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Summary 

Background - Glycogen storage disease type IIIa (GSDIIIa) is an inborn error of 
carbohydrate metabolism caused by a debranching enzyme deficiency. A subgroup of 
GSDIIIa patients develops severe myopathy. The purpose of this study was to investigate 
whether acute nutritional ketosis (ANK) in response to ketone-ester (KE) ingestion is 
effective to deliver oxidative substrate to exercising muscle in GSDIIIa patients.   

Methods - This was an investigator-initiated, researcher-blinded, randomized, crossover 
study in six adult GSDIIIa patients. Prior to exercise subjects ingested a carbohydrate drink 
(~66 grams, CHO) or a ketone-ester (395 mg/kg, KE) + carbohydrate drink (30 grams, 
KE+CHO). Subjects performed 15-minute cycling exercise on an upright ergometer followed 
by 10-minute supine cycling in a magnetic resonance (MR) scanner at two submaximal 
workloads (30% and 60% of individual maximum, respectively). Blood metabolites, indirect 
calorimetry data and in vivo 31P-MR spectra from quadriceps muscle were collected during 
exercise.   

Results - KE+CHO induced ANK in all six subjects with median peak βHB concentration of 
2.6 mmol/L (range:1.6-3.1). Subjects remained normoglycemic in both study arms, but delta 
glucose concentration was twofold lower in the KE+CHO arm. The respiratory exchange ratio 
did not increase in the KE+CHO arm when workload was doubled in subjects with overt 
myopathy. In vivo 31P MR spectra showed a favorable change in quadriceps energetic state 
during exercise in the KE+CHO arm compared to CHO in subjects with overt myopathy. 

Conclusions - Effects of ANK during exercise are phenotype-specific in adult GSDIIIa 
patients. ANK presents a promising therapy in GSDIIIa patients with a severe myopathic 
phenotype.  

Trial registration number:  ClinicalTrials.gov identifier: NCT03011203  

 

Take home message: This investigator-initiated, randomized, crossover study has revealed 
favorable effects of acute nutritional ketosis during submaximal cycling exercise in adult 
glycogen storage disease type IIIa patients with a severe myopathic phenotype.  
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Introduction 

Glycogen storage disease type IIIa (GSDIIIa; OMIM #232400) is an inborn error of 

carbohydrate metabolism caused by pathogenic variants in the AGL gene, resulting in 

impaired glycogen debranching enzyme (GDE) activity in liver, cardiac, nerve and muscle 

tissue. According to the International Study on GSDIII (ISGSDIII), most patients present 

before the age of 1.5 years with various combinations of hepatomegaly, failure to thrive and 

fasting intolerance (Sentner et al. 2016). Biochemically, the phenotype is characterized by 

fasting ketotic hypoglycemia, postprandial hyperlactatemia, increased transaminases, and 

hyperlipidemia (Walter, Labrune, and Laforêt 2016).  

Dietary management to maintain normoglycemia and prevent hyperketonemia is the 

mainstay of treatment in GSDIIIa patients. Specifically, it involves designed dosing and 

frequency of a high-protein diet with cornstarch supplementation (Kishnani et al. 2010; Derks 

and Smit 2015). However, despite such dietary management, 52% of patients report exercise 

intolerance and 31% suffer from proximal myopathy in an observational, international 

multicenter study of a relatively young patient cohort (Sentner et al. 2016). Therefore, these 

percentages could even be an underestimation of the actual burden in adulthood. Moreover, 

progression of myopathy with age is observed by muscle ultrasound and dynamometry 

(Decostre et al. 2016; Verbeek et al. 2016). Although longitudinal studies are lacking, the 

available evidence suggests a shift from an acute, fasting-intolerance-associated hepatic 

phenotype in childhood towards a chronic, skeletal muscle and hepatic phenotype in adult 

GSDIIIa patients (Lucchiari et al. 2007; Halaby et al. 2019).   
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The pathophysiology underlying muscle dysfunction in GSDIIIa patients is still 

incompletely understood. Various disease mechanisms have been proposed. Firstly, the 

primary GDE deficiency together with high carbohydrate intake could cause excessive 

storage of an abnormal glycogen structure (i.e. limit dextrin) in muscle interfering with 

contractile function (DiMauro et al. 1979; Stefan Kiechl et al. 1999a; Pagliarani et al. 2018). 

Secondly, increased endogenous proteolysis of skeletal muscle to provide adequate amino 

acids as gluconeogenic substrate to the liver could contribute to muscle wasting (Slonim et al. 

1983). Lastly, in vivo findings of delayed intramuscular metabolic recovery post-exercise in a 

study in GSDIIIa patients suggest that myopathic symptoms may also result from cellular 

energy crisis during exercise as a result of reduced mitochondrial capacity for oxidative ATP 

synthesis (Wary et al. 2010).  

To date, physical training remains the most effective approach to prevent and reverse 

progressive loss of skeletal muscle mass and muscle quality (Cartee et al. 2016). Any safe 

translation of this concept to the management of GSDIIIa patients is, however, severely 

complicated by the fact that GDE deficient muscles rely more on the metabolism of blood 

glucose than intramuscular glycogen for oxidative ATP synthesis (Preisler et al. 2013). 

Moderate concentrations of ketone bodies beta-hydroxybutyrate (βHB) and acetoacetate 

(AcAc) in the bloodstream may provide exercising muscles with an alternative external 

source of oxidative fuel than blood glucose (Robinson and Williamson 1980). In 2012, an 

edible ketone-ester ((R)-3-hydroxybutyl (R)-3-hydroxybutyrate; KE) for human application 

was described that can achieve acute nutritional ketosis (ANK) via oral ingestion without any 

sodium loading (Clarke et al. 2012). In trained athletes, oral KE ingestion resulted in 
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glycogen sparing during exercise, and a slight enhancement of endurance exercise 

performance and recovery (Cox et al. 2016; Poffé et al. 2019). Recently, oral KE ingestion 

prior to exercise was shown to be effective to deliver oxidative substrate to exercising leg 

muscle and improve intramuscular energy balance during submaximal cycling exercise in 

patients with a fatty acid oxidation (FAO) defect (Bleeker 2020).  

Here, this matter was further investigated. Specifically, we investigated if ANK in 

response to KE ingestion is equally effective in adult patients with GSDIIIa to deliver 

oxidative substrate to exercising muscle with favorable effects on intramuscular energy 

balance state during submaximal exercise.  
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Subjects and methods 

Study approval 

The Medical Ethical Committee of the University Medical Center Groningen (UMCG), the 

Netherlands approved the study protocol (ref. no. METc2016.591). The study was conducted 

according to the principles of the Helsinki Declaration of 1975 as revised in 1983. All 

subjects provided written informed consent prior to inclusion in the study.  

 

Subjects 

Adults with GSDIIIa were recruited by the center of expertise for hepatic GSD at the UMCG, 

the Netherlands and the Faroes Hospital, Tórshavn, Faroe Islands. The trial was conducted at 

the UMCG between February 2017 and March 2018. Inclusion criteria were (a) confirmation 
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of GSDIII with enzyme assay and/or AGL variation analysis, GSDIIIa further specified as 

GDE deficiency in muscle or clinical and/or biochemical signs of cardiac and/or skeletal 

muscle involvement, and (b) age from 18 to 65 years. Exclusion criteria included (a) 

pregnancy or breastfeeding, (b) insulin-dependent diabetes mellitus, (c) recent cardiac disease 

(including cardiomyopathy, coronary artery disease or a positive history for angina pectoris), 

(d) contraindications for MRI studies, (e) unable to perform bicycle exercise, and (f) 

intercurrent illness which may influence exercise tolerance. Supplementary Figure S2 

presents the participant flow chart. 

 

Study design 

This was an investigator-initiated, randomized, researcher-blinded, comparator-controlled, 

two-way crossover study (NCT03011203). Three consecutive study visits were scheduled at 

the UMCG, after written informed consent. Foreign subjects stayed in a hotel close to the 

study site during the whole study period. Other subjects stayed in the hotel the night before 

study visit 2 and 3.  

 

Procedures 

Supplemental Figure S1 presents the study protocol.  

 

Study visit 1: screening visit 

General history, physical examination, muscle ultrasound, dynamometry and plasma analysis 

of liver transaminases, total creatine kinase and NT-proBNP were performed. The activity 
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level was assessed by the International Psychical Activity Questionnaire (IPAQ) (Craig et al. 

2003). Muscle ultrasound and dynamometry were performed and analyzed as described 

previously (Verbeek et al. 2016). Z-scores for muscle ultrasound density of the biceps, 

quadriceps, calf (gastrocnemius and/or soleus) and tibialis anterior muscles were calculated 

based on age-related references values (Maurits et al. 2003). After at least 2 hours of rest 

subjects performed a cardio-pulmonary exercise test (CPET) to determine subjects’ individual 

maximal workload (Wmax) and maximum oxygen uptake (VO2max). 

 

Study visit 2/3: exercise protocol with prior ingestion of study drink 

Subjects fulfilled an identical exercise protocol during visits 2 and 3, which were separated by 

7 days in all subjects. Subjects were asked to refrain from alcohol and caffeine for 24 hours 

prior to each study visit and to consume a similar breakfast in the morning of both study 

visits. A 3-day food diary was collected prior to visit 2 and 3. At 8:00 am a taxi brought the 

subject to the study site. Here the subject was transported in a wheelchair to minimize 

exercise before study procedures. After general instructions and positioning for exercise, the 

subject was given the study drink at approximately 9:00 am (t=0). Forty-five minutes after 

study drink ingestion, the subject started with a 15-minute upright bicycle protocol. The target 

pedaling frequency was 70 rounds per minute (rpm). During the upright bicycle protocol 

indirect caloric and heart rate measurements were collected (Cosmed K4, Lode Excalibur). 

Ratings of perceived exertion (RPE) were assessed with the Borg scale (Borg 1990). After the 

15-minute upright bicycle protocol, subjects started 10 minutes of cycling inside the MR 

scanner. In each exercise bout, workload was increased from 30 to 60% of the subject’s 
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individual Wmax for the last 5 minutes. Blood was sampled via an intravenous catheter at 

baseline, during upright bicycle exercise, during supine exercise inside the MR scanner and 3 

hours after exercise. Samples were directly analyzed for βHB, AcAc, glucose, insulin, lactate, 

and free fatty acids (FFA) by standard laboratory procedures. Urine was collected in the time 

between study drink ingestion and until 3 hours after exercise.  

 

Outcome measures 

The primary outcome measures were blood βHB and glucose concentrations, exercise 

performance, as assessed with indirect caloric and heart rate measurements, and 31P-MR 

spectra during exercise and recovery. The 31P-MR spectroscopy permits continuous and non-

invasive monitoring of inorganic phosphate (Pi), phosphocreatine (PCr), and pH, allowing 

assessment of muscle energy metabolism during exercise (Chance et al. 1985). Secondary 

outcomes were blood concentrations of AcAc, insulin, lactate, and FFA, RPE scores and 

urinary excretion of βHB and glucose tetrasaccharide (Glc4). Glc4 was analyzed by LC-

MS/MS according to Sluiter et al. 2012, with minor adjustments (Sluiter et al. 2012).   

 

Investigational product 

Study drinks were prepared at the study site one hour before ingestion. Subjects received 395 

mg/kg of KE + 30 grams maltodextrin (KE+CHO) or an isocaloric carbohydrate drink 

containing only maltodextrin ~66 grams (CHO). In both study arms a minimum of 1.2 grams 

of carbohydrate per minute exercise supply was ensured (Jeukendrup 2004, 2008). 
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Randomization and blinding 

Subjects were randomly assigned to a study drink order based on enrollment. The researcher 

(JALJ) who analyzed the 31P-MRS data was blinded for study drink randomization. Ingestion 

and preparation of study drink took place in another study room to guarantee blinding for this 

researcher. All data sets from 31P-MR spectra were coded for blinded analysis by one 

researcher (IJH).   

 

31P-MRS analysis 

31P-MRS data acquisition  

In vivo 31P-MR spectroscopic data on quadriceps energy and pH balance at rest, during 

exercise and post-exercise were collected using a 3.0 Tesla whole-body MR-scanner fitted 

with a supine cycle ergometer (Achiva; Philips Healthcare, Best, The Netherlands) and 

analyzed according to methods described elsewhere (van Brussel et al. 2015). Dynamic 

acquisition of 31P-MR spectra during 10-minute cycling exercise at 70-80 rpm was 

synchronized with motion using custom-built ergometer-spectrometer interfacing hardware 

and software as described elsewhere (Jeneson et al. 2010). The brake-weight required for 

workload equivalents of 30% and 60% of Wmax, respectively, was calculated for each 

subject as described elsewhere (Diekman et al. 2016). 

 

31P-MRS data processing 

Data were processed and analyzed in the time domain using the AMARES algorithm in the 

public jMRUI software environment (version 3.0) in combination with prior knowledge 
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information on ATP metabolite content and 31P-MR spectral properties as described 

elsewhere (see also Supplementary Figures S3-5)(Jeneson et al. 2010). Intramuscular pH was 

determined from the resonance frequency of Pi using standard methods (Jeneson et al. 2010). 

Post-exercise kinetics of Pi recovery to resting levels were analyzed by non-linear curve-

fitting of a monoexponentially function yielding a fitted estimate of recovery time constant (in 

sec) as described elsewhere (Jeneson et al. 2010).  

 

Statistical analysis 

Data were analyzed using SPSS Statistics version 23.0 (IBM Corp., Armonk, New York, 

USA) and visualized using Prism 5 software (GraphPad Software, Inc. La Jolla California 

USA). Data from indirect calorimetry were processed using Matlab version 2019a 

(MathWorks INC., Natick Massachusetts, USA). A linear mixed model was used to analyze 

the effect of study drink on blood metabolites. Fixed effects in this model were the main 

effects of study arm, time, workload and order of the study drinks in the cross-over design as 

well as the two-way interactions between study arm and workload and study arm and time 

and the three-way interaction between study arm, time and workload. Subject ID was 

included in the model as a random effect. Post-hoc contrast analyses were performed to 

determine the effect of study drink per time point. Descriptive statistics were used for 

remaining outcome parameters and a two-tailed paired student’s test was used for statistical 

differences in 31P-MRS data. Data were considered statistically significant at p < 0.05.  
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Results 

Subjects 

Six GSDIIIa (4F, 2M) patients from four different countries were enrolled with a median age 

of 46 years [range: 36 - 63]. Table 1 presents the characteristics of study subjects. The 

outcomes of muscle ultrasound, dynamometry and CPET showed a severe myopathic 

phenotype in subject #1, 2, and 3. Subject #2 presented with a lower leg support device to 

stabilize his right foot, while subject #3 needed a companion for walking support. MR images 

of the upper legs showed severe muscle atrophy and fat replacement in subject #1 and #3.  In 

contrast, subjects #4, 5, and 6 had normal muscle tests and CPET outcomes. Also, urinary 

Glc4 concentrations were markedly lower in these subjects. Due to this large heterogeneity 

between subjects, results will be presented in two groups or individually. Group 1 includes 

subjects #1, 2, and 3 with overt myopathy, and group 2 includes subjects #4, 5, and 6 without 

overt myopathy.  

 

Tolerance of KE and ANK 

KE was well tolerated by all subjects. One subject (#2) reported mild headache after ingestion 

of KE+CHO (maximum βHB concentration in this patient reached 2.8 mmol/L). The other 

subjects did not report any symptoms of nausea, headache or stomach pain after ingestion of 

the KE+CHO drink. No adverse events were reported. 
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Effect of ANK on blood and urine metabolites  

Figure 1 presents the concentration kinetics of selected blood metabolites throughout the 

study protocol in both study arms. Ingestion of KE+CHO induced significant ANK within 

one hour (Figure 1A-B). Peak βHB and AcAc concentrations were on average 2.6 mmol/L 

[range: 1.6 - 3.1] and 1.0 mmol/L [range: 0.7 – 1.2], respectively (Figures 1A and C). Median 

βHB concentrations at t=0 ranged from 0.0 to 0.4 mmol/L in the CHO arm and from 0.0 to 

0.7 mmol/L in the KE+CHO arm. Four hours after ingestion of KE+CHO median βHB 

concentration was 0.5 mmol/L [n=5, range: 0.1 - 0.8]. All subjects remained normoglycemic 

in both study arms (glucose concentrations > 3.6 mmol/L, Figure 1D), but glucose 

concentrations were higher throughout the exercise protocol after ingestion of CHO versus 

KE+CHO (t=50; p < 0.0001, t=60, t=105, t=110; p < 0.01; linear mixed model, Figure 1D). 

The average delta of glucose concentrations was almost twofold higher in the CHO arm 

versus the KE+CHO arm, specifically 4.7 mmol/L versus 2.6 mmol/L (Supplementary Table 

S1). Workload did not affect glucose concentrations differently between study arms. Insulin 

concentrations were lower at t=50 and t=105 in the KE+CHO arm (p < 0.05; linear mixed 

model, Figure 1E). Lactate concentrations increased from baseline into exercise, but there 

were no differences between study arms at different timepoints (p > 0.05; linear mixed model, 

Figure 1F). FFA in blood remained low throughout the study protocol in both arms (Figure 

1G) and were influenced by lunch 3 hours post-exercise. Urinary myoglobin concentrations 

were within the local reference range (<21 ug/L) in both study arms in 5 out of 6 subjects. In 

subject #1, urinary myoglobin concentration was slightly increased after KE+CHO ingestion, 
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namely 34 ug/L, but not after CHO. No symptoms or signs of acute rhabdomyolysis were 

reported by the study subjects during the phone calls the day after study visit 2 and 3. 

 

Effect of ANK on cardiorespiratory parameters during exercise 

Figure 2 shows the results of heart rate and indirect caloric measurements in both study arms 

of all subjects (n=6). Median [range] RPE scores were 7 [6-9] and 7 [6-8] at 30%Wmax, and 

9 [7-13] and 10 [7-14] at 60%Wmax with and without ANK, respectively. Heart rate 

increased on average from 70 at rest (upright position on ergometer) to 100 bpm at 30% 

Wmax to 130 bpm at 60% Wmax in both study arms (Figure 2A). The respiratory exchange 

ratio (RER) was 1.0 at rest and decreased to 0.8-0.9 during exercise at 30% Wmax in both 

arms (Figure 2B, Supplementary Table S2). During exercise at 60% Wmax, RER went back 

up to 1.0 only in the CHO arm (Figure 2B). Comparing measured RER values during exercise 

between overt (#1, 2, and 3) and non-overt myopathic subjects (#4, 5, and 6), no difference 

was found in the CHO arm (Figure 2C). However, in the KE+CHO arm, RER seems to 

decrease more from rest to 30% Wmax in non-overt myopathic subjects than in overt 

myopathic subjects (Figure 2C). Specifically, RER during exercise at 30%Wmax in non-overt 

myopathic patients was 0.86 compared to 0.96 in overt myopathic patients (Figure 2C). In the 

KE+CHO arm, RER did not change when workload was increased from 30% to 60% Wmax 

in subjects with overt myopathy. The coefficient of variation (COV; SE/mean) of RER was 

two-to-threefold lower in the KE+CHO arm than in the CHO arm in both groups (Figure 2C). 

 

Effect of ANK on in vivo quadriceps energy balance during cycling exercise 
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All subjects without overt myopathy (subjects #4, 5, and 6) completed the supine cycling 

exercise task inside the MR scanner. Due to technical difficulties, the data of the CHO arm 

collected during exercise could not be analyzed for subject #5. Of the three subjects with 

overt myopathy (subjects #1, 2, and 3), only subject #1 was able to complete the regular in-

magnet exercise task. Subject #3 performed an adapted exercise task consisting of propelling 

the ergometer flywheel without any mechanical braking (‘idle’ resistance of the ergometer) 

due to insufficient leg muscle power. Subject #2 was unable to perform any form of supine 

cycling exercise in the MR scanner due to foot flexor paralysis. 

Pi/PCr ratios are useful measures of muscle mitochondrial function, where a decrease 

in Pi/PCr ratio reflects improved mitochondrial efficacy. Figure 3A shows the measured 

Pi/PCr ratio in the quadriceps muscle of subject #1, #4, #6, and #5 during exercise at two 

submaximal workloads in both study arms. At 30% Wmax, the Pi/PCr ratio measured in the 

presence of ANK was lower than in the CHO arm in three subjects (subject #1, 4, and 6; 

Figure 3A, left panel). At 60% Wmax, quadriceps Pi/PCr ratio measured in the presence of 

ANK in subject #1 was likewise lower than in the CHO arm, but not in subjects without overt 

myopathy (subjects #4 and 6; figure 4A, right panel). Mild muscle alkalosis was observed 

during exercise at both workloads in subject #1 in both study arms. In subject #4 this was 

found only in the CHO arm (Supplemental Table S3).  

Figure 3B shows the results of the in vivo 31P-MR measurements in quadriceps muscle 

during in-magnet cycling exercise for subject #3. In the CHO arm this subject was able to 

maintain cycling exercise for 162 s (Figure 3B). The 31P-MR spectrum of this patient at 

exhaustion showed that the intramuscular PCr store was almost completely depleted 
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concomitant with millimolar accumulation of hexose-monophosphates (HMP) in contracting 

fibers (Figure 3B). In the KE+CHO arm, the patient was able to maintain cycling exercise for 

229 s – i.e., 67 s longer than in the CHO arm (Figure 3B). The 31P-MR spectrum of the 

quadriceps muscle at exhaustion in the KE+CHO arm was almost identical to the 31P-MR 

spectrum obtained at 162 s of cycling in the CHO arm (Figure 3B) except for two particulars: 

(i) the amplitude of the HMP signals at exhaustion in the presence of ANK was lower than in 

the CHO arm (Figure 3B); (ii) muscle pH at exhaustion was mildly alkalotic in the presence 

of ANK compared to mildly acidic in the CHO arm (Supplemental Table S4, Figure S3-5).  

 

Effect of ANK on post-exercise metabolic recovery kinetics 

Figure 3C shows a typical example of time course of intramuscular Pi immediately following 

exercise. In 4 out of 5 subjects, the rate of metabolic recovery, indexed by the time constant 

tau of Pi recovery towards resting level ( ), was almost twofold slower than previously 

reported for healthy human quadriceps muscle (Figure 3C, table) (Diekman et al. 2016). 

Within the accuracy of  estimation there were no individual differences in rate of 

metabolic recovery between study arms.  
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Discussion 

This study in six adults with GSDIIIa investigated whether ANK in response to oral ingestion 

of a KE can supply oxidative substrate to exercising muscle. ANK was efficiently induced 

within one hour after ingestion of KE+CHO, KE was well tolerated, and improved glucose 
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homeostasis. We obtained in vivo evidence that ANK has a beneficial effect on muscle energy 

balance during exercise in GSDIIIa patients with a severe muscle phenotype. In patients 

without any overt muscle phenotype, we found no beneficial effect on muscle energy balance. 

  In the present study, the ingestion of 395 mg/kg KE in subjects with GSDIIIa resulted 

in ANK with maximum βHB concentrations (1.6 – 3.1 mmol/L) comparable to those 

previously found in healthy adults (Cox et al. 2016; Stubbs et al. 2017) and patients with Very 

Long-Chain acyl-CoA Dehydrogenase deficiency (VLCADD) (Bleeker et al. 2020). Subjects 

remained normoglycemic in the KE+CHO arm during the entire protocol. Furthermore, the 

delta in glucose concentration was almost twofold lower than in the eucaloric CHO arm with 

related lower insulin concentrations. The latter may well have been the direct result of the 

twofold higher maltodextrin intake in the CHO study arm. This amount of CHO 

supplementation (~66 grams) was comparable to a previous fructose supplementation study in 

GSDIIIa patients (Preisler et al. 2015).  

The whole-body indirect calorimetry results confirmed that subjects performed 

exercise at submaximal workloads, with peak heart rates around 130 bpm at the highest 

imposed workload. When stratifying for muscle phenotype, a striking finding was that the 

COV was two-to-threefold lower in the KE+CHO arm compared to the CHO arm in both 

groups – i.e. subjects with overt myopathy (#1-3) and subjects without overt myopathy (#4-6) 

(Figure 2C). On a whole body level ANK was associated with a more consistent metabolic 

state than CHO alone. The particular trend observed in the CHO arm in both groups, fitted 

well with the ‘cross over’ concept of whole-body oxidative substrate utilization during 

incremental exercise. - i.e., predominantly fatty-acid oxidation at workloads below 
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40%Wmax progressively shifting towards CHO oxidation at higher workloads (Brooks and 

Mercier 1994). In subjects without overt myopathy, this trend in RER was also observed in 

the KE+CHO arm. In subjects with overt myopathy, however, RER did not increase with 

workload change from 30 to 60% suggesting incomplete non-CHO substrate utilization. This 

could be either βHB (RQ 0.9) or a mix of fat (RQ 0.7) and βHB (Cox et al. 2016).  

Complete datasets on in vivo energy and pH balance in exercising quadriceps muscle 

in both study arms were obtained in three subjects. In vivo intramuscular Pi/PCr ratios during 

exercise at the lowest workload in each arm suggested that leg muscle of these subjects used 

ketones as oxidative substrate in the KE+CHO arm. Previously, Kim et al found a small 

reduction of in vivo Pi/PCr ratio of the myocardium in dogs infused with βHB compared to 

control (Kim, Heineman, and Balaban 1991). In subject #1, a relatively large reduction in 

Pi/PCr ratio in the KE+CHO compared to CHO arm was observed at both 30% and 

60%Wmax equivalents (Figure 3A). It is unlikely that this was solely the result of improved 

thermodynamic efficiency of oxidative ATP synthesis by ketone oxidation. Rather it may well 

reflect that recruitment of fewer motor units was needed to perform the voluntary exercise 

task during ANK due to improved work efficacy (Sato et al. 1995). Indeed, subject #3 was 

able to perform the same voluntary exercise task almost one minute longer in the KE+CHO 

arm than in the CHO arm. The in vivo 31P spectrum at exhaustion recorded in the CHO arm 

showed large accumulation of phosphorylated glycolytic intermediates as well as mild muscle 

acidification, both of which were absent in the KE+CHO arm (Figure 3B). In subjects #4 and 

#6 we did not find any favorable effect of ANK on muscle energy balance during exercise at 

the highest submaximal workload. Lastly, ANK did not have any effect on post-exercise 
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metabolic recovery kinetics (Figure 3C) similar to previous findings in VLCADD patients 

(Bleeker 2020). This was an expected outcome as it has previously been shown that these 

kinetics are independent of end-exercise state of muscle energy balance for low-to-moderate 

exercise workloads (Meyer 1988). However, the post-exercise recovery time of Pi in 

quadriceps muscle of the subjects was on average twofold slower than previously reported in 

healthy controls (Figure 3C; Table). This result was in close agreement with previous 31P 

MRS findings in calf muscle of GSDIII patients (Wary et al. 2010)  

On basis of these results we conclude that ANK during exercise induced by prior KE 

ingestion may be beneficial to GSDIIIa patients when engaging in physical activity. 

Specifically, the results of this study suggest that such therapeutic approach should principally 

be focused on patients with a severe muscle phenotype, exemplified by subjects #1-3 in this 

study. Nevertheless, long-term follow-up studies are needed in more patients to assess 

efficacy and safety. Here it may be important to note that subjects #4-6 all originated from 

and resided in the same North-Atlantic archipelago with a known founder pathogenic 

variation (Santer et al. 2001), whereas subjects #1-3 all originated from different countries in 

Europe. This prompts consideration of genetic and environmental modifying factors 

contributing to the observed differences in muscle phenotype in GSDIIIa. Subjects #1-3 carry 

unique nonsense AGL genotypes which involves at least one duplication or deletion, whereas 

the homozygous nonsense single-base substitution c.1222C>T (R408X) AGL genotype in 

subjects #4-6 causes truncation of enzyme, which affects both enzymatic functions, namely 

oligo-1,4-1,4-glucanotransferase and amylo-1,6-glucosidase (Santer et al. 2001). It is 

therefore likely that additional genetic or dietary factors may explain the phenotypes. 
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Interestingly, average daily protein intake of subjects #4-6 was up to twofold higher than 

reported by subjects #1-3 (Table 1). A recent study in AGL knock-out mice demonstrated a 

reduction in muscle wasting in mice fed a high protein and glucose restricted diet (Pagliarani 

et al. 2018). Various case studies have also demonstrated a reversal of myopathy defined by 

increased physical strength and reduced CK concentrations after dietary interventions with 

high protein (Slonim, Coleman, and Moses 1984; S. Kiechl et al. 1999a) and/or ketogenic 

diets (Mayorandan et al. 2014; Francini-pesenti, Tresso, and Vitturi 2019). These studies 

report different outcome measures and macronutrient distributions; hence, it remains an 

enigma whether muscle atrophy in adult GSD IIIa patients can be prevented by dietary 

interventions.  

The generalizability of our findings is subject to several limitations. Like other clinical 

studies in patients with ultra-rare disease, this study was complicated by difficulties of 

including sufficient subjects. Despite the demanding study protocol, we were able to recruit 

six patients from four different countries, reflecting the wide spectrum of clinical 

heterogeneity between adult GSDIIIa patients. The latter prompted the analysis of two n=3 

subgroups rather than one n=6 population. Due to this small number of subjects and the great 

heterogeneity between individual GSDIIIa patients, definitive conclusions on the efficacy of 

ANK cannot be drawn for the whole cohort. The intervention was constrained by the absence 

of a negative control group because of the requirement of a ‘sufficient’ amount of CHO in 

both study arms to ensure patient safety. This issue was discussed during a focus group 

meeting with patients, resulting in a decision to have safety arguments outweigh 

methodological arguments. Similarly, muscle biopsy was offered as an optional procedure in 
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our protocol, similar to Cox 2016 and Bleeker 2020. However, cross-sectional MR images of 

the upper leg showed that any chance of successful sampling of muscle tissue from the leg of 

subjects #1 and #3 by non-guided transcutaneous needle biopsy would be slim (Table 1). Of 

the four remaining subjects, only one subject (#2) gave informed consent. Last, although the 

subjects exercised with increased plasma concentrations of glucose (CHO) and ketones 

(KE+CHO), we cannot exclude that differences in absorption and requirement of maltodextrin 

versus KE in GSDIIIa patients may have caused different maximum plasma concentrations. 

For decades, several descriptive studies have underlined the importance of 

investigation of muscle involvement in GSDIIIa patients (DiMauro et al. 1979, Kiechl et al. 

1999b, Lucchiari et al. 2002, Sentner et al. 2016,), besides progressive liver disease (Halaby 

et al. 2019). Prevention and, if possible, reversal of progressive loss of skeletal muscle mass 

and quality in GSDIIIa patients is therefore a key objective in clinical management. Current 

guidelines on GSDIII management do not provide recommendations regarding exercise or 

pre-exercise therapy (Kishnani et al. 2010) but do mention the potential beneficial effect of 

aerobic conditioning as seen in McArdle’s disease (GSDV; OMIM #232600) (Haller et al. 

2006). The recent international GSD priority setting partnership has added muscle problems 

to the list of research priorities for GSD patients (Peeks et al. 2019). Valayannopoulos et. al. 

reported successful treatment of sodium-D,L-3-hydroxybutyrate up to 800 mg/kg/day, in 

conjunction with a ketogenic and high-protein diet, in a 2-month old infant with GSD IIIa, 

complicated by severe cardiomyopathy (Valayannopoulos et al. 2011). We recently reported 

decreased creatine kinase concentrations and a decrease in cardiac hypertrophy in pediatric 

GSDIIIa patients after the introduction of high fat diets (Rossi et al. 2020). The current study 
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of oral KE supplementation on in vivo muscle biochemistry and function in GSDIIIa patients 

provides a subsequent steppingstone towards translation of the theoretical beneficial effect of 

ANK to a pre-exercise skeletal muscle therapy in selected, myopathic GSDIIIa patients. 

Furthermore, ANK with oral supplementation is less demanding than a restrictive, ketogenic 

diet. As such, we propose to study acute delivery of ketones as alternative to acute glucose or 

fructose supplementation (Preisler et al. 2013, 2015) to support physical activity in this 

subgroup of GSDIIIa patients. Strict patient-to-patient interventions and long-term monitoring 

of muscle status together with liver function and morphology are recommended in case of 

frequent use of KE to induce ANK (Desrochers et al. 1995). 
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 1 2 3 4 5 6 
General 

Age range (y) 36 36-40 46-50 61-65 46-50 56-60 
BMI (kg/m2) 24.2 30.7 30.4 28.8 30.8 29.2 

Molecular defect AGL gene  

Nucleotide change c.4529dupA 
c.4529dupA 

c.765G>A  
c.4529dupA 

c.2590C>T  
c.3247delT 

c.1222C>T 
c.1222C>T 

Dietary management 
E%, carbohydrates 21% 42% 22% 28% 22% 39% 

E%, protein 13% 17% 27% 47% 34% 27% 
Muscle status 

History of  
muscle weakness 

Proximal lower 
extremities 

Distal upper and 
lower extremities 

Proximal lower 
extremities 

Distal upper 
extremities 

Proximal, distal, 
lower and upper 
extremities 

Distal lower 
extremities 

Blood markers 
ASAT (U/L) 
ALAT (U/L) 

NT-proBNP (ng/L) 
total CK (U/L) 

 
100 

86 
125 
904 

 
158 
108 
<5 

3442 

 
128 
138 

89 
957 

 
35 
32 

133 
174 

 
29 
34 
92 

102 

 
48 
68 

104 
107 

Urinary Glc4 (mmol/mol creat) 31 16 27 2 2 3 
MUD Z-scores quadriceps +3.88 +1.94 +3.76 -0.25 +0.35 +0.05 
MR imaging of quadriceps 

muscle 

      
Muscle strength and exercise 

Activity level1  Moderate Moderate Moderate Moderate High High 
Dynamometry Tetra paresis Distal paresis Proximal paresis Normal Normal  Normal  
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VO2 max (% of predicted) 52 58 46 95 105 96 
Wmax (% of predicted)  34 36 24 138 148 130 
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Table 1. Clinical and biochemical characteristics of subjects.  

Legend: 1based on international physical activity questionnaire (Craig et al. 2003). Bold; above local 

laboratory reference values. AGL, amylo-α-1,6-glucosidase 4-α-glucanotransferase; ALAT, alanine 

aminotransferase; ASAT, aspartate aminotransferase; CK, creatine kinase; E%, energy percentage of 

total caloric intake; Glc4, glucose tetrasaccharide; MUD, muscle ultrasound density; NT-proBNP, N-

terminal prohormone of brain natriuretic peptide; VO2 max, maximal oxygen uptake; Wmax, 

maximal workload. 
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Figure 1: Changes of blood and urine metabolites after ingestion of either carbohydrates 

(CHO) or carbohydrates and ketone-ester (KE+CHO) drink before, during and after exercise.  

Legend: A) βHB kinetics after ingestion of KE+CHO, B) βHB concentrations, C) AcAc 

concentrations, D) glucose concentrations, E) insulin concentrations, F) lactate concentrations, G) 

FFA concentrations. In panel B-G n=4 for time points t=105 and t=110 (during in-magnet exercise), 

n=6 for all other time points in both study arms. Light grey columns represent the time frame of 

exercise at 30% Wmax, dark grey columns represent the time frame of exercise at 60% Wmax. 

Values expressed as mean ± SEM.  *: p < 0.05, §: p < 0.01, ±: p < 0.0001; linear mixed model 

analysis with post-hoc contrast analysis.   
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Figure 2: Heart rate and indirect calorimetry measurements at rest, 30% Wmax and 60% 

Wmax during the upright bicycle protocol in both study arms.  

Legend: A-B) pooled data (n=6), C) data presented as subgroups based on muscle phenotype, n=3 in 

both groups. Dashed line represents the RQ of βHB (0.89). Data presented as mean ± SD.  
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Figure 3. Outcomes of in vivo 31P-MR spectra of quadriceps muscle during 10-minute supine 

in-magnet exercise and recovery in both study arms.  

Legend: A) Intramuscular Pi/PCr ratios at equivalents of 30 and 60% Wmax in 4 subjects, B) 

Exercise duration and related spectra, in both study arms for subject #3, C) Example of intramuscular 

Pi recovery time course from subject #3 in the KE+CHO arm (left panel), table represents individual 

rates of metabolic recovery versus healthy controls (Diekman et al. 2016) (right panel). 
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