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Abstract

In the Asian general population, at least six single-nucleotide variants (SNVs) in the UDP-

glucuronosyltransferase (UGT) 1A1 gene have been identified: �3279T>G, �53A

(TA)6TAA>A(TA)7TAA, 211G>A, 686C>A, 1091C>T, and 1456T>G. Each of these six

SNVs was observed in at least four ethnic groups of the 12 Asian populations studied. In

East Asian populations, the descending frequency of these six SNVs was as follows:

�3279G>[�53A(TA)7TAA, 211A]>(686A, 1091T)>1456G. Because of the presence of

linkage disequilibrium and the expulsion phenomenon, when the SNVs �3279G, �53A

(TA)7TAA, 211A, and 686A were simultaneously involved, 15 instead of the estimated

81 genotypes were observed. Those carrying 686AA or 1456GG developed Gilbert's

syndrome or Crigler–Najjar syndrome type 2. Both �53A(TA)7TAA/A(TA)7TAA and

211AA are themain causes of Gilbert's syndrome in East Asian populations. In East Asian

populations, the 211AA genotype is the main cause of neonatal hyperbilirubinemia,

whereas �53A(TA)7TAA/A(TA)7TAA exerts a protective effect on hyperbilirubinemia

development in neonates fedwith breastmilk. Both 211A and�53A(TA)7TAA are signif-

icantly associated with adverse drug reactions induced by irinotecan (one of the most

widely used anticancer agents) in Asians. However, at least three common SNVs

(�3279G, �53A(TA)7TAA, and 211A) should be comprehensively analyzed. This study

investigated the clinical significance of these six SNVs and demonstrated that examining

UGT1A1 variants in Asian populations is considerably challenging.
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1 | INTRODUCTION

UDP-glucuronosyltransferase 1A1 (UGT1A1), the sole enzyme

responsible for the glucuronidation of bilirubin in humans, is encoded

by the UGT1A1 gene located on chromosome 2q37.1.1 Bilirubin, the

end product of heme catabolism, is primarily obtained through the

breakdown of erythrocyte hemoglobin, and it is poorly soluble in

water. As illustrated in Figure 1, unconjugated bilirubin is transported

by organic anion transport protein 2 (OATP2) to the smooth endo-

plasmic reticulum of hepatocytes, where the conjugating enzyme
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UGT1A1 is localized. Subsequently, unconjugated bilirubin is conju-

gated with uridine diphosphate glucuronic acid to form mono- and di-

glucuronide bilirubin (water soluble); this reaction is catalyzed by

UGT1A1.1,2 At the canalicular surface, conjugated bilirubin is effi-

ciently secreted into bile through the ATP-binding cassette (ABC) mul-

tidrug resistance–associated protein (ABCC2/MRP2) transporter. The

excretion of conjugated bilirubin at the basolateral surface is mediated

by the transporter ABCC3/MRP3.1,2

Altered and variant UGT1A1 genes can cause fatal or benign

types of unconjugated hyperbilirubinemia, namely Crigler–Najjar

syndrome type 1 (CN-1), Crigler–Najjar syndrome type 2 (CN-2),

and Gilbert's syndrome (GS).1,2 Moreover, the association of

UGT1A1 with the metabolic rate of certain drugs or the risk of

cancer has been reported.2 Therefore, the single-nucleotide vari-

ants (SNVs) of UGT1A1 represent crucial changes to the gene

structure.

F IGURE 1 Mechanism of bilirubin
elimination.

TABLE 1 MAF for every SNVs of the UGT1A1 gene

–3279T>G �536>7 211G>A 686C>A 1091C>T 1456T>G

East Asia

Chinese6–8 0.320 0.118 0.185 0.014 0.021 0.003

Chinese Tibetan9 N/Aa 0.130 0.200 0 0.085 0

Japanese10 0.262 0.130 0.153 0.010 0.005 0.002

Korean11,12 0.267 0.200 0.173 0.014 0.013 0.001

Taiwanese3,13 0.350 0.143 0.109 0.028 0.021 0.002

Southern-East Asia

Indonesian14 N/A 0.095 0.048 0.030 0 0

Malaysian Malay15 N/A 0.250 0.120 0.030 N/A N/A

South East Asian Malay16 0.432 N/A 0.057 0.031 0.010 N/A

Thai17 0.286 0.051 0.027 N/A N/A N/A

Vietnamese18 N/A 0.060 0.050 0 N/A N/A

Southern Asia

Indian19 0.431 0.336 0.066 0 0 0

Central Asia

Uzbek20 0.500 0.310 0.090 0.005 N/A N/A

West Asia

Saudi21 0.624 0.262 0 0 N/A N/A

Abbreviations: MAF, minor allele frequency; SNV, single-nucleotide variant; UGT, UDP-glucuronosyltransferase; 6 > 7, A(TA)6TAA>A(TA)7TAA.
aNot assayed.
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The cDNA of human UGT1 was cloned in 1991.1 Genetic defects

in UGT1A1 that cause CN-1, CN-2, and GS were first reported in

1992, 1993, and 1995, respectively.1,2 Thereafter, many studies have

identified genetic defects in UGT1A1 in different populations. In the

Asian general population, at least six SNVs of UGT1A1 have been

reported1,3–5: �3279T>G, �53A(TA)6TAA>A(TA)7TAA, 211G>A,

686C>A, 1091C>T, and 1456T>G. Table 1 summarizes the distribu-

tions of these six SNVs. The SNVs 211G>A, 686C>A, 1091C>T, and

1456T>G have been observed in Asians, but never in Caucasians.

We searched for studies examining genetic defects in UGT1A1 in

healthy Asians, patients with GS, and neonates with nonhemolytic uncon-

jugated hyperbilirubinemia that were indexed in PubMed since 1995 and

included those in this review. We excluded case reports and review arti-

cles. To examine the association among the six SNVs, studies focusing on

at least three of the six SNVs were included. A total of 66 studies pub-

lished until December 31, 2021, met the inclusion criteria and were

included in this review. Of the 66 studies, 20 included Chinese popula-

tions5–9,22–36 (two studies also included Chinese Tibetan individuals9,22),

4 included Indian populations,19,37–39 2 included Indonesian

populations,14,40 12 included Japanese populations4,10,20,41–49 (one study

also included individuals from Uzbekistan20), 4 included Korean

populations,11,12,50,51 3 included Malaysian populations,15,16,52 1 included

Saudi individuals,21 18 included Taiwanese individuals,1,3,13,53–67

1 included Thai individuals,17 and 1 included Vietnamese individuals.18

Moreover, we reviewed all the studies examining the relationship between

the variants of UGT1A1 and the adverse drug reaction (ADR) or therapeu-

tic efficacy of irinotecan-based chemotherapy in Asian patients with colon

cancer published in PubMed from2018 to 2021.

We conducted a comprehensive analysis of UGT1A1 variants in

the Asian populations.

2 | ALLELE FREQUENCIES AND UGT1A1
ENZYME ACTIVITIES OF THE SIX SNVS

2.1 | Allele frequencies

In this review, the minor allele frequency (MAF) of an SNV was col-

lected from healthy adults' data. However, because of the unavailabil-

ity of data for healthy adults in the Indonesian and Vietnamese

populations, we used data obtained from newborns without hyperbi-

lirubinemia for these two ethnic groups. If the MAF of an SNV in an

ethnic group was reported in two (or more) studies, the study with a

larger sample size was selected as the example for that ethnic group.

Table 1 presents the MAFs of the six SNVs reported for

12 populations: Chinese,6–8 Chinese Tibetan,9 Japanese,10 Korean,11,12

Taiwanese,3,13 Indonesian,14 Malaysian,15,16 Thai,17 Vietnamese,18

Indian,19 Uzbek,20 and Saudi.21 Each of the six SNVs was observed in at

least four ethnic groups. TheMAF of�3279T>Gwas higher than 0.430 in

the Malaysian, Indian, Uzbek, and Saudi populations (0.431–0.624) but

was ≤0.350 in the Chinese, Japanese, Korean, Taiwanese, and Thai popu-

lations (0.262–0.350). The MAF of �53 A(TA)6TAA>A(TA)7TAA was

≥0.250 in the Malaysian, Indian, Uzbek, and Saudi populations

(0.250–0.336); between 0.118 and 0.200 in the Chinese, Chinese Tibetan,

Japanese, Korean, and Taiwanese populations; and as low as 0.095, 0.051,

and 0.060 in the Indonesian, Thai, and Vietnamese populations, respec-

tively. The MAF of 211G>A was ≤0.090 in the Indonesian, Malaysian,

Thai, Vietnamese, Indian, Uzbek, and Saudi populations (0–0.090) but

≥0.109 in the other five ethnic groups (0.109–0.200). The MAF of

686C>Awas ≥0.028 in the Taiwanese, Indonesian, andMalaysian popula-

tions (0.028–0.031); between 0.010 and 0.014 in the Chinese, Japanese,

and Korean populations; and ≤0.005 in the Chinese Tibetan, Vietnamese,

Indian, Uzbek, and Saudi populations (0–0.005). The MAF of 1091C>T

was as high as 0.085 in the Chinese Tibetan population; between 0.010

and 0.021 in the Chinese, Korean, Taiwanese, andMalaysian populations;

and ≤0.005 in the Japanese, Indonesian, and Indian populations (0–0.005).

The MAF of 1456T>G was considerably low in the Chinese, Chinese

Tibetan, Japanese, Korean, Taiwanese, Indonesian, and Indian populations

(0–0.003). The results indicated that the MAFs of the promoter region

were higher in theWest Asian, Central Asian, and Southern Asian popula-

tions than in the East Asian populations, whereas the MAFs of the coding

region were higher in the East Asian populations than in the West Asian,

Central Asian, and Southern Asian populations.

The geographical origin of the study participants may be responsi-

ble for some differences in the genotype distribution of UGT1A1. All

the six SNVs observed in the Chinese, Japanese, Korean, and

Taiwanese populations were characterized by the descending MAF

order of –3279G>[�53A(TA)7TAA, 211A]>(686A, 1091T)>1456G.

2.2 | UGT1A1 enzyme activities

The SNVs of UGT1A1 in the promoter area affect the transcription of the

enzyme, and those within the coding region cause a change in its expres-

sion. UGT1A1 activities for �3279GG, �53A(TA)7TAA/A(TA)7TAA,

211AA, 211GA, 686AA, 1091TT, and 1456GG are listed in Table 2. Those

data were obtained from experiments performed to examine the protein

expression of cDNAs in COS-7 monkey kidney cells, except for �53A

(TA)7TAA/A(TA)7TAA that was detected in the human hepatoma cell line

(HuH7).1 The UGT1A1 enzyme activity of the 211GA SNVwas estimated

([32.2% (activity for 211AA)]1/2) to be 56.7% of normal, which is close to

60.2% of normal for the determined activity.1 Therefore, the estimated

UGT1A1 activities for the heterozygote [(activity for the homozygote)1/2]

of the SNVs �3279T>G, �53A(TA)6TAA>A(TA)7TAA, 686C>A,

1091C>T, and 1456T>G (Table 2) appear to be reasonable.1

3 | LINKAGE DISEQUILIBRIUM,
EXPULSION PHENOMENON, AND
OBSERVED AND NEVER-OBSERVED
GENOTYPES

3.1 | Linkage disequilibrium

Several studies examining the linkage disequilibrium of the SNVs

of UGT1A1 have been published since 2002.68 In this review,
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we observed that the 686 CA genotype was associated

with the �53A(TA)6TAA/A(TA)7TAA or �53A(TA)7TAA/A(TA)7TAA

SNV.1,10,30,54–56,58,59,66,67 When �3279T>G was considered, 686CA

was observed to be closely associated with not only �53A(TA)6TAA/

A(TA)7TAA or �53A(TA)7TAA/A(TA)7TAA but also �3279TG or

�3279GG.1,66 The 686AA genotype was associated with the �53A

(TA)7TAA/A(TA)7TAA SNV,1,56,58 and �53A(TA)7TAA/A(TA)7TAA was

associated with �3279GG.1,3,66,68 However, �53A(TA)6TAA>A

(TA)7TAA was not associated with 686C>A,1,10,30,54–56,58,59,66,67

and �3279T>G was not associated with �53A(TA)6TAA>A

(TA)7TAA.
1,3,34,66,69 In these relationships, the degree of linkage dis-

equilibrium (D0) was high, whereas r2 was low for the association

between �3279G and �53A(TA)7TAA (D0 = 0.95, r2 = 0.26) and

between �53A(TA)7TAA and 686A (D0 = 0.95, r2 = 0.13).66 A high D0

but a considerably low r2 value was noted for the association between

686A and �3279G (D0 = 0.95, r2 = 0.03).66

3.2 | Expulsion phenomenon

All the studies examining the SNVs 211G>A, �3279T>G, �53A

(TA)6TAA>A(TA)7TAA, and 686C>A reported that individuals posses-

sing 211AA never carried �3279TG, �3279GG, �53A(TA)6TAA/A

(TA)7TAA, �53A(TA)7TAA/A(TA)7TAA, 686CA, or 686AA. Those pos-

sessing 211GA never carried �3279GG, �53A(TA)7TAA/A(TA)7TAA,

or 686AA. Therefore, the expulsion phenomenon was observed

between 211AA and �3279G, between 211AA and �53A(TA)7TAA,

and between 211AA and 686A. In addition, the expulsion phenome-

non was observed between 211GA and �3279GG, between 211GA

and �53A(TA)7TAA/A(TA)7TAA, and between 211GA and 686AA.

Such expulsion phenomenon may spontaneously occur in meiosis dur-

ing the homologous recombination process after fertilization.

3.3 | Observed and never-observed genotypes

Among the six SNVs, �3279G, �53A(TA)7TAA, and 211A were com-

monly observed because the MAFs of all the three SNVs were ≥0.05,

except for in the Indonesian,14 Thai,17 and Saudi populations21 with

MAFs of 0.048, 0.027, and 0 for 211A, respectively (Table 1). Linkage

disequilibrium was observed in the SNVs �3279G, �53A(TA)7TAA,

and 686A. Therefore, the four SNVs at nucleotides �3279, �53,

686, and 211 in UGT1A1 were combined for further analysis. When

the three SNVs at nucleotides �53, 686, and 211 were combined, the

estimated number of genotypes was 27 (33). However, for those car-

rying �3279TT, �3279TG, and �3279GG, only three, six, and six

genotypes of the SNVs for combined nucleotides (�53/686/211)

were noted, respectively (Figure 2). Therefore, among the estimated

81 (34) genotypes for the combination of the four SNVs at nucleotides

�3279, �53, 686, and 211, a total of 15 genotypes were observed,

whereas the other 66 genotypes were never observed (Table 3).

Figure 2 presents the distribution of the 15 observed genotypes.

The results revealed that the wild type of nucleotide �3279 could

TABLE 2 Characteristics of the six SNVs in the UGT1A1 gene

�3279T>G �536>7 211G>A 686C>A 1091C>T 1456T>G

Location Promoter Promoter Exon 1 Exon 1 Exon 4 Exon 5

Amino acid No change No change Gly71Arg Pro229Gln Pro364Leu Tyr486Asp

Allele name UGT1A1*60 UGT1A1*28 UGT1A1*6 UGT1A1*27 UGT1A1*63 UGT1A1*7

Rs number 4124874 8175347 4148323 35350960 34946978 34993780

Activity, % of normal TG, 77.5a

GG, 60.0b
6/7, 50.5a

7/7, 25.5c
GA, 60.2b

AA, 32.2b
CA, 37.4a

AA, 14.0b
CT, 59.7a

TT, 35.6b
TG, 27.6a

GG, 7.6b

Abbreviations: SNV, single-nucleotide variant; UGT, UDP-glucuronosyltransferase; 6 > 7, A(TA)6TAA>A(TA)7TAA; 7/7, A(TA)7TAA/A(TA)7TAA.
aEstimated value, by calculation [(activity for the homozygote)1/2].
bDetected in COS-7 monkey kidney cells.
cDetected in the human hepatoma cell line (HuH7).

F IGURE 2 The 15 observed genotypes (combination of the four
SNVs at nucleotides �3279, �53, 686, and 211 in UGT1A1) [green
color: Wild type, blue color: Heterozygote, red color: Homozygote;
6/6, A(TA)6TAA/A(TA)6TAA; 6/7, A(TA)6TAA/A(TA)7TAA; 7/7,
A(TA)7TAA/A(TA)7TAA].
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predict the presence of the wild-type gene at nucleotide �53 is, and

the wild type of nucleotide �53 could predict the presence of the

wild-type gene at nucleotide 686. By contrast, the wild type of nucle-

otide 686 (CC) could not predict whether nucleotide �53 is wild type

[A(TA)6TAA/A(TA)6TAA], and the wild type of nucleotide �53 could

not predict whether nucleotide �3279 is wild type (TT). Furthermore,

the homozygote of �3279 (GG) predicted that nucleotide 211 is wild

type (GG). Therefore, to determine the four SNVs, the SNV of �3279

should be first identified, followed by the SNVs of �53, 686, and 211.

4 | VARIATION STATUS OF UGT1A1 AND
DISEASES

4.1 | Crigler–Najjar syndromes

The UGT1A1 enzyme activity was 0% and approximately 10% of nor-

mal in patients with CN-1 and CN-2, respectively.1 The corresponding

serum bilirubin levels ranged from 342 to 855 μmol/L in patients with

CN-1 and from 103 to 342 μmol/L in those with CN-2.1 In CN-1,

common mutations are deletions, alterations in intron splice donor

and receptor sites, missense mutations, exon skipping, insertion, and

stop codon formation within UGT1A1. By contrast, CN-2 results from

a point mutation in UGT1A1.2,5,33,46,70 In Caucasian patients with

CN-2, point mutations were widely distributed and often combined

with �53A(TA)6TAA/A(TA)7TAA or �53A(TA)7TAA/A(TA)7TAA,

whereas compound homozygous variations in the coding region

were frequently observed in Asian patients with CN-2.70 Among

27 East Asian patients with CN-2, 14 (51.8%) were carriers of

1456GG/211AA.70 For the carriers of 1456GG/211AA, UGT1A1

activity was approximately 6% of normal.71 The findings indicate that

1456GG/211AA causes CN-2. Moreover, 1456GG/211GA,

1091TT/211GA, and 1091TT/�3279GG were observed in Asian

patients with CN-2.31,70 The 1456G and 1091T have never been

reported in patients of other ethnicities expect East Asian patients,

whereas 1091C>T was observed in South East Asian Malaysians

(Table 2). The results indicate that for the development of CN-2, the

variation status of UGT1A1 differs between Asians and Caucasians

and between East Asians and other Asian ethnic groups.

4.2 | Glibert's syndrome

In patients with GS, the UGT1A1 enzyme activity ranges from 11% to

approximately 30% of normal, and the serum bilirubin level ranges

from 17 to 103 μmol/L.1 Although 9%–18% of healthy Caucasians

harbored the �53A(TA)7TAA/A(TA)7TAA genotype, this genotype is

the main genetic cause of GS in Caucasians.1,2 However, we observed

that both �53A(TA)7TAA/A(TA)7TAA and 211AA are the main genetic

causes of GS in Asians, except in the Indian,19,39 Malaysian,16 and

Saudi21 populations because the 211G>A variation did not affect

unconjugated bilirubin levels in these three ethnic groups. Our finding

is in agreement with previously reported data.72 In addition, we

observed that individuals carrying �53A(TA)7TAA/A(TA)7TAA or

211AA had a high risk of GS because only 0%–2.8% of healthy Asians

harbored these two variants. UGT1A1 activity in patients carrying

686AA was 14.0% of normal.1 The finding indicates that 686AA

causes GS. For the development of GS, the variation status of

UGT1A1 differs between Asians and Caucasians.

Recently, a study conducted in Taiwan determined the six SNVs

of UGT1A1 and reported that an UGT1A1 activity of ≤40% of normal

is a risk factor for GS.1 The authors concluded that evaluating

UGT1A1 activity rather than analyzing the SNVs and genotypes of

UGT1A1 should provide more information regarding the mechanisms

underlying the development of GS.1

In Asian populations, the variants of UGT1A1 combined with

OATP2,7,39,58 glucose-6-phosphate dehydrogenase (G6PD),56,58 heme

oxygenase 1 (HMOX1-1),39 and biliverdin reductase A (BLVRA)39

TABLE 3 Estimated, observed and never-observed genotypes by combination of four SNVs at nucleotides 686, �53, �3279, and 211 in the
UGT1A1 gene

Combined SNVs at

nucleotides

N estimated

genotypes Genotypes observed Genotypes never observed

686AA �53, �3279, and

211

27 �53(7/7)/�3279GG/211GG Other 26 estimated-genotypes

686CA �53, �3279, and

211

27 �53(6/7)/�3279TG/211GG, �53(6/7)/

�3279TG/211GA, �53(6/7)/

�3279GG/211GG, �53(7/7)/

�3279GG/211GG

Other 23 estimated-genotypes

686CC/�53(7/7) �3279 and 211 9 �3279GG/211GG Other eight estimated-genotypes

686CC/�53(6/7) �3279 and 211 9 �3279TG/211GG, �3279TG/211GA,

�3279GG/211GG

Other six estimated-genotypes

686CC/�53(6/6) �3279 and 211 9 �3279TT/211GG, �3279TT/211GA,

�3279TT/211AA, �3279TG/211GG,

�3279TG/211GA, �3279GG/211GG

�3279TG/211AA, �3279GG/211AA,

�3279GG/211GA

Abbreviations: SNV, single-nucleotide variant; UGT, UDP-glucuronosyltransferase; 6/6, A(TA)6TAA/A(TA)6TAA; 6/7, A(TA)6TAA/A(TA)7TAA; 7/7,

A(TA)7TAA/A(TA)7TAA.
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exert additive effects on adult patients with mild unconjugated hyper-

bilirubinemia. However, mildly elevated unconjugated bilirubin in GS

is strongly associated with a decreased prevalence of chronic diseases,

particularly cardiovascular diseases and type 2 diabetes mellitus, as

well as cardiovascular disease-related and all-cause mortality.72

4.3 | Neonatal hyperbilirubinemia

The main genetic cause of neonatal hyperbilirubinemia is �53A

(TA)7TAA/A(TA)7TAA in Caucasians,73 whereas 211AA, but not �53A

(TA)7TAA/A(TA)7TAA, is the main genetic cause in Asians.73,74 The

results of our review confirmed these findings (except for

Indonesian,14,40 Malaysian,52 and Saudi21 populations). Moreover, the

TA7 repeat variant of UGT1A1 appears to exert a protective effect on

hyperbilirubinemia development in Chinese,28 Japanese,48,75 and

Taiwanese57,67 neonates fed breast milk. Breast milk suppresses

UGT1A1 expression in the small intestine, and this undefined envi-

ronmental pressure induces the (TA)n repeat to maintain serum bili-

rubin levels. The (TA)n repeat might be a balanced variation

evolutionarily selected to maintain serum bilirubin in an optimal

range under undefined genetic and environmental pressure.67,76 The

results of a study conducted in Taiwan demonstrated that the esti-

mated enzyme activity, depending on the combination of UGT1A1

genotypes cannot be used to explain the development of neonatal

hyperbilirubinemia because the expression of UGT1A1 in neonates

remains unclear.67

In Asians, G6PD deficiency,54,61,65 variations in OATP2,26,57,76

variations in HMOX1-1,65,76 variations in BLVRA,76 and ABO incom-

patibility hemolysis disease35 are additive risk factors for neonatal

hyperbilirubinemia in newborns carrying homozygous 211G to A vari-

ation in UGT1A1.

4.4 | Further concern for variations on
common exons

Four exons (exons 2–5) are common in the nine functional UGT1A

alternatively spliced products transcribed from the UGT1A gene locus,

namely UGT1A1 and UGT1A3–UGT1A10.9 A common exon variation

in UGT1A1 affects the activities of all functional UGT1As. Among the

six SNVs analyzed in this study, the 1091C>T (p.Pro364Leu) and

1456T>G (p.Tyr486Asp) are crucial because they are located on exons

4 and 5, respectively. These two variations are located close to the

UDP-glucuronic acid binding site and lead to considerable reduction

in the activity of many UGT1A isoforms, thus resulting in the adverse

effects of various drugs.77 Table 4 presents the glucuronidation activ-

ity of UGT1As for 1091TT and 1456GG toward certain drugs.

For example, glucuronidation activity toward the acetaminophen of

p.Phe364Leu–UGT1A1A9 was 5.0% of the wild type and glucuronida-

tion activity toward the 2-amino-5-nitro-4-trifluoromethylphenol

(a major metabolite of flutamide) of p.Tyr486Asp-UGT1A6 was <1%

of the wild type.77,78 Therefore, the gene analysis of variations on

common exons in patients who experience adverse effects of drugs

can help determine the significance of the variations.77,79

5 | THERAPEUTIC RESPONSE:
INVOLVEMENT OF UGT1A1 IN GILBERT'S
SYNDROME, CRIGLER–NAJJAR SYNDROMES,
AND IRINOTECAN PHARMACOGENETICS AS
EXAMPLES

5.1 | Glibert's syndrome

Because the UGT1A1 enzyme activity is approximately 30% of normal

and considerably elevated bilirubin levels are not observed, patients

with GS require no treatment.80 However, patients with GS and other

types of diseases should receive personalized treatment and care.80 In

order to maintain health-related quality of life, some scholars suggest

to screen, counsel, monitor, and healthcare for GS subjects in anes-

thesia, direct antiviral therapy treatment, pregnancy, childbirth, sur-

gery, and weight loss programs.80

5.2 | Crigler–Najjar syndromes

Two main categories of treatments are available for patients with CN:

controlling bilirubin and its neurotoxic effects through phototherapy,

plasmapheresis, and pharmacological treatment and restoring

UGT1A1 activity in hepatocytes through cell and gene therapy.81

Intensive phototherapy is a common treatment for CN-1.81 Plasma-

pheresis is the most effective process for the removal of excess

unconjugated bilirubin in patients with severe hyperbilirubinemia.81 In

patients with CN-2, pharmacological treatment includes the use of

enzyme-inducing agent (phenobarbital), bilirubin-binding agents (cal-

cium phosphate and orlistat), choleretics (ursodeoxycholic acid), and

heme-oxygenase inhibitor.81

Although liver transplantation is the only therapeutic and defini-

tive treatment for CN-1, the transplantation of allogeneic hepatocytes

or hepatocyte progenitor cells and gene therapy (e.g., recombinant

adeno-associated virus vectors) can cure such inherited liver

disorders.81

5.3 | Irinotecan pharmacogenetics

Irinotecan is one of the most widely used anticancer agents. Many

studies have reported the relationship between the glucuronidation of

irinotecan and the variants of UGT1A1 in Asians. For example, at least

18 studies on this topic have been published from 2018 to 2021

when irinotecan-based chemotherapy was prescribed for Asian

patients with colon cancer.82–99

Patients with homozygous or heterozygous UGT1A1 variants

exhibited a lower glucuronidation ability for metabolizing irinotecan

and then developing ADRs than did patients without UGT1A1
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variants.2,93 The majority of those 18 studies have reported that both

211G>A and �53A(TA)6TAA>A(TA)7TAA were significantly associ-

ated with both irinotecan-induced toxicity and poor therapeutic effi-

cacy (e.g., decreased progression-free survival). A study indicated that

reducing the initial dose of irinotecan by approximately 20% might be

safe without reducing the therapeutic effect in Japanese patients with

colon cancer with homozygous UGT1A1 variants.92 The results indi-

cate that pretherapeutic testing for the UGT1A1 genotype in patients

with cancer can improve patient safety and is a practical and cost-

effective strategy, and such testing should become the standard

of care.

We examined whether the 18 studies reflected the actual varia-

tion status of participants because most of the studies focused only

on 211A and �53A(TA)7TAA. We investigated the effects of both

UGT1A1 211GA and �3279GG on the ADRs of cancer chemotherapy.

In a review of Asian patients with colon cancer treated with irinote-

can, ADRs, including severe ADRs, tended to be higher in patients

with the 211GA genotype than in those with the wild-type

genotype.87

The UGT1A1 activity for �3279GG was determined to be 60.0%

of normal44 and the same as that for 211GA (60.2% of normal71) We

speculated that patients with cancer who harbor the UGT1A1–

3279GG genotype would develop ADRs, as would patients harboring

the 211GA genotype. The SNPs �3279GG and 211G>A are two inde-

pendent variants because of the expulsion phenomenon. A study

reported that UGT1A1–3279GG and UGT1A1 211G>A genetic vari-

ants are independent factors affecting the occurrence of grade 3–4

delayed diarrhea in Chinese patients with cancer receiving treatment

with irinotecan (50.4% of them had colon cancer).99 The findings indi-

cated that UGT1A1–3279GG should not be neglected in pharmacoge-

netic studies.

6 | CONCLUSION

Variants of UGT1A1 not only play a critical role in the development of

CN, GS, and neonatal hyperbilirubinemia but are also involved in the

development of ADRs and in the clinical efficacy of chemotherapy.

The SNV �53A(TA)6TAA>A(TA)7TAA in UGT1A1, which was first

reported by Dutch scholars in 1995,1 has been observed in Asian

populations since 1996.41 In addition, the SNVs 686C>A, 211G>A,

1456T>G, and �3279T>G were first identified by Japanese investiga-

tors in 1995,1 1998,71 and 2002,44 whereas 1091C>T was first deter-

mined by Taiwanese researchers in 2000.13 The variation status of

UGT1A1 in Asians is more complicated than that in non-Asians. There-

fore, examining UGT1A1 in Asian populations is challenging. Compre-

hensive approaches should be adopted in future studies examining

the involvement of UGT1A1 in pharmacogenetics for Asian

populations.
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