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Abstract
Background and objectives  Wilson disease (WD), an inherited copper metabolism disorder, is a cause of acute-
on-chronic liver failure (ACLF), posing life-threatening risks due to rapid progression. This study aimed to develop a 
machine learning (ML)-based model to predict ACLF risk in WD patients.

Methods  We retrospectively analyzed 3692 WD patients (Leipzig score ≥ 4) from The First Affiliated Hospital of Anhui 
University of Chinese Medicine (2014–2024), including 104 ACLF and 104 non-ACLF cases. The original data set was 
randomly divided into the training and test cohorts in a ratio of 7:3. Demographic, biochemical, and ultrasound 
data were collected. Six ML algorithms (LR, SVM, KNN, ExtraTrees, XGBoost, LightGBM) were applied to construct a 
predictive model, with SHAP explaining feature importance.

Results  The XGBoost model achieved optimal performance (AUC: 0.998, accuracy: 0.968). Key predictors included 
TBA, APTT, diagnosis age, onset age, Hb. Elevated TBA, APTT and diagnosis age correlated with higher ACLF risk, while 
reduced onset age and Hb indicated poorer outcomes. Additional parameters (TT, Cl−, CER and hepatic imaging 
features) also contributed modestly to predictions.

Conclusions  The ML-based model effectively predicts WD-ACLF risk, with XGBoost demonstrating superior 
performance. TBA, APTT, diagnosis age, onset age and Hb emerged as critical biomarkers, offering actionable insights 
for early clinical intervention.
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Introduction
Wilson disease (WD) is an autosomal recessive disorder 
caused by a pathogenic variant in the ATP7B gene encod-
ing a copper transporter protein. The main mechanism is 
the impairment of hepatic cuprocyanin synthesis and bil-
iary copper excretion [1]. Its most common pathological 
changes include pathologic deposition of copper ions in 
the liver, basal ganglia and kidney, and this imbalance in 
metal homeostasis can induce progressive tissue damage 
[2]. About 62–85% of WD patients may manifest symp-
toms of liver disease, with highly heterogenous clinical 
outcomes. Although early chelating agents can strongly 
improve the prognosis of most patients, 8–15% of WD 
patients may develop acute-on-chronic liver failure 
(ACLF), a complication with a 28-day mortality rate of 
approximately 85–95%, recognized as the leading cause 
of WD-related deaths [3]. A decade-long retrospective 
study (2014–2024) conducted at the First Affiliated Hos-
pital of Anhui University of Chinese Medicine showed a 
2.8% incidence of WD-ACLF among 3692 WD patients, 
which presented similar epidemiological characteris-
tics to HBV-ACLF. However, few therapeutic options 
for WD-ACLF are available. Although liver transplan-
tation can improve the survival outcome of patients, its 
application is limited by donor shortage and the risk of 
immunosuppression. Traditional scoring systems such as 
model for end-stage liver disease or Child–Pugh are not 
specific enough for WD-ACLF, which makes progno-
sis prediction difficult. In addition, WD-ACLF presents 
with a rapid onset and a short diagnostic window period. 
Therefore, a biomarker-driven early warning assess-
ment model for WD-ACLF was constructed to guide the 
application of interventions through a multidimensional 
clinical management strategy, thereby improve patient 
survival outcomes and minimize the need for liver 
transplantation.

Machine learning (ML) techniques can facilitate risk 
stratification of complex diseases by integrating mul-
timodal data and dynamic time-series analysis. In the 
field of neurodegenerative diseases, deep learning archi-
tectures have transitioned from the traditional diagnos-
tic approaches to the precision medicine paradigm. For 
example, in Parkinson's disease and Alzheimer's disease, 
ML models have significantly improved the accuracy 
of early diagnosis and the feasibility of individualized 
treatment by integrating multimodal data (e.g., imag-
ing, genomics, and clinical indicators) [4, 5]. A previous 
study performed ML-based risk stratification for WD cir-
rhosis [6]. Other studies on ACLF have mainly focused 
on the viral and alcoholic liver disease aspects, and no 
model has been developed to facilitate prediction of the 
development of WD-ACLF, which delays the initiation of 
clinical intervention and increases the mortality rate of 
WD-ACLF.

In this study, we integrated artificial intelligence algo-
rithms with multimodal clinical data (covering demo-
graphic baseline, hepatobiliary, pancreatic and splenic 
ultrasound, blood and urine tests, etc.) to identify the 
most important indicators associated with WD-ACLF 
and to construct predictive models for the occurrence of 
WD-ACLF. This dynamic stratification model addresses 
inherent constraints of conventional static scoring sys-
tems through precise identification of high-risk cohorts, 
facilitating targeted interventions to reduce mortality 
and improve quality of life in Wilson disease.

Methods
Data collection and processing
In this study, a retrospective cohort analysis was con-
ducted using a multidimensional data collection 
approach to obtain data of neurological inpatients at the 
First Affiliated Hospital of Anhui University of Chinese 
Medicine from an electronic medical record system. The 
search involved the use of terms such as “Hepatolenticu-
lar degeneration” or “Wilson disease”, combined with the 
International Classification of Diseases (ICD), with the 
relevant ICD-10 code of E83.0, and the time window was 
from January 2014 to December 2024. A total of 3692 
patients with WD were enrolled in the study, among 
which 104 patients with WD-ACLF were included. To 
achieve number matching, 104 patients without ACLF 
were randomly selected and assigned to the control 
group. Twenty cases of WD-ACLF and 25 cases of WD-
nonACLF hospitalised at the Affiliated Hospital of the 
Institute of Neurology, Anhui University of Traditional 
Chinese Medicine, between January 2022 and December 
2024, were used to validate the model's external validity. 
All patients were given a unique hospitalization identifi-
cation code to ensure the independence and traceability 
of case data. The study was reviewed and approved by the 
Ethics Committee of the First Affiliated Hospital of Anhui 
University of Chinese Medicine (No. 2024AH-13), and 
was performed according to the requirements of the Dec-
laration of Helsinki by employing the triple desensitiza-
tion (ID substitution, date offset, and blurring of sensitive 
information). The ethics committee waived the require-
ments of informed consent and clinical trial registration. 
To mitigate the impact of invalid variables on model cal-
culations, relevant literature was identified to select sta-
tistically significant variables in each study, and variables 
that were closely associated with disease from the institu-
tion's existing programmes were combined. Some base-
line data of the patients, liver and kidney function, blood 
routine, coagulation function, ceruloplasmin(CER), 24-h 
urine copper and liver, gallbladder and spleen ultrasound, 
etc., which were finally selected as clinical observation 
indicators.Liver and kidney function, blood routine, 
coagulation function, CER and other indicators were 
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examined on the day the disease appeared or the follow-
ing day.

Case selection criteria
The WD inclusion criteria were based on the EASL 2012 
Clinical Practice Guidelines [7], as well as a Leipzig Scale 
assessment, which was independently performed by two 
neurologists of associate title or above, with a total score 
of ≥ 4 on the scale. Liver diseases caused by factors such 
as hepatitis, schistosomiasis infection and alcohol poi-
soning were excluded from the study. At the same time, 
basic consistency in treatment modalities was main-
tained for the included patients. This included the use of 
zinc gluconate tablets and chelators, while irregular use 
was excluded.

Research design and predictive variables
The endpoint indicator of our study was the occurrence 
of ACLF, diagnosed based on the APASL 2019 version of 
the diagnostic criteria [8]. The ACLF group was further 
stratified into the ACLF and non-ACLF groups following 
the ACLF diagnosis within 72 h of admission. Moreover, 
baseline parameters, laboratory indicators, and hepato-
biliary, pancreatic, and splenic ultrasound were used as 
predictors.

Data preprocessing
During the preprocessing stage of data, outliers in the 
dataset were screened and excluded, and missing val-
ues were estimated. Regarding the variables subtypes, 
we used the median filling method for estimation, while 
for continuous variables, we randomly selected values 
near the mean to be filled within the range of variance. 
To improve accuracy and reliability of the estimated data, 
the estimation error was controlled within 3% by com-
paring the key statistical indicators such as mean, median 
and standard deviation before and after estimation. To 
further verify the robustness of the estimated data, a ML 
cross-validation methodology was employed to ensure 
the scientific nature of the data processing and enhance 
the reliability of the prediction model through multiple 
iterations of validation.

The original data set was randomly divided into train-
ing and test datasets at the ratio of 7:3 (See supple-
mentary Table  1), in which all samples in the training 
dataset were employed to construct the model and per-
form parameter optimization, while the test dataset was 
used as independent validation samples to objectively 
determine the actual predictive capacity and generaliz-
ability of the model. This division was adopted to ensure 
that the model could fully learn the data features dur-
ing the training process, and the independent test data-
set validation effectively avoids the model overfitting 

phenomenon, eventually enhancing the reliability and 
scientific rigor of the evaluation results.

Establishments of the clinical model
In this study, a multi-stage modelling strategy was 
employed to construct the WD-ACLF risk prediction 
model. Initially, we screened the predictors through step-
wise regression: one-factor logistic regression for initial 
screening, followed by multifactor regression modelling. 
Next, we integrated the logistic regression (LR), support 
vector machine (SVM), K-nearest neighbors (KNN), 
Extremely randomized trees (Extra Trees), eXtreme Gra-
dient Boosting (XGBoost), and Light Gradient Boosting 
Machine (LightGBM) six algorithms to develop the com-
posite model. The selected algorithms encompass diverse 
modeling approaches to capture complex data patterns 
and enhance predictive accuracy. Specifically: SVM excel 
in high-dimensionality and small-sample scenarios due 
to their maximum-margin classification principle. Light-
GBM/XGBoost leverage decision tree ensembles for 
superior performance on heterogeneous data, with accel-
erated training through histogram-based optimization. 
KNN provides a non-parametric, interpretable baseline 
method.Random Forest and Extra-Trees fortify model 
resilience by aggregating multiple decorrelated decision 
trees.This comprehensive evaluation protocol ensures 
robust identification of optimal WD-ACLF predictors. 
Using stratified randomization, the dataset was parti-
tioned 7:3 into training (model development) and testing 
(independent performance validation) subsets. Parameter 
tuning was performed using the five-fold cross-validation 
in the modelling phase, and the final model discrimina-
tive efficacy was determined based on the AUC value of 
the ROC curve. To identify the key variables, the con-
tribution of each indicator to the prediction results was 
quantified using a feature correlation matrix, which visu-
alizes the strength of the role of key biomarkers. This 
multidimensional validation system enhanced the mod-
el's goodness-of-fit on the training dataset and validated 
its clinical utility through independent testing.Leveraging 
SHapley Additive exPlanations (SHAP) values, we quan-
tified the marginal contribution of individual predictors 
to model outputs and visualized non-linear feature-target 
relationships through dependency plots, overcoming lim-
itations of correlation-based interpretation.

Model evaluation indicators
The optimal model configuration after hyper-parameter 
optimization was employed for the training, and efficacy 
validation was implemented in an independent valida-
tion cohort. The model evaluation system consisted of 
six dimensions of clinical efficacy: sensitivity (Sn) reflects 
the ability to detect diseases, specificity (Sp) measures 
the accuracy of identifying healthy samples, positive 
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predictive value (PPV) and negative predictive value 
(NPV) characterize the clinical credibility of diagnostic 
results. The AUC is calculated to comprehensively assess 
the discriminative power of the classifier, while accu-
racy (Acc) serves as a global performance benchmark. 
The mathematical expression formula for each index are 
shown below:

	
Sn = TP

TP + FN

	
Sn = TN

TN + FP

	
PPV = TP

TP + FP

	
NPV = TN

TN + FN

	
Acc = TP + TN

TP + FN + TN + FP

Statistics
In this study, we performed data analysis using Python 
statistical modelling tool library statsmodels (V0.13.2), 
and statistically significant associations between the 
variables of interest were determined at P < 0.05. For 
numerical variables, data distribution characteristics 
were first tested for normality, and the unpaired t-test 

was employed if the assumption of normality was me. 
Variables that did no show normal distribution were ana-
lyzed using the Mann–Whitney U-test and presented as 
the median (interquartile spacing). For categorical vari-
ables, the Pearson chi-square test was applied when the 
expected frequency was equal to or greater than 5, and 
the Fisher exact probability method was utilized when 
the cell expectation was less than 5.

Results
Clinical features of patients
The flow chart of this study is shown in Fig. 1. A total of 
568 patients with WD were enrolled in the study, among 
which 104 patients had ACLF. In addition, 104 patients 
without ACLF were randomly selected and assigned 
to the control group, 111 (53.3%) were male patients, 
97 (46.6%) were female patients, the male to female 
ratio was not statistically significant (P > 0.05). The first 
symptoms were divided into hepatic and cerebral types, 
with 148 patients (71.1%) having the hepatic type and 
60 patients (28.8%) with the cerebral type. In the WD-
ACLF group, 75 patients (72.1%) had the hepatic type 
and 29 patients (27.8%) had the cerebral type. Compared 
with the WD non-ACLF group, patients in the WD-
ACLF group were significantly older age at the onset age 
(18.5 years vs. 11.5 years, P < 0.0001) and at the diagnosis 
age (20 years vs. 12 years, P < 0.0001), with a higher pro-
portion of males (54.8% vs. 45.1%), and a longer disease 
duration (11.5 years vs. 8 years, P < 0.0001). In addition, 
there were more patients with abnormal hepatic volume 

Fig. 1  The flowchart of this study
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in the WD-ACLF group (52.8% vs. 0.9%, P < 0.0001), and 
hepatic capsule was significantly different between the 
groups (81.7% vs. 13.4%, P < 0.0001). The distribution of 
Hepatic Parenchymal Echogenicity was significantly dif-
ferent among the groups (100% vs. 77.8%, P < 0.0001), and 
most of the patients had splenomegaly (96.2% vs.38.5%, 
P < 0.0001), exhibited a widened Portal Vein Diameter 
(11.63 vs. 10.29, P < 0.0001). Notably, the ALB (28.12 
vs. 42.44, P < 0.0001); RBC (2.96 vs. 4.53, P < 0.0001), 
Hb (97.5 vs. 130.5, P < 0.0001), and PLT (86.5 vs. 203, 
P < 0.0001) were significantly decreased, probably due to 
the anemia caused by liver failure. The concentrations of 
PT (26 vs. 32, P < 0.0001), FBG (1.14 vs. 2.29, P < 0.0001) 
were decreased, APTT (42.9 vs. 11.3, P < 0.0001) and TT 
(23.55 vs. 20.3, P < 0.0001) were increased, indicating that 
the coagulation function was affected. Further analysis 
revealed that the liver function markers (e.g., DBIL, IBIL, 
TBA, ALT, AST, GGT, LDH, and ALP) were significantly 
elevated, but ALP, TG, TC HDL-C, and LDL-C were 
significantly decreased. Liver fibrosis markers (PIIINP, 
LN, HA, CIV) were significantly increased, while the 
24-h urine copper concentration was elevated (696 vs. 
657.7, P = 0.0071) and CER was also increased (0.079 vs. 
0.022, P < 0.0001). The detailed parameters are shown in 
Table 1. These variable can be used to predict the risk of 
WD-ACLF (See supplementary Table 2).

Model performance
The reliability of the constructed model was tested in a 
rigorously designed cohort. Notably, there was no gen-
der difference in ACLF patients and non-ACLF patients, 
indicating that the interference of confounding factors 
was balanced between the groups. Based on multimodal 
clinical data (covering baseline parameters, laboratory 
indicators, hepatobiliary-pancreatic-spleen ultrasound, 
etc.), the predictive efficacy of six algorithms (LR, Extra 
Trees, LightGBM, SVM, XGBoost, and KNN) was com-
pared using an integrated learning framework. Analysis 
of the experimental data showed that the LR test dataset 
had an AUC of 0.962 and an accuracy of 0.937, indicat-
ing that the LR model could effectively discriminate 
between the target classes. The AUC and accuracy of the 
training dataset were close to 1, and while the sensitivity 
of test dataset was 0.935 and specificity was 0.937, with 
a PPV and NPV of 0.935, indicating that the model was 
balanced in the positive and negative class prediction, 
avoiding the risk of misjudgment due to bias. We further 
observed that the XGBoost algorithm showed optimal 
overall performance in the independent validation set: 
as shown in Table 2, the test P values of XGBoost in the 
training and test datasets are 0.968 and 0.631 (threshold 
P > 0.05), respectively, indicating that its predicted prob-
ability is highly consistent with the actual event distri-
bution and has excellent calibration performance. The 

integrated calibration curve indicated that the predicted 
values were in good agreement with the observed values 
between the training and testing cohorts of the XGBoost 
algorithm. These data suggested that the XGBoost model 
exhibited optimal overall performance in the training and 
test cohorts, and the calibration curves in both cohorts is 
shown in Fig. 2a, b. The area under the receiver operating 
characteristic curve of the working characteristics of the 
subjects was 0.998 (95% confidence interval (CI) 0.993–
1.000) (Fig.  2c, d), the Acc was 0.968 (95% CI 0.953–
1.015), the Sn and Sp were 0.968 and 0.969, respectively, 
while the positive and negative predictive values were 
0.968 and 0.969, respectively (see Table  3 for details). 
The decision curve analysis (DCA) was adopted to assess 
each model. As shown in Fig.  2e, f, DCA revealed that 
XGBoost had the best performance, with a significantly 
higher net benefit compared with the other methods in 
the range of medium and high-risk thresholds. This con-
firmed that XGBoost could effectively integrate non-lin-
ear associations between copper metabolic abnormalities 
and organ function indicators when dealing with multidi-
mensional medical data, providing a high-precision tool 
for early warning detection of WD-ACLF. Furthermore, 
to verify the model's general applicability, external valida-
tion was conducted in this study. This demonstrated that 
XGBoost still performed optimally, with an area under 
the curve (AUC) of 0.974 (95% CI 0.928–1.000), an Acc 
of 0.956, a Sn of 0.920 and a Sp of 1.000, as well as a PPV 
and NPV of 1.000 and 0.909(Fig. 3 and Table 4).

Identification of predictive factors for the WD-ACLF 
prediction model
Based on the SHAP interpretability framework, the fea-
ture contribution of XGBoost classifiers was analyzed 
from the global and individual perspectives. The wider 
the distribution of the region, the greater its impact 
(detailed information is shown in Fig.  4A). Then, the 
average absolute value of SHAP value of each feature was 
calculated by combining the degree of influence of each 
feature in the machine learning model on the predic-
tion results and plotted as a bar chart (detailed informa-
tion is shown in Fig. 4B). By quantifying the contribution 
of the features, the influence ranking of each feature in 
the machine learning model was visually demonstrated, 
which provided an important basis for the model's inter-
pretability. Based on Gini impurities, the most impor-
tant predictors in the prediction model were found to be 
TBA, APTT, diagnosis age, onset age, Hb.

Discussion
In this retrospective case–control study design, a ML 
prediction model for WD-ACLF was constructed for the 
first time, which underscored the utility of the integration 
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Feature name WD-ACLF WD non-ACLF P
N 104 104
Sex (man/woman) 57/47 54/50 0.6767
Initial presentation type (Cerebral type/Hepatic type) 29/75 31/73 0.7595
Age
median [IQR], year

33
[27, 40]

19
[14, 32]

< 0.0001***

Onset age
median [IQR], year

18.5
[13, 29]

11.5
[5.75, 21]

< 0.0001***

Diagnosis age
median [IQR], year

20
[14, 30]

12
[6, 21]

< 0.0001***

Disease duration
median [IQR], year

11.5
[3.75, 19]

8
[4.75, 13]

< 0.0001***

Ascites
median [IQR], mm

17
[0, 48.5]

0
[0]

< 0.0001***

Hepatic volume (Normal/Abnormal) 49/55 103/1 < 0.0001***
Hepatic capsule (Smoothing/Non-smoothing) 19/85 90/14 < 0.0001***
Coarse and hyperechoic liver parenchyma (Yes/No) 103/1 10/94 0.0053**
Distribution of Hepatic Parenchymal Echogenicity (Regularity/Irregularity) 0/104 23/81 < 0.0001***
Splenomegaly (Yes/No) 100/4 40/64 < 0.0001***
Portal Vein Diameter (mm) 11.63 ± 2.03 10.29 ± 2.08 < 0.0001***
ALB (g/L) 28.12 ± 6.05 42.44 ± 3.86 < 0.0001***
LDL-C (mmol/L) 1.67 ± 0.84 2.57 ± 0.58 < 0.0001***
RBC (10^12/L) 2.96 ± 0.7 4.53 ± 0.57 < 0.0001***
PT
median [IQR], s

26
[19.68, 39.58]

32
[30.3, 33.7]

< 0.0001***

APTT
median [IQR], s

42.9
[25.85, 65.55]

11.3
[10.8, 11.9]

< 0.0001***

TT
median [IQR], s

23.55
[20.38, 25.13]

20.3
[19.58, 20.9]

< 0.0001***

FBG
median [IQR], g/L

1.14
[0.86, 1.58]

2.29
[2.02, 2.59]

< 0.0001***

Cr
median [IQR], umol/L

61.45
[50.43, 77.05]

52.75
[45, 64.1]

0.0008***

UA
median [IQR], umol/L

134.5
[90.5, 196.25]

287
[220.25, 362]

< 0.0001***

DBIL
median [IQR], umol/L

70.2
[48.43, 143.88]

2.5
[1.9, 3.3]

< 0.0001***

IBIL
median [IQR], umol/L

70.86
[48.93, 107.7]

9.1
[6.9, 12.3]

< 0.0001***

TBA
median [IQR], umol/L

120.7
[61.55, 193.85]

6.55
[4.48, 11]

< 0.0001***

ALT
median [IQR], U/L

48
[31.75, 75.4]

30.75
[17.7, 72.8]

0.0016**

AST
median [IQR], U/L

85
[54.8, 119.78]

27.95
[21.15, 45.2]

< 0.0001***

GGT
median [IQR], U/L

68.5
[36.75, 163]

29
[18, 51]

< 0.0001***

ALP
median [IQR], U/L

139
[124, 194.25]

120.5
[90, 244]

0.2636

LDH
median [IQR], U/L

259
[210.25, 335.5]

183.5
[154.75, 212]

< 0.0001***

TG
median [IQR], mmol/L

0.63
[0.46, 0.86]

1.13
[0.81, 1.61]

< 0.0001***

TC
median [IQR], mmol/L

2.06
[1.39, 3.15]

4.285
[3.68, 4.92]

< 0.0001***

HDL-C
median [IQR], mmol/L

0.38
[0.24, 0.66]

1.255
[1.11, 1.43]

< 0.0001***

Table 1  Comparison of clinical characteristics between the two groups of WD patients
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of multidimensional clinical data and algorithmic innova-
tion level in clinical decision-making.

The predictive performance of six ML algorithms (LR, 
ExtraTrees, LightGBM, SVM, XGBoost, and KNN), was 
compared and results revealed that the XGBoost model 
had excellent clinical applicability, with an AUC value 
of 0.998 (95% CI 0.993–1.000), a classification accu-
racy of 96.8%, a sensitivity and specificity of over 96%, a 
positive score of over 1,000, and a balanced distribution 
of positive/negative predictive values exceeding 96%. 

Its good performance may be due to its unique techni-
cal architecture, i.e., the gradient boosting framework 
effectively captures the nonlinear associations among 
clinical parameters by integrating weak classifiers; the 
regularization strategy combines the L1/L2 penalty 
terms to precisely control the model’s complexity, and 
the adaptive missing value processing mechanism signifi-
cantly improves the compatibility of non-completeness of 
clinical data. Notably, the ExtraTrees cannot effectively 
identify novel predictors due to its over-reliance on tra-
ditional liver disease indicators such as ALT and TBIL 
(feature contribution > 60%), a phenomenon that reveals 
the complex association between algorithmic feature 
selection preferences and disease heterogeneity, provid-
ing important insights that will guide future algorithm 
optimization.

Using the feature attribution analysis of Shapley's addi-
tive interpretation algorithm, a multidimensional pre-
diction system consisting of coagulation function, bile 
metabolism and hematological indexes, etc. was estab-
lished for the first time, which demonstrated that TBA, 
APTT, diagnosis age, onset age and Hb were the core 

Table 2  Hosmer_lemeshow_test in the training and test dataset
Model Train P value Test P value
LR 1.0 0.0
KNN 0.972 0.024
ExtraTrees 0.019 0.056
XGBoost 0.968 0.631
LightGBM 0.002 0.009
rbf_SVM 0.940 0.237
linear_SVM 0.995 0.010
sigmoid_SVM 0.395 0.008
poly_SVM 0.705 0.581

Feature name WD-ACLF WD non-ACLF P
HCY
median [IQR], umol/L

18.15
[11.75, 27.18]

10.2
[7.78, 12.9]

< 0.0001***

Na+

median [IQR], mmol/L
136.5
[131.95, 139]

139.9
[138.88, 140.58]

< 0.0001***

CL−

median [IQR], mmol/L
107.4
[103.3, 135.85]

106.2
[105, 108]

0.1226

Hb
median [IQR], g/L

97.5
[86, 111.25]

130.5
[121.75, 143]

< 0.0001***

PLT
median [IQR], 10^9/L

86.5
[43.75, 136.5]

203
[132, 283]

< 0.0001***

RDW-CV
median [IQR], %

17.8
[15.9, 19.8]

13.2
[12.16, 13.8]

< 0.0001***

CER
median [IQR], g/L

0.08
[0.05, 0.1]

0.02
[0.02, 0.05]

< 0.0001***

PIIINP
median [IQR], ng/ml

19.91
[16.55, 32.71]

12.59
[10.11, 17.09]

< 0.0001***

LN
median [IQR], ng/ml

208
[166.08, 358.28]

126.5
[82.46, 169.86]

< 0.0001***

HA
median [IQR], ng/ml

896.5
[194.58, 1382.81]

93.95
[64.92, 147.36]

< 0.0001***

CIV
median [IQR], ng/ml

237.9
[95.44, 395.17]

65.55
[52.11, 85.06]

< 0.0001***

WB-Cu
median [IQR], umol/L

4.88
[4.88, 9.28]

4.88
[1.92, 4.88]

< 0.0001***

24 h urine copper
median [IQR], ug/24 h

696
[512.78, 1440.46]

657.7
[431.2, 924.5]

0.0071**

N, number; ALB, albumin; LDL-C, low-density lipoprotein cholesterol; RBC, red blood cel; PT, prothrombin time; APTT, activated partial thromboplastin time; TT, 
thrombin time; FBG, fibrinogen; Cr, creatinine; UA, uric acid; DBIL, direct bilirubin; IBIL, indirect bilirubin; TBA, total bile acid; ALT, alanine aminotransferase; AST, 
aspartate aminotransferase; GGT, γ-Glutamyl Transferase; ALP, alkaline phosphatase; LDH, lactate dehydrogenase; TG, Triglycerides; TC, Total Cholesterol; HDL-
C, High-Density Lipoprotein Cholesterol; HCY, homocysteine; Na+, Serum Sodium; Cl−, Serum Chloride; Hb, hemoglobin; PLT, platelet count; RDW-CV, Red Cell 
Distribution Width-Coefficient of Variation; CER, Ceruloplasmin; PIIINP, Procollagen III N-terminal Peptide; LN, Laminin; HA, Hyaluronic Acid; CIV, Collagen Type IV; 
WB-Cu, Whole Blood Copper

*P < 0.05; **P < 0.01; ***P < 0.001

Table 1  (continued) 
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predictor combinations. Specifically, the TBA, APTT 
and diagnosis age values were significantly and positively 
associated with increased risk of developing WD-ACLF, 
whereas onset age and Hb were negatively correlated with 
WD-ACLF. In addition, APTT and TBA were identified 

as the core drivers, and the elevated APTT values in 
the WD-ACLF group than in the control group may be 
related to the fact that copper toxicity disrupts coagula-
tion homeostasis through a dual mechanism, i.e., direct 
inhibition of hepatic synthesis of coagulation factors II/

Fig. 2  The calibration curves, AUC and decision curve of the training and test cohorts. a The calibration curves of the training cohort. b The calibration 
curves of the test cohort. c The AUC of the training cohort. d The AUC of the test cohort. e Decision curve for the training cohort. f Decision curve for the 
test cohort
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VII/IX, and degradation of vascular endothelial glycoca-
lyx. APTT, as a commonly used coagulation test, can be 
used to assess the hepatic impairment and bleeding risk. 
It has been reported that APTT influences the progno-
sis of many diseases. For example, in COVID-19 patients, 
aspartate aminotransferase to platelet ratio index (APRI) 

combined with APTT showed good prediction poten-
tial for in-hospital mortality [9]. TBA, an indicator of 
liver function, is commonly used to assess the metabolic 
function and cholestasis of the liver. In HBV-associated 
acute liver failure, TBA was linked with the risk of short-
term mortality among patients, and when combined with 

Table 3  Machine learning modeling analysis in the train and test dataset
Cohort Model AUC AUC 95% CI Acc Acc 95% CI Sen Spe PPV NPV
Train LR 1.000 1.0000–1.0000 0.993 1.0000–1.0000 0.986 1.000 1.000 0.986
Test LR 0.962 0.8980–1.0000 0.937 0.8323–0.9772 0.935 0.937 0.935 0.937
Train KNN 0.995 0.9879–1.0000 0.959 0.9262–0.9910 0.945 0.972 0.972 0.946
Test KNN 0.965 0.9197–1.0000 0.921 0.8539–0.9874 0.839 1.000 1.000 0.865
Train Extra Trees 0.995 0.9884–1.0000 0.966 0.9358–0.9952 0.973 0.958 0.959 0.972
Test Extra Trees 0.994 0.9834–1.0000 0.952 0.8539–0.9874 0.903 1.000 1.000 0.914
Train XGBoost 1.000 1.0000–1.0000 0.993 0.9796–1.0066 0.986 1.000 1.000 0.986
Test XGBoost 0.998 0.9932–1.0000 0.968 0.9533–1.0150 0.968 0.969 0.968 0.969
Train LightGBM 0.999 0.9978–1.0000 0.979 0.9561–1.0025 0.973 0.986 0.986 0.973
Test LightGBM 0.998 0.9948–1.0000 0.968 0.9533–1.0150 0.968 0.969 0.968 0.969
Train poly_SVM 0.992 0.9797–1.0000 0.972 0.9077–0.9820 0.959 0.986 0.986 0.959
Test poly_SVM 0.951 0.8814–1.0000 0.937 0.8539–0.9874 0.903 0.969 0.966 0.912
Train rbf_SVM 0.995 0.9886–1.0000 0.966 0.9168–0.9866 0.973 0.958 0.959 0.972
Test rbf_SVM 0.996 0.9882–1.0000 0.952 0.8763–0.9967 0.935 0.969 0.967 0.939
Train linear_SVM 1.000 1.0000–1.0000 0.993 1.0000–1.0000 0.986 1.000 1.000 0.986
Test linear_SVM 0.967 0.9035–1.0000 0.952 0.9250–1.0115 0.935 0.969 0.967 0.939
Train sigmoid_SVM 0.941 0.9036–0.9792 0.890 0.8304–0.9351 0.795 0.986 0.983 0.826
Test sigmoid_SVM 0.907 0.8207–0.9938 0.873 0.8113–0.9665 0.839 0.906 0.897 0.853

Fig. 3  Test dataset for external validation of AUC cohorts
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other indicators, it improved the prediction accuracy 
[10], which is consistent with our findings, in which the 
TBA of patients with liver failure was significantly higher 
than that of patients without liver failure (P > 0.001). 
This observation was associated with the inhibition of 
the hepatocyte regeneration pathway by bile acids medi-
ated by the FXR receptor. The decrease in Hb and RBC 
accompanied by increase of RDW-CV suggests that cop-
per accumulation can damage the structural integrity of 
erythrocyte membranes via lipid peroxidation, to impair 
erythrocyte survival and function [11, 12]. Therefore, cli-
nicians can apply this model in clinical practice. When 
the TBA, APTT and diagnosis age are higher and the 
onset age and Hb are lower, clinicians need to pay atten-
tion to this and intervene early to prevent further devel-
opment into WD-ACLF.

In addition, we found that patients with WD-ACLF 
exhibited a unique clinical phenotype. Analysis of age-
related factors showed that delayed age of onset and 
age at diagnosis and prolonged disease duration were 
significant predictors of ACLF development, suggest-
ing that cumulative effects of copper toxicity in disease 

progression. Elevated CER in WD-ACLF patients, con-
trary to conventional diagnostic criteria for WD, likely 
reflects synergistic effects of acute-phase inflamma-
tion, hepatocyte damage, and adaptive copper metabolic 
shifts. Multidimensional analysis of the indicators con-
firmed the existence of the triad of “liver injury-fibrosis-
metabolic imbalance” in WD-ACLF [13]. Significantly 
elevated AST in hepatic impairment mainly reflects 
hepatocellular necrosis, elevated GGT may be associ-
ated with cholestasis or oxidative stress, whereas elevated 
LDH is mostly a non-specific manifestation of multitis-
sue injury, respectively [14–16]. Abnormal elevation of 
liver fibrosis markers PIIINP, LN, HA, and CIV reveals 
accelerated extracellular matrix remodeling process [17]. 
Moreover, metabolic disorders were characterized by 
significant homocysteine accumulation accompanied 
with decreased ALB and lipid metabolism markers (e.g. 
TG, TC), which indicated multi-systemic dysfunction. 
In this study, we found that elevated HDL-C was asso-
ciated with a lower risk of liver failure, which may be 
attributed to improved reverse cholesterol transport and 
the anti-inflammatory effect of ApoA1. Data indicates 

Table 4  Machine learning modeling analysis in the test dataset for external validation
Cohort Model AUC AUC 95% CI Acc Acc 95% CI Sen Spe PPV NPV
Test LR 0.968 0.9218–1.0000 0.933 0.880 1.000 1.000 Test LR
Test KNN 0.940 0.8750–1.0000 0.933 0.880 1.000 1.000 Test KNN
Test ExtraTrees 0.960 0.8854–1.0000 0.956 0.920 1.000 1.000 Test ExtraTrees
Test XGBoost 0.974 0.9282–1.0000 0.956 0.920 1.000 1.000 Test XGBoost
Test LightGBM 0.986 0.9602–1.0000 0.956 0.920 1.000 1.000 Test LightGBM
Test rbf_SVM 0.964 0.9102–1.0000 0.956 0.920 1.000 1.000 Test rbf_SVM
Test linear_SVM 0.966 0.9147–1.0000 0.933 0.880 1.000 1.000 Test linear_SVM
Test sigmoid_SVM 0.906 0.8107–1.0000 0.911 0.840 1.000 1.000 Test sigmoid_SVM
Test poly_SVM 0.952 0.8845–1.0000 0.956 0.920 1.000 1.000 Test poly_SVM

Fig. 4  Interpretability analysis of WD-ACLF predictors via SHAP value. In Fig. 3A, the horizontal coordinates indicate the extent to which each feature 
contributes to the model output, and the magnitude of the feature value is indicated by colour (red indicates a higher feature value, blue indicates a lower 
feature value, and purple indicates adjacency to the mean)
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that HDL-C levels are strongly associated with survival 
in patients with chronic liver failure, and low levels of 
HDL-C may be associated with poor prognosis [18]. In 
addition, ultrasonographic characterization revealed 
that the risk of ACLF was significantly higher in patients 
with widened portal vein diameter, uneven hepatic cap-
sule, abnormal hepatic volume, and ascites, suggesting 
that the structural abnormalities of the liver preceded the 
changes in biochemical indicators, providing a basis for 
early warning detection.

In this study, we constructed the WD-ACLF predic-
tion system that resolve the nonlinear interaction effect 
of predictors. The predictive model multidimensional 
prediction system constructed in this study not only 
improves early identification of WD-ACLF, but also pro-
vides a guideline that will guide the development of tar-
geted therapeutic strategies by revealing the multiorgan 
interaction mechanism. The combination of key indica-
tors such as TBA, APTT, diagnosis age, onset age, Hb 
and other features can more effectively help to stratify 
patients and improve the clinical management of liver 
disease.

Notwithstanding the clinical relevance of this study, 
several notable constraints merit consideration. First, 
the retrospective design precluded serial measurements 
during hospitalization, limiting dynamic assessment of 
clinical trajectory and prognostic divergence across sub-
groups. Second, the absence of objective quantification 
of hepatic morphology and function (e.g., histopathology 
or non-invasive fibrosis diagnostics like FibroScan-CAP) 
may confound outcome interpretation. Future prospec-
tive longitudinal cohorts should incorporate frequent 
multimodal assessments—including standardized sero-
logical panels, imaging biomarkers, and validated clinical 
scales—to longitudinally track treatment response and 
disease progression.

Conclusion
In conclusion, the WD-ACLF prediction model con-
structed using the XGBoost algorithm showed excellent 
potential for clinical application, outperforming that of 
traditional prediction systems. However, this study still 
has limitations. For instance, some data are missing, the 
number of included clinical cases is limited, and there is 
a lack of prospective research design. Therefore, prospec-
tive multicentre cohort validation and dynamic model-
ling of treatment time window should be conducted to 
accelerate the transformation of this prediction system 
into a clinical decision support system, and enhance pre-
cision medicine for rare diseases.
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