 1.14 2.29 <0.0007%**
median [IQR], g/L [0.86, 1.58] [2.02,2.59]

Cr 6145 5275 0.0008***
median [IQR], umol/L [50.43,77.05] [45,64.1]

UA 134.5 287 <0.00071***
median [IQR], umol/L [90.5, 196.25] [220.25, 362]

DBIL 70.2 25 <0.00071%**
median [IQR], umol/L [48.43, 143.88] [1.9,33]

IBIL 70.86 9.1 <0.0007%***
median [IQR], umol/L [48.93,107.7] [6.9,12.3]

TBA 120.7 6.55 <0.0007***
median [IQR], umol/L [61.55, 193.85] [4.48,11]

ALT 48 30.75 0.0016**
median [IQR], U/L [31.75,754] [17.7,72.8]

AST 85 27.95 <0.0007%**
median [IQR], U/L [54.8,119.78] [21.15,45.2]

GGT 685 29 <0.0007%**
median [IQR], U/L [36.75,163] [18,51]

ALP 139 120.5 0.2636
median [IQR], U/L [124,194.25] [90, 244]

LDH 259 183.5 <0.00071%**
median [IQR], U/L [210.25,335.5] [154.75,212]

TG 0.63 1.13 <0.0007%***
median [IQR], mmol/L [0.46, 0.86] [0.81,1.61]

TC 2.06 4.285 <0.0007***
median [IQR], mmol/L [1.39,3.15] [3.68,4.92]

HDL-C 038 1.255 <0.00071***

median [IQR], mmol/L

[0.24, 0.66]

[1.11,1.43]
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Table 1 (continued)
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Feature name WD-ACLF WD non-ACLF P

HCY 18.15 10.2 <0.0001%**
median [IQR], umol/L [11.75,27.18] [7.78,12.9]

Na* 136.5 139.9 <0.0007***
median [IQR], mmol/L [131.95, 139] [138.88, 140.58]

- 1074 106.2 0.1226
median [IQR], mmol/L [103.3,135.85] [105, 108]

Hb 975 130.5 <0.00071***
median [IQR], g/L [86,111.25] [121.75,143]

PLT 86.5 203 <0.0001***
median [IQR], T0A9/L [43.75,136.5] [132,283]

RDW-CV 17.8 132 <0.00071***
median [IQR], % [15.9,19.8] [12.16,13.8]

CER 0.08 0.02 <0.00071***
median [IQR], g/L [0.05,0.1] [0.02,0.05]

PIIINP 19.91 12.59 <0.0001%**
median [IQR], ng/ml [16.55,32.71] [10.11,17.09]

LN 208 1265 <0.00071%**
median [IQR], ng/ml [166.08, 358.28] [82.46, 169.86]

HA 896.5 93.95 <0.0007***
median [IQR], ng/ml [194.58, 1382.81] [64.92, 147.36]

Clv 2379 65.55 <0.00071***
median [IQR], ng/ml [95.44,395.17] [52.11, 85.06]

WB-Cu 4.88 4.88 <0.0007***
median [IQR], umol/L [4.88,9.28] [1.92,4.88]

24 h urine copper 696 657.7 0.0071**
median [IQR], ug/24 h [512.78, 1440.46] [431.2,924.5]

N, number; ALB, albumin; LDL-C, low-density lipoprotein cholesterol; RBC, red blood cel; PT, prothrombin time; APTT, activated partial thromboplastin time; TT,
thrombin time; FBG, fibrinogen; Cr, creatinine; UA, uric acid; DBIL, direct bilirubin; IBIL, indirect bilirubin; TBA, total bile acid; ALT, alanine aminotransferase; AST,
aspartate aminotransferase; GGT, y-Glutamyl Transferase; ALP, alkaline phosphatase; LDH, lactate dehydrogenase; TG, Triglycerides; TC, Total Cholesterol; HDL-
C, High-Density Lipoprotein Cholesterol; HCY, homocysteine; Na*, Serum Sodium; CI~, Serum Chloride; Hb, hemoglobin; PLT, platelet count; RDW-CV, Red Cell
Distribution Width-Coefficient of Variation; CER, Ceruloplasmin; PIIINP, Procollagen Ill N-terminal Peptide; LN, Laminin; HA, Hyaluronic Acid; CIV, Collagen Type IV;

WB-Cu, Whole Blood Copper
*P<0.05; **P<0.01; ***P<0.001

Table 2 Hosmer_lemeshow_test in the training and test dataset

Model Train P value Test P value
LR 1.0 0.0

KNN 0972 0.024
ExtraTrees 0.019 0.056
XGBoost 0.968 0.631
LightGBM 0.002 0.009
rbf_SVM 0.940 0.237
linear_SVM 0.995 0.010
sigmoid_SVM 0.395 0.008
poly_SVM 0.705 0.581

of multidimensional clinical data and algorithmic innova-
tion level in clinical decision-making.

The predictive performance of six ML algorithms (LR,
ExtraTrees, LightGBM, SVM, XGBoost, and KNN), was
compared and results revealed that the XGBoost model
had excellent clinical applicability, with an AUC value
of 0.998 (95% CI 0.993-1.000), a classification accu-
racy of 96.8%, a sensitivity and specificity of over 96%, a
positive score of over 1,000, and a balanced distribution
of positive/negative predictive values exceeding 96%.

Its good performance may be due to its unique techni-
cal architecture, ie., the gradient boosting framework
effectively captures the nonlinear associations among
clinical parameters by integrating weak classifiers; the
regularization strategy combines the L1/L2 penalty
terms to precisely control the model’s complexity, and
the adaptive missing value processing mechanism signifi-
cantly improves the compatibility of non-completeness of
clinical data. Notably, the ExtraTrees cannot effectively
identify novel predictors due to its over-reliance on tra-
ditional liver disease indicators such as ALT and TBIL
(feature contribution>60%), a phenomenon that reveals
the complex association between algorithmic feature
selection preferences and disease heterogeneity, provid-
ing important insights that will guide future algorithm
optimization.

Using the feature attribution analysis of Shapley's addi-
tive interpretation algorithm, a multidimensional pre-
diction system consisting of coagulation function, bile
metabolism and hematological indexes, etc. was estab-
lished for the first time, which demonstrated that TBA,
APTT, diagnosis age, onset age and Hb were the core



Rao et al. Journal of Translational Medicine (2025) 23:999

10
o
¢ 06
i
&
3
g
2
8
=04
wens Perfectly calibrated
- LR
®- KNN
02 ~@~ ExtraTroes
~o—~ XGBoowmt
o LighGBM
& o _SVM
& lmear_ SVM
-y oid_SV!
- gmoid_SVM
#— poly SVM
00 02 04 o0s ox 10
Mean predicted prodabiity
T 7
faaatereeeeees & ’
: ’
’
’
g
’
’
,
’,
’,
’
’
06 7
.
z ’
£ ’
£ ’
’
3 .
PR
04 7
P — LR AUC: 1,000 (95%C1 nan-nan)
g ess KNNAUC: 0.995 (95%CT 0.988-1.000)
,, ExtraTrees AUC: 0.995 (95%C1 0.98%-1 000)
Cd XGBoost AUC: 1.000 (95%C1 nan-nan)
02 ,, LightGBM AUC: 0.999 (95%C10.998-1 000)
,' i SVM AUC: 0.995 (95%C1 0.959.1.000)
P Kincar_SVM AUC: 1,000 (95%C1 nan-nan)
7’ eoe  sgmoid SVMAUC: 0.941 (95%C10.904-0.979)
o — poly_SVM AUC: 0.992 (95%C1 0.950-1.000)
00
00 02 04 06 ox 10
1 - Specificity
06
0s ——

04 \\Mr/\ﬁ"\v\\/\/-/

Net Bemefit

021 —— LR

KNN

e ExtraTrees

014 = XGBoost

—— LightGBM

= bl SVM

004 limear_SVM

— sigmoid_SVM
poly_SVM

— Trcat all

‘‘‘‘‘‘ Treat none

00 02 04 06 0% 10
Threshold Probability

Page 8 of 12

10
0%
506
b
£
2
=04
-+ Perfectly calibrated
~a- LR
o KNN
o. —&— ExtraTrees
- XGBoost
- LighGBM
—.— bl SVM
®— lincar_SVM
- —8— sigmoid_SVM
=~ poly_SVM
) 02 04 06 o8 )
D Mean predicted probability
10 .
z
7
7’
’ &
7’
7’
. 27
08 . ’
- ’
o o »
7’
-
s
7’
2
0.6 Cd
4
z .
£ ’
g 7’
’
5 ,
’/
04 7’
o7 — LR AUC: 0.962 (95%C1 0.598-1.000)
27 s KNNAUC: 0.965 (95%C1 0.920-1.000)
,l e ExtraTrees AUC: 0.994 (95%C1 0.983-1.000)
’ ©e+ XGBoost AUC: 0.998 (95%C1 0.993.1.000)
02 27 — LightGBM AUC: 0.99% (95%C1 0.995-1.000)
27 ven BESVMAUC: 0.996 (95%C1 0.955-1 000)
'/ —lincar SVMAUC: 0.967 (95%C1 0.904-1.000)
’ eee sigmoid_SVMAUC: 0.907 (95%C1 0.521.0.994)
g — poly SVMAUC: 0.951 (95%C1 0.581-1.000)
00
0o 02 04 06 ox 10
1 - Specificity
06
0s
04
&
H
2
7
03 LR
KNN
—— ExtraTrees
—— XGBoost
—— LightGBM
021 — rsvm
limear_SVM
—— sigmoid_SVM
poly_SVM
014 = Treatall
~~~~~~ Trest none
00 02 04 06

Threshold Probability

Fig. 2 The calibration curves, AUC and decision curve of the training and test cohorts. a The calibration curves of the training cohort. b The calibration
curves of the test cohort. ¢ The AUC of the training cohort. d The AUC of the test cohort. e Decision curve for the training cohort. f Decision curve for the

test cohort

predictor combinations. Specifically, the TBA, APTT
and diagnosis age values were significantly and positively
associated with increased risk of developing WD-ACLE,
whereas onset age and Hb were negatively correlated with
WD-ACLE. In addition, APTT and TBA were identified

as the core drivers, and the elevated APTT values in
the WD-ACLF group than in the control group may be
related to the fact that copper toxicity disrupts coagula-
tion homeostasis through a dual mechanism, i.e., direct
inhibition of hepatic synthesis of coagulation factors II/
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Table 3 Machine learning modeling analysis in the train and test dataset
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Cohort Model AUC AUC95% ClI Acc Acc 95% Cl Sen Spe PPV NPV
Train LR 1.000 1.0000-1.0000 0.993 1.0000-1.0000 0.986 1.000 1.000 0.986
Test LR 0.962 0.8980-1.0000 0.937 0.8323-0.9772 0.935 0.937 0935 0.937
Train KNN 0.995 0.9879-1.0000 0.959 0.9262-0.9910 0.945 0972 0972 0.946
Test KNN 0.965 0.9197-1.0000 0921 0.8539-0.9874 0.839 1.000 1.000 0.865
Train Extra Trees 0.995 0.9884-1.0000 0.966 0.9358-0.9952 0973 0.958 0.959 0972
Test Extra Trees 0.994 0.9834-1.0000 0.952 0.8539-0.9874 0.903 1.000 1.000 0914
Train XGBoost 1.000 1.0000-1.0000 0.993 0.9796-1.0066 0.986 1.000 1.000 0.986
Test XGBoost 0.998 0.9932-1.0000 0.968 0.9533-1.0150 0.968 0.969 0.968 0.969
Train LightGBM 0.999 0.9978-1.0000 0.979 0.9561-1.0025 0973 0.986 0.986 0973
Test LightGBM 0.998 0.9948-1.0000 0.968 0.9533-1.0150 0.968 0.969 0.968 0.969
Train poly_SVM 0.992 0.9797-1.0000 0972 0.9077-0.9820 0.959 0.986 0.986 0.959
Test poly_SVM 0951 0.8814-1.0000 0.937 0.8539-0.9874 0.903 0.969 0.966 0912
Train rbf_SVM 0.995 0.9886-1.0000 0.966 0.9168-0.9866 0973 0.958 0.959 0.972
Test rbf_SVM 0.996 0.9882-1.0000 0.952 0.8763-0.9967 0.935 0.969 0.967 0.939
Train linear_SVM 1.000 1.0000-1.0000 0.993 1.0000-1.0000 0.986 1.000 1.000 0.986
Test linear_SVM 0.967 0.9035-1.0000 0.952 0.9250-1.0115 0.935 0.969 0.967 0.939
Train sigmoid_SVM 0.941 0.9036-0.9792 0.890 0.8304-0.9351 0.795 0.986 0.983 0.826
Test sigmoid_SVM 0.907 0.8207-0.9938 0.873 0.8113-0.9665 0.839 0.906 0.897 0.853
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Fig. 3 Test dataset for external validation of AUC cohorts

VII/IX, and degradation of vascular endothelial glycoca-
lyx. APTT, as a commonly used coagulation test, can be
used to assess the hepatic impairment and bleeding risk.
It has been reported that APTT influences the progno-
sis of many diseases. For example, in COVID-19 patients,
aspartate aminotransferase to platelet ratio index (APRI)

combined with APTT showed good prediction poten-
tial for in-hospital mortality [9]. TBA, an indicator of
liver function, is commonly used to assess the metabolic
function and cholestasis of the liver. In HBV-associated
acute liver failure, TBA was linked with the risk of short-
term mortality among patients, and when combined with
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Table 4 Machine learning modeling analysis in the test dataset for external validation

Cohort Model AUC AUC95% CI Acc Acc 95% Cl Sen Spe PPV NPV
Test LR 0.968 0.9218-1.0000 0933 0.880 1.000 1.000 Test LR
Test KNN 0.940 0.8750-1.0000 0933 0.880 1.000 1.000 Test KNN
Test ExtraTrees 0.960 0.8854-1.0000 0.956 0.920 1.000 1.000 Test ExtraTrees
Test XGBoost 0974 0.9282-1.0000 0.956 0.920 1.000 1.000 Test XGBoost
Test LightGBM 0.986 0.9602-1.0000 0.956 0.920 1.000 1.000 Test LightGBM
Test rbf_SVM 0.964 0.9102-1.0000 0.956 0.920 1.000 1.000 Test rbf_SVM
Test linear_SVM 0.966 0.9147-1.0000 0933 0.880 1.000 1.000 Test linear_SVM
Test sigmoid_SVM 0.906 0.8107-1.0000 0911 0.840 1.000 1.000 Test sigmoid_SVM
Test poly_SVM 0.952 0.8845-1.0000 0.956 0.920 1.000 1.000 Test poly_SVM
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Fig. 4 Interpretability analysis of WD-ACLF predictors via SHAP value. In Fig. 3A, the horizontal coordinates indicate the extent to which each feature
contributes to the model output, and the magnitude of the feature value is indicated by colour (red indicates a higher feature value, blue indicates a lower

feature value, and purple indicates adjacency to the mean)

other indicators, it improved the prediction accuracy
[10], which is consistent with our findings, in which the
TBA of patients with liver failure was significantly higher
than that of patients without liver failure (P>0.001).
This observation was associated with the inhibition of
the hepatocyte regeneration pathway by bile acids medi-
ated by the FXR receptor. The decrease in Hb and RBC
accompanied by increase of RDW-CV suggests that cop-
per accumulation can damage the structural integrity of
erythrocyte membranes via lipid peroxidation, to impair
erythrocyte survival and function [11, 12]. Therefore, cli-
nicians can apply this model in clinical practice. When
the TBA, APTT and diagnosis age are higher and the
onset age and Hb are lower, clinicians need to pay atten-
tion to this and intervene early to prevent further devel-
opment into WD-ACLE.

In addition, we found that patients with WD-ACLF
exhibited a unique clinical phenotype. Analysis of age-
related factors showed that delayed age of onset and
age at diagnosis and prolonged disease duration were
significant predictors of ACLF development, suggest-
ing that cumulative effects of copper toxicity in disease

progression. Elevated CER in WD-ACLF patients, con-
trary to conventional diagnostic criteria for WD, likely
reflects synergistic effects of acute-phase inflamma-
tion, hepatocyte damage, and adaptive copper metabolic
shifts. Multidimensional analysis of the indicators con-
firmed the existence of the triad of “liver injury-fibrosis-
metabolic imbalance” in WD-ACLF [13]. Significantly
elevated AST in hepatic impairment mainly reflects
hepatocellular necrosis, elevated GGT may be associ-
ated with cholestasis or oxidative stress, whereas elevated
LDH is mostly a non-specific manifestation of multitis-
sue injury, respectively [14—16]. Abnormal elevation of
liver fibrosis markers PIIINP, LN, HA, and CIV reveals
accelerated extracellular matrix remodeling process [17].
Moreover, metabolic disorders were characterized by
significant homocysteine accumulation accompanied
with decreased ALB and lipid metabolism markers (e.g.
TG, TC), which indicated multi-systemic dysfunction.
In this study, we found that elevated HDL-C was asso-
ciated with a lower risk of liver failure, which may be
attributed to improved reverse cholesterol transport and
the anti-inflammatory effect of ApoAl. Data indicates
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that HDL-C levels are strongly associated with survival
in patients with chronic liver failure, and low levels of
HDL-C may be associated with poor prognosis [18]. In
addition, ultrasonographic characterization revealed
that the risk of ACLF was significantly higher in patients
with widened portal vein diameter, uneven hepatic cap-
sule, abnormal hepatic volume, and ascites, suggesting
that the structural abnormalities of the liver preceded the
changes in biochemical indicators, providing a basis for
early warning detection.

In this study, we constructed the WD-ACLF predic-
tion system that resolve the nonlinear interaction effect
of predictors. The predictive model multidimensional
prediction system constructed in this study not only
improves early identification of WD-ACLE, but also pro-
vides a guideline that will guide the development of tar-
geted therapeutic strategies by revealing the multiorgan
interaction mechanism. The combination of key indica-
tors such as TBA, APTT, diagnosis age, onset age, Hb
and other features can more effectively help to stratify
patients and improve the clinical management of liver
disease.

Notwithstanding the clinical relevance of this study,
several notable constraints merit consideration. First,
the retrospective design precluded serial measurements
during hospitalization, limiting dynamic assessment of
clinical trajectory and prognostic divergence across sub-
groups. Second, the absence of objective quantification
of hepatic morphology and function (e.g., histopathology
or non-invasive fibrosis diagnostics like FibroScan-CAP)
may confound outcome interpretation. Future prospec-
tive longitudinal cohorts should incorporate frequent
multimodal assessments—including standardized sero-
logical panels, imaging biomarkers, and validated clinical
scales—to longitudinally track treatment response and
disease progression.

Conclusion

In conclusion, the WD-ACLF prediction model con-
structed using the XGBoost algorithm showed excellent
potential for clinical application, outperforming that of
traditional prediction systems. However, this study still
has limitations. For instance, some data are missing, the
number of included clinical cases is limited, and there is
a lack of prospective research design. Therefore, prospec-
tive multicentre cohort validation and dynamic model-
ling of treatment time window should be conducted to
accelerate the transformation of this prediction system
into a clinical decision support system, and enhance pre-
cision medicine for rare diseases.
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