Slab Gate Valve

GT00,000 Series

The flat gate valve is a sliding valve with a parallel gate as the closure member. The closure member can be a single gate or a double gate with a split mechanism between them. The design shall be of a new floating seating construction. The pressure on the gate-to-valve seat is controlled by the media pressure acting on the floating gate or floating seat.

The construction of this product shall be novel in design, with appropriate material selection, strict testing, and easy operation. Because of its strong corrosion, wear, and erosion resistance, this valve is an ideal new type of equipment for the petroleum industry.

SNY parallel double disc gate valves are position-sealed valves that provide initial sealing force to the gate and valve seat under low pressure through preload. The higher the media pressure, the more reliable the sealing performance is. Therefore, parallel double disc gate valves are widely used in high-temperature and high-pressure pipelines.

Size

2" to 60 " [50 to 1500 mm]

Pressure Classes

ASME 150 to 1500 DIN PN10 to 250 ISO PN 20 to 250

End Connection

Double Flanged RF/RTJ, Butt-welding

Temperature Range

-45 to +1500°F [-50 to +815°C]

Body Material

WCB, LCB:

WC6, WC9, C5, C12; CE8, CE8M,CE3, CE3M, CE8C: Duplex, Superduplex;

Inconel®, Alloy 20, Monel®, Incoloy®, Hastelloy®, Titanium.

Industry Applications

Natural gas, petroleum, chemical industry Urban pipeline, gas pipeline Venting system, storage facilities, etc.

Design Features:

- · Optional split-type gate design.
- · Optional design without deflector hole.
- Optional design with parallel double disc gate.
- · Optional hard seat design.
- ISO5210 standard upper flange.
- · Valve stem with anti blow-out design.

- SNY is designed with a soft seat and a metal double seat valve seat. In the event of damage to the soft seat valve seat, the metal seat valve seat will act as a secondary seal.
- The reliable design of the valve, with spring preload and double O-rings, ensures that the valves can be effectively sealed under both low and high pressures.

• The double block design of the valve ensures that it will block the pressure of the upstream and downstream pipelines when it is closed, regardless of whether there is pressure or not. This is because the spring seats on both sides of the valve will be in a state of balanced pressure when the valve is closed.

• When pipeline pressure is applied, the flat gate is forced to move towards the downstream valve seat under the media pressure to form a seal. Meanwhile, the upstream pipeline pressure guarantees the sealing of the upstream.

• When the valve is closed, the cavity pressure of the double block and bleed (DBB) construction may abnormally increase. If the cavity pressure exceeds the pipeline pressure, the valve seat will be forced away from the valve body and the excessive cavity pressure will be released into the pipeline.

• Both the valve stem and seat have a secondary sealant injection sealing system. In the event of damage to the sealing ring, an emergency sealant injection can be made to prevent leakage from the valve stem and seat.

Bellow Valve

GB/GLB00,000 Series

Bellow valves are primarily used in highly toxic and dangerous environments to prevent major accidents or significant impacts on personnel and environmental safety caused by media leakage.

The upper port of the SNY bellow valve is attached to the valve cover, and the lower port is attached to the valve stem. The upward and downward movement of the valve stem causes the bellows to retract, eliminating potential leakage caused by the sliding seal of the valve stem

The valve is composed of the valve body, cover, drive part, sealing part, guide plate, and indicator. The product has the advantages of long service life, small operating torque, and good sealing.

This series of products is designed and inspected in accordance with API 623, ASME B16.34, API 602, API 600, API 598, ISO 15848, etc..

1/2" to 16" [15 to 400 mm]

Pressure Classes

ASME 150 to 1500 DIN PN10 to 250 ISO PN 20 to 250

End Connection

Double Flanged RF/RTJ, Butt-welding

Temperature Range

-45 to +1500°F [-50 to +815°C]

Body Material

WCB/A105, LCB/LF2; WC6/F11, WC9/F22, C5/F5, C12/F9; CF8/F304, CF8M/F316,CF3/F304L, CF3M/F316L; Dupley, Superdupley:

Inconel®, Alloy 20, Monel®, Incoloy®, Hastelloy®, Titanium.

Industry Applications

Petrochemical, chemical fiber and textile, plastic, paper making, printing and rubber, power, steel, natural gas, chlorine, liquid chlorine Various highly dangerous media

Design Features:

- Long service life, suitable for high-frequency service conditions.
- · Double sealing achieved with bellows and packing.
- The sealing surfaces of the seat rings are faced with cobalt-based material.
- The anti-blowout stem design enables the replacement of packing while the valve is fully open.
- Hinged bolts that can be rotated laterally are better for packing maintenance because they allow for easier access to the packing.
- Impact handwheels and gearboxes can be equipped in accordance with SNY standards and customer requirements.

· The unique conical flat sealing design of the globe valve effectively quarantees the sealing effect and low operating torque.

Special blade design can be used for cut off impurities, e.g., chlorine

The valve disc is faced with STL cobalt-based alloy, and hardening treatment is applied.

Integrally pressed PTFE is used for the valve seat to improve the sealing performance.

• A tongue-and-groove sealing construction is used to ensure that the flanges are fully mated, which prevents leakage at the body-cover joint.

· Valve stem and packing design:

The design of valve stem shall be of a back seal.

The valve stem axis is guided throughout its full stroke.

Double sealing guarantee for bellows and stuffing boxes.

The packing seal thickness should be at least twice the travel of the valve stem.

Valve stem sealing design with fugitive emission:

API622 stem packing with fugitive emission.

The valve stem is guided and positioned throughout its full travel to prevent packing leakage caused by side-to-side movement.

Surface roughness control of the valve stem and packing box assembly is important to prevent leakage.

Optional pressing plate for dynamic load.

The fugitive emissions comply with ISO 15848, API 641 and TA-Luft.

• The service life of the bellows shall be 10000 cycles and above.

Two to six layers of overlap are used for the bellows to prevent single layer damage that could cause the valve to leak and extend the valve's service life.

Pressure Self-sealing Valve

GP/GLP/CP00,000 Series

This series of products, one of SNY's main products, is supplied to our national and international customers in large quantities every year. SNY can provide a full range of sizes, pressures, and material options.

All products in this series meet the requirements of API 591 and have passed the pressure tests conducted in accordance with API 598. This series of valves has been certified in accordance with ISO 15848-1 and API 624 for fugitive emissions.

SNY maintains a large inventory of parts for this series of products to meet the on-site urgent needs of users.

Size

2" to 60" [50 to 1,500 mm]

Pressure Classes

ASME 600 to 2500 DIN PN100 to 420

ISO PN100 to 420

End Connection

Double Flanged RF/RTJ, Butt-welding

Temperature Range

-425 to +1500°F [-254 to +815°C]

Body Material

WCB, LCB:

WC6, WC9, C5, C12; CF8, CF8M,CF3, CF3M,CF8C;

Duplex, Superduplex:

Inconel®, Alloy 20, Monel®, Incoloy®, Hastelloy®, Titanium.

Operating Means

- · Handwheel/gear
- Electric actuator
- Pneumatic actuator
- Pneumatic-hydraulic actuator
- Electric-hydraulic actuator

Industry Applications Petrochemical industry,

long-distance oil and gas transportation pipelines.

Pressure Self-sealing Gate Valve GP00,000

Size:

2" to 60" (DN 50 to DN 1500)

Pressure Classes:

Class 600 lb to 2500 lb (PN 100 to PN 420) Body Material:

Carbon steel, stainless steel, alloy steel, duplex steel End Connection:

Flanged RF/RTJ, Butt-welding

Operating Means:

Handwheel, gear, electric actuator, pneumatic actuator

Design Features:

- . The four split rings absorb the outward thrust caused by the internal pressure on the valve stem.
- The sealing ring provides a pressure-bearing surface for the gaskets and prevents
- The flexible-wedge gate compensates for the surface distortion of the seat ring and the deformation of the valve body due to the pipeline stress.
- . The seat rings' sealing surface, faced with No. 6 cobalt-based material, are installed
- Stainless steel cladding ensures the effectiveness and corrosion resistance of the critical sealing area of carbon and alloy steel valve bodies.
- . Anti-blowout stem design ensures that the conical back seat contacts with the back seat of the bonnet when the valve is in the fully open position
- Mild steel gaskets that have large sealing surfaces provide excellent sealing performance.

Pressure Self-sealing Globe Valve GLP00,000

Size:

2" to 24" (DN 50 to DN 600)

Pressure Classes:

Class 600 lb to 2500 lb (PN 100 to PN 420) Body Material:

Carbon steel, stainless steel, alloy steel, duplex steel **End Connection:**

Flanged RF/RTJ, Butt-welding

Operating Means:

Handwheel, gear, electric actuator, pneumatic actuator

- . The four split rings absorb the outward thrust caused by the internal pressure on the valve stem.
- . Stainless steel cladding ensures the effectiveness and corrosion resistance of the critical sealing area of carbon and alloy steel valve bodies.
- . The sealing ring provides a pressure-bearing surface for the gaskets and prevents them from deforming
- The seat rings' sealing surface, faced with No. 6 cobalt-based material, are installed
- Mild steel gaskets that have large sealing surfaces provide excellent sealing performance.

Pressure Self-sealing Check Valve CP00,000

Size:

2" to 60" (DN 50 to DN 1500)

Pressure Classes:

Class 600 lb to 2500 lb (PN 100 to PN 420)

Body Material:

Carbon steel, stainless steel, alloy steel, duplex steel **End Connection**

Flanged RF/RTJ, Butt-welding

Design Features:

- The four split rings absorb the outward thrust caused by the internal pressure on the valve stem. • The sealing ring provides a pressure-bearing surface for the gaskets and prevents
- Mild steel gaskets that have large sealing surfaces provide excellent sealing performance. Stainless steel cladding ensures the effectiveness and corrosion resistance of the
- critical sealing area of carbon and alloy steel valve bodies. Hinge pin without external leakages
- . Standard swing-type discs are suitable for horizontal or vertical lines with the flow in
- The hinge and pin that are installed inside the valve body allow the disc to move fully.

Automated Trunnion Ball Valve Seriesv

The SNY trunnion ball valves are classified into side entry, top entry soft seated, side entry hard seated, and fully-welded trunnion ball valves. The soft seated valves have been fire-tested in accordance with API 607 and API 6FA, and certified in accordance with the requirements of TUV and Det Norske Veritas (DNV).

The side entry type soft seated trunnion ball valves adopt a two-piece or three-piece split side entry design that complies with API 6D. They are particularly suitable for fluid control in large-diameter and high-pressure pipelines, and this series of valves can achieve double block and bleed.

Top entry type trunnion ball valves comply with API 6D. They are particularly suitable for fluid control in large-diameter and high-pressure pipelines, and this series of valves can achieve double block and bleed. The top entry construction allows for online replacement, making maintenance convenient.

Fully-welded trunnion ball valves comply with API 6D. Sleeves, lifting eyes, and other customer-required accessories can be provided. They are particularly suitable for fluid control in large-diameter and high-pressure pipelines, and this series of valves can achieve double block and bleed. The fully-welded construction minimizes external leakage and ensures reliable sealing.

Side entry type hard seated trunnion ball valves shall be split construction. The valve seat shall be metal hard seated, which is characterized by high temperature and wear resistance after hardening treatment. They are suitable for service conditions with high temperature, corrosive media, or particle-containing media.

Industry Applications

2" to 60"

Pressure Classes:

150 lb to 2500 lb

Body Materials:

Carbon steel, stainless steel, alloy steel, and duplex steel

A105N+ENP, 3Cr, F304, F316, F51, F55

Sealing Form:

Soft seated or hard seated

Temperature Range:

-50 to 500°C

Operating Means

Design Features

Optional Automation Solutions

Automated Floating Ball Valve

SNY automated floating ball valves are classified into two categories: soft seated, and metal hard seated. This series of soft seated valves shall be fire-safe, fire-tested to API 607 and API 6FA, and certified to TUV and Det Norske Veritas (DNV).

The SNY side entry type soft seated floating ball valves adopt either an one-piece integral body or a two-piece split design, both of which comply with ISO17292.

SNY forged steel soft seated floating ball valves adopt a two-piece or three-piece split design that complies with ISO17292.

SNY metal hard seated floating ball valves shall be metal hard seated, which is characterized by high temperature and wear resistance after hardening treatment. They are suitable for service conditions with high temperature or particle-containing media.

Industry Applications

Liquefied Natural Gas

Production of industrial gas

Gas storage

Oil, gas, chemical, petrochemical production

Shut-off media

Not applicable for throttling control

Media such as water, oil, and gas

Not applicable for environment containing

Scope of Product

Size

1/2" to 10" (DN 15 to DN 250)

Pressure Classes:

150 lb to 2500 lb

Body Materials:

Carbon steel, stainless steel, alloy steel, and duplex steel

A105N+ENP, 3Cr, F304, F316, F51, F55

Sealing Form:

Soft seated or hard seated

Temperature Range:

-50 to 500°C

Operating Means

Handwheel, gearbox

Pneumatic actuato

Electric actuate

Pneumatic-hydraulic actuator

Electric-hydraulic actuator

Design Features

Designed with full or reduced bores

One-piece/two-piece/three-piece or fully welded design.

Fire certification (API 607 & API 6FA

Anti-static, anti blow-out sten

Double block and bleed

Sealant injection system provided on the valve

Optional fugitive emission design

Top flanges provided according to ISO 5211

Optional sealing design with dual pistons.

Optional Automation Solutions

Remote Operated Valve

Emergency Shut Down Valve

Notor Operated Valve

Proumatic Valvo

Automated Gate Valve

The SNY automated gate valves comply with API 600 and ASME B16.34, and a wider range of products is available for selection, such as pressure seal design, outside yoke and screw, resilient seat design, and bellow construction.

Gate valves are commonly used on-off valves that are widely used in situations where bidirectional flow is required. They can be used as either normally open or normally closed valves.

Gate valves are not suitable for partial opening or throttling.

Gate valves are widely used in conjunction with automation solutions to control the flow of various fluids in pipelines.

Industry Applications

Petrochemical and refineries

Liquefied Natural Ga

Ship, paper mill and mineral processing indust

Power plan

Ultra-low temperature or high temperatur process transformation

Chemical industr

Scope of Product

Siz

2" to 66" (DN 50 to DN 1650)

Pressure Classes:

150 lb to 2500 lb

Body Materials:

Carbon steel, stainless steel, alloy steel, duplex steel

End Connection:

Flanged RF / RTJ, Butt-welding

Temperature Range:

-196 to 650℃

Operating Means

Handwheel, gearb

Pneumatic actuato

Electric actuat

Hvdraulic actuato

Pneumatic-hydraulic actuato

Electric-hydraulic actuato

Design Features

esigned in accordance with API 600 & ASME B16.34

Bolted bonnet construction

ptional pressure seal desig

pen pole bracket OS58Y

Top flanges provided according to ISO 521

Resilient valve seat

Optional bellow construction

ertified in accordance with API 59

ertified by fugitive emission tests

Optional Automation Solutions

Remote Operated Valv

Motor Operated Valv

Electric-bydraulic Valve

neumatic-hydraulic Valve

20

Automated Globe Valve

Globe valves are forced sealed valves that are typically used as media isolation valves. They are characterized by small valve openings, short travel distances, and short opening and closing times.

SNY can provide two types of valve stems: rising stem and rotating rising stem. The design requirements include optional bellows, fugitive emission, and pressure sealing. A full series of products is available for selection, including T-pattern, Y-pattern, and angle pattern.

In conjunction with automation solutions, globe valves are widely used to block and regulate the flow of various fluids in pipelines.

Industry Applications

Scope of Product

Size:

2" to 24" (DN 50 to DN 600)

Pressure Classes:

150 lb to 2500 lb

Body Materials:

Carbon steel, stainless steel, alloy steel, duplex steel, cryogenic steel, nickel- based alloy, titanium alloy, etc.

Flanged RF / RTJ, Butt-welding

Temperature Range:

End Connection:

-196 to 500°C

Operating Means

Design Features

Optional Automation Solutions

Automated Double Offset Butterfly Valve

SNY double offset-type butterfly valves shall be designed to be offset-type and compliant with API 609. The valve stem shall be designed to be anti-blowout to prevent the stem from ejection and causing operator injury due to misoperation.

SNY double offset-type butterfly valves shall be constructed with resilient pressure self-sealing seats. These seats are characterized by bidirectional zero leakage and lower torque requirements, which can help to reduce the procurement cost of the driving device.

The cam-effect sealing construction separates the valve seat from the disc after the valve is opened at a certain angle, reducing friction and significantly improving the valve's service life. In conjunction with several automation solutions, they are widely used to block and regulate the flow of various fluids in pipelines.

Industry Applications

Scope of Product

3" to 120" (DN 80 to DN 3000)

Pressure Classes:

150 lb to 600 lb (PN 16 to PN 100)

Body Materials:

Carbon steel, stainless steel, alloy steel, duplex steel, etc.

Sealing Materials:

EPDM, NBR, PTFE, VITON

End Connection:

Wafer/ lug/ double flange

Temperature Range:

-40 to 120°C

Operating Means

Design Features

Optional Automation Solutions

Automated Triple Offset Butterfly Valve

SNY triple offset-type butterfly valves shall be designed to be offset-type and compliant with API 609. The valve stem shall be designed to be anti-blowout to prevent the stem from ejection and causing operator injury due to misoperation.

SNY triple offset-type butterfly valves are characterized by bidirectional sealing, zero leakage, and low torque. The metal sealing seat design makes the valve suitable for severe service conditions. The offset-type design allows the disc to detach from the valve seat immediately when the valve is opened, reducing friction between the seat and disc and significantly improving the valve's service life. The valve also has inherent fire resistance.

The exquisite construction design and interchangeable sealing pairs reduce maintenance costs.

In conjunction with several automation solutions, they are widely used to control, block, and regulate various fluids in pipelines.

Industry Applications

Scope of Product

Size:

3" to 80" (DN 80 to DN 2000)

Pressure Classes:

150 lb to 2500 lb (PN 16 to PN 420)

Body Materials:

Carbon steel, stainless steel, alloy steel, duplex steel, etc. Sealing Materials:

Pure metal seals, or multiple seals **End Connection:**

Wafer/lug/double flanged/butt-welding

Temperature Range:

-196 to 650°C

Operating Means

Design Features

Optional Automation Solutions

Cryogenic Gate, Globe, Check, **Ball and Gate Valves**

C00.000 Series

The SNY cryogenic valves include cryogenic ball valves, gate valves, globe valves, check valves, and butterfly

The SNY cryogenic valves are suitable for cryogenic service below -254° C. They are designed with advanced concepts, high-precision machining, rigorous process management, and strict production controls. This results in outstanding advantages, such as reliable sealing, low operating torque, high cryogenic stability, and long service life. The SNY cryogenic valves are widely used in liquefied natural gas, liquefied petroleum gas, air separation, and other cryogenic applications.

Scope of Product

Size:

1/2 " to 160" (DN 50 to DN 4000)

Pressure Classes:

150 lb to 2500 lb (PN 16 to PN 420)

Body Materials:

Carbon steel, stainless steel, cryogenic steel

End Connection:

Flanged, welding, threaded, socket welding Temperature Range:

-254 to 150°C

Operating Means:

Handwheel, gearbox, electric actuator,

pneumatic actuator

Industry Applications:

Liquefied natural gas, liquefied petroleum gas, liquefied ethylene gas, air separation, etc..

Cryogenic Gate Valve

Size:

2 " to 56" (DN 50 to DN 1400)

Pressure Classes:

150 lb to 2500 lb (PN 16 to PN 420)

Body Materials:

Stainless steel, cryogenic steel **End Connection:**

Flanged, butt-welding, socket welding **Operating Means:**

Manual, electric actuator, pneumatic actuator

Design Features

Cryogenic Globe Valve

1/2 " to 24" (DN 15 to DN 600)

Pressure Classes:

150 lb to 2500 lb (PN 16 to PN 420)

Body Materials:

Stainless steel, cryogenic steel

End Connection:

Flanged, butt-welding, socket welding **Operating Means:**

Manual, electric actuator, pneumatic actuator

Design Features

Cryogenic Gate, Globe, Check, **Ball and Gate Valves**

C00.000 Series

Cryogenic Check Valve

Size:

1/2" to 42" (DN 15to DN 1050)

Pressure Classes:

End Connection:

150 lb to 2500 lb (PN 16 to PN 420) **Body Materials:**

Stainless steel, cryogenic steel

Flanged, butt-welding, RTJ

Design Features

Cryogenic Ball Valve

Size:

1" to 24" (DN 25 to DN 600)

Pressure Classes:

150 lb to 1500 lb (PN 16 to PN 250) Body Materials:

Stainless steel, cryogenic steel

End Connection:

Flanged, butt-welding, RTJ Construction Style:

Top entry or side entry

Operating Means:

Manual, electric actuator, pneumatic actuator, hydraulic actuator

Design Features

Cryogenic Triple Offset Butterfly Valve

Size:

3" to 120" (DN 80 to DN 3000)

Pressure Classes:

150 lb to 900 lb (PN 16 to PN 150) Body Materials:

Stainless steel, cryogenic steel **End Connection:**

Wafer, lug, double flanged, butt-welding

Operating Means:

Handwheel, gear, electric actuator, pneumatic actuator

Design Features

Valves for Oxygen Services

Valves for oxygen services are specially designed for oxygen pipelines. Oxygen is a combustion aid, so serious accidents, such as valve fires or pipeline explosions, can occur if an ignition source is present. Therefore, valves for oxygen services must have a high level of safety.

In addition to the functions of conventional valves, valves for oxygen services have their own unique characteristics. For oxygen services, there are special requirements for the design, material selection, and cleanliness of the valves. Stringent oil-free measures must be taken during manufacturing, and all parts must be degreased prior to installation.

SNY designs and manufactures valves for oxygen services that meet the requirements of different service conditions and parameters.

Industry Application

Coal chemical plant:

Coal gasification unit/black water and ash water treatment/conversion unit/low-temperature methanol washing/PSA hydrogen recovery.

Air separation unit:

Oxygen purification system/oxygen separation system/oxygen secovery system.

Scope of Product

Type of Valves for Oxygen Services:

Gate valve, globe valve, check valve, ball valve, butterfly valve

1/2" to 24", 1/2" to 16", 1/2" to 12 "

Pressure Classes:

150 LB to 600 LB, 900 LB, 1500 LB

End Connection:

RF, RTJ, BW

Operating Means:

Manual, gearbox, pneumatic actuator

Design Features(Globe Valve for Oxygen Services)

Design Features (Ball Valves for Oxygen Services)

Plug Valve

SNY plug valves are widely used in various industrial fields, such as petroleum, chemical, power, pharmaceuticals, and metallurgy. They can be used to control the flow rate, pressure, and temperature of fluids, and to shut off fluids for servicing and maintenance.

Size

2" to 24"(DN 50 to DN 600)

Pressure Classes CLASS 150 to 600 (PN 16 to 100)

CLASS 150 to 600 (PN 16 to 100

Temperature Range

-46℃ to 250℃

Body Materials

Carbon steel/stainless steel/ low-temperature alloy steel, etc.

End Connection

Flanged/Welding

Design Features

- Low operating force
- · Lubricated hard seals
- Fire-safe design
- · Anti-static design
- Adjustable sealing positions
- · Long service life
- Standard inner diameter with low flow resistance
- Finite element analysis is applicable

Industry Application

Petrochemical industry

Jacketed Valve

SNY jacketed ball valves are used in the chemical industry for fluids with high viscosity and a tendency to solidify. The valves are designed as a one-piece, fully jacketed unit with insulation media inside the jacket to prevent the solidification of the internal media in the valve, thus ensuring unobstructed flow.

Size

2" to 24"(DN 50 to DN 600)

Pressure Classes CLASS 150 (PN16)

Temperature Range

-46°C to 570°C

Body Materials

Carbon steel, stainless steel, etc.

End Connection

Flanged

Design Features

- Fire-safe design
- One-piece, fully jacketed construction
- · Packing with fugitive emission
- Anti blow-out stem
- Anti-static design

Industry Application

Chemical industry, and fluids with high viscosity and a tendency to solidify.

Marine Valve

SNY marine valves are designed to be lightweight and compact, which reduces installation costs and saves ship space. SNY marine valves are widely used in many ships.

Size

1/2" to 12 "(DN 15 to DN 300)

Pressure Classes

CLASS 150 to 300 (PN 16 to PN 40)

Temperature Range

-46°C to 425°C

Body Materials

Carbon steel, bronze, stainless steel, castiron, DSS, super DSS.

End Connection

Flanged/Welding

Design Features

- Non-rising stem gate valve
- Bronze trims
- Angle pattern globe valve
- Stop-check type disc
- Manual or pneumatic quick closing valve
- ABS certification.

Industry Application

Marine

PRODUCT QUALITY COMMITMENT

Our company promises to repair, replace, or refund the purchase price of any defective product if the buyer can confirm that the product has been correctly installed and used in accordance with our company's recommended methods. The defects must be verifiable, and the complaint must be submitted in writing within 18 months of the product's purchase or 12 months of its installation, whichever comes first. Our company will not be responsible for labor costs incurred in the repair or replacement of the defective product, materials, equipment, engineering, or other related costs. This quality warranty supersedes all other expressed or implied warranties, and is the buyer's sole remedy.

33

Scope of Product

					Size			ASME Pressure Classes							
	Valve Type	Design Standards	1/2		6	12									
			1/2 to 2"	2 to 4"	6 to 12"	12 to 24"	≥ 26"	150	300	600	800	900	1500	2500	4500
	Conventional gate valve	API 600		٠	٠	٠	٠	٠	٠	٠		٠	٠	٠	٠
	Stainless steel gate valve	API 603	٠	٠	•	٠		٠	٠	٠					
Gate	Forged steel gate valve	API 602	٠					٠	٠	٠	٠	٠	٠	٠	٠
Valve	Non-rising stem gate valve	ASME B16.34	•	•	•	•		•	•						
	Pressure self-sealing gate valve	ASME B16.34		٠	٠	٠	٠			٠		٠	٠	٠	
	Full-bore gate valve	API 6D	•	•	•	•	•	•	•	٠		•	•		
	Conventional globe valve	BS 1873		٠	٠	٠		٠	٠	٠		٠	٠	٠	٠
	Globe valve	API 623		•	•	•		•	•	٠		•	•	•	•
	Stainless steel globe valve	ASME B16.34	٠	٠	٠	٠		٠	٠	٠					
Globe	Forged steel globe valve	API 602	•					•	•	٠	•	•	•	•	•
Valve	Pressure self-sealing globe valve	ASME B16.34		٠	٠	٠				٠		٠	٠	٠	
	Bidirectional three-way globe valve	ASME B16.34		•	•			•	•	٠					
	T-pattern globe valve	BS 1873/API 623	٠	٠	٠			٠	٠	٠					
	Quick closing globe valve	ASME B16.34	٠	•	•			•	•						
	Angle pattern globe valve	BS 1873/API 623	٠	٠	٠			٠	٠	٠	٠				
	Conventional check valve	BS 1868		•	•	•	•	•	•	٠		•	•	•	•
	Stainless steel check valve	ASME B16.34	•	٠	٠	٠		*	٠	٠					
	Forged steel rising-type check valve	API 602	٠					•	•	٠	•	•	•	•	
	Forged steel swing-type check valve	API 602	٠					٠	٠	٠	٠	٠	٠	٠	
Check	Pressure self-sealing check valve	ASME B16.34		•	•	•				٠		•	•	•	
Valve	Full opening check valve	API 6D		٠	٠	٠	٠	٠	٠	٠		٠	٠	٠	
	Axial flow type check valve	API 6D	•	•	•	•	•	•	•	٠		•	•	•	
	Butterfly type check valve	API 594		٠	٠	٠	٠	٠	٠	٠		٠	٠	٠	
	Stop-check valve	BS 1873/API 623	•	•	•			•	٠	٠					
	Tilting disc check valve	ASME B16.34		٠	٠	٠	٠	٠	٠	٠		٠	٠	٠	
	One-piece floating ball valve	ISO 17292 API 608/API 6D	•	•	•			•	•						
	Two-piece floating ball valve	ISO 17292 API 608/API 6D	٠	٠	٠			٠	٠	٠	٠	٠	٠	٠	
	Three-piece floating ball valve	ISO 17292 API 608/API 6D	•					•	•	٠	•	•	٠	•	
	Top entry type floating ball valve	ISO 17292 API 608/API 6D	٠	٠				٠	٠	٠	٠	٠	٠		
Ball	Metal seated floating ball valve	ISO 17292 API 608/API 6D	•	•	•			•	•	•	•	•	•	•	
Valve	Two-piece trunnion ball valve	API 6D		٠	٠	٠		٠	٠	٠	٠	٠	٠		
	Three-piece trunnion ball valve	API 6D		•	•	•	•	•	•	•	•	•	•	•	
	Top entry type trunnion ball valve	API 6D		٠	٠	٠	٠	٠	٠	٠	٠	٠	٠		
	Metal seated trunnion ball valve	API 6D		•	•	•	•	•	•	•	•	•	•	•	
	Fully-welded ball valve	API 6D		٠	٠	٠	٠	٠	٠	٠	٠	٠	٠		
	DBB double ball valve	API 6D	•	•	•	•		•	•	•	•	•	•	•	
Butterfly	Centerline type butterfly valve	API 609		٠	٠	٠	٠	٠							
Valve	Double offset-type butterfly valve	API 609		•	•	•	•	•	•	•					
	Triple offset-type butterfly valve	API 609		٠	٠	٠	٠	٠	٠	٠		٠	٠	٠	
	Jacketed valve	ASME B16.34	•	+	+	•		+	+	+	+				
	Forged steel valves for power plants	JB/T 3595	٠	٠						٠	٠	٠	٠	٠	
Special	Bellow valve	ASME B16.34	•	•	•	•		•	•	•	•	•	•		
Valve	Three-way ball valve		٠	٠	٠			٠	٠						
	Combined ball valve		•					+	•						
	Special material valve	ASME B16.34	•	*	*			*	*						

-	Гет	pera	ture	<u> </u>	ı	/late	erial	rials End Connection Special Features Application					ns	าร													
															- 1-												
-196 to -50°C	-50 to -29°C	-29 to 200°C	200 to 425°C	>425°C	Carbon and Low Alloy Steel	Stainless Steel	Nickel-based Alloy	Titanium and Titanium Alloys	Socket Welding	Threaded End	Flanged	Butt-welding	Wafer-type	Lug-type	High Temperature	Cryogenic	Fugitive Emission	Fire-safe Design	Anti-static Design	Petroleum and Natural Gas	Oil Refining and Petrochemical	Chemical Industry	Power	Shipbuilding and Marine Engineering	Coal Chemical Industry	LNG	Air Separation
•	٠	٠	٠	٠	٠	٠	٠				٠	٠			٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠
•	•	٠	•			•	•				•	•				•	•	•	•	•	•	•		•	•	•	•
٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠			٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠
	•	•	•		•						•						•	•	•					•			
	•	÷	•	Ť	•	•					•	•			•		•	÷	•	•	•	•	Ť	•	•		Ť
				٠			٠								٠	٠	•	·	•			٠	٠	٠	٠	٠	
•	•	•	•	•	•	•	•				•	•			•	•	•	•	•	•	•	•	•	•	•	•	•
٠	٠	٠	٠			٠	٠				٠	٠				٠	٠	٠	٠	٠	٠	٠		٠	٠	٠	٠
•	٠	٠	٠	•	•	٠	٠	•	٠	٠	•	٠			•	٠	٠	٠	•	٠	٠	•	•	٠	٠	•	٠
	٠	٠	٠	٠	٠	٠					٠	٠			٠		٠	٠	٠	٠	٠	٠	٠	٠	٠		٠
	•	•	•		•	•	•				•						•	•	•	•	•	•	•	•		•	٠
	٠	٠	٠	٠	٠	٠	٠				٠	٠					٠	٠	٠	٠	٠	٠		٠	٠		٠
		•			•	•					•							•	•		•			•			
	٠	٠	٠		٠	٠	٠		٠	٠	٠	٠			٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠
•	•	•	•	•	•	•	•				•	•			•	•	•	•	•	•	•	•	•	•	•	•	٠
•	•	•	•			•	•				•	٠				•	•	•	•	•	٠	•		٠	٠	•	•
Ť				·			Ť		·		Ť							·					·	•			
Ť	•	•	•	•	•	•	Ť		Ť		•	•			•	Ť	•	•	•	•	•	•	•	•	•	·	•
	•	٠	٠		٠						٠						•		٠	٠	٠						
•	٠	٠	٠	•	+	٠	٠				٠	٠			٠	٠	٠	٠	•	٠	٠	٠				٠	٠
٠	٠	٠	٠	٠	٠	٠	٠				٠	٠	٠	٠		٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠
	•	•	•	•	•	•	•				•	•			•		•	•	•	•	•	•		•	•		
	٠	٠	٠	٠	٠	٠					٠	٠			٠		٠	٠	٠	٠	٠	٠	٠	٠	٠		
	•	•			•	•	•				•						•	•	•		•	•		•			
٠	٠	٠			٠	٠	٠		٠	٠	٠	٠				٠	٠	٠	٠	٠	٠	٠		٠		٠	٠
	•	•			•	•	•		•	•							•	•	•	•	•	٠		•			
•	٠	٠			٠	٠	٠		٠	•	٠	•				٠	٠	٠	٠	٠	٠	٠		٠		٠	٠
•	•		•	•	•	•			•	•	•	•			•	•	•		•	•	•	•		•	•	•	
•	•	•			•	•	•				•	•				•	•	•	•	•	•	•		•		•	•
٠	٠	٠			٠	٠	٠				٠	٠				٠	٠	٠	٠	٠	٠	٠		٠		٠	٠
	•	٠	+	•	+	٠	•				+	+			+		+	+	•	•	•	•		•	٠		
	٠	٠			٠	٠	٠				٠	٠					٠	٠	٠	٠							
	٠	٠			•	٠	٠				٠	٠					•	•	٠					•			
		٠			٠	٠					٠		٠	٠						٠	٠	٠	٠	٠	٠		
•	•	•			•	•	•				•		٠	•		•	•	•	•	•	•	•	•	•	•	•	٠
٠	٠	٠	٠	٠	٠	٠	٠				٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠
	•	•	•		•	•	•		٠		•	•					•	•	•	•	•	•					
			٠	٠	٠	٠	٠		٠		٠				٠		٠	٠	٠				٠				
	•	•	•		•	•	•		•	•	*	•					•	•	•	•	•	•		•			
	•	•			•	•	•				•	٠					•	•	•					•			
	•	•			Ť	•		٠	٠	٠		•		٠			•		Ť		٠	٠		•			

Summary of Valve Material Specification

Body Materia l s	Trim Materia l s	Seal Materials	End Connection	Operating Means	Other Requirements
Ductile iron	Cr13	Nitrile rubber	RF	Handwheel/lever	ISO top flanges
WCB/WCC/A105	A105/ENP	EPDM	RTJ	Gear	Position indicator
LCB/LCC/LF2	LF2/ENP	PTEF	BW	Pneumatic	lockable
CF8/F304	304	FKM	SW	Electric	Buried
CF8/F316	304L	Nylon	WAFER	Hydraulic	Extended stem
CF3/F304L	316	Ceramics	LUG	Gas Hydraulic (Gas over oil)	By-pass
CF3M/F316L	316L	Graphite	NPT/FNPT	Electric-Hydraulic	Coating
CF8C/F321	321/347		Clamp	Bare Shaft	
WC6/F11	F51		GROOVE	Solenoid	
WC9/F22	F53				
C5/F5	F55				
C12/F9	НВ				
C12A/F91	HC				
4A/F51	ALLOY 20				
5A/F53	INCONEL 600				
6A/F55	INCONEL 625				
CN7M	MONEL 400				
N12MV/H.B	A l uminum bronze				
CW6MC/H.C					
CY40/INCONEL 600					
CW6MC/INCONEL 625					
M-30C/MONEL 400					
Aluminum bronze					

According to standards	GB, GB/T, ISO, DIN, BS, ANSI, ASME, API, MSS, JIS
According to service	Water industry, buildings, HVAC, heating, power, metallurgy, petroleum, petrochemical, pharmaceutical, natural gas, marine, food, chemical, sugar making, shipbuilding, agricultural irrigation, etc
According to media	Water, gas, oil, liquid, steam, powder, fluidized solids, slurry.
According to temperature	Room temperature: -29°C to 120°C; moderate temperature: 120°C~ to ≤425°C; low temperature:-40°C to -196°C; high temperature: >425°C
According to pressure	PN 16, PN 25, PN 40, Class 125/150/300/600, 125 LB to 2500 LB, 10K, 16K, 20K

Valve Nominal Diameter	and Size	Comparison	Table
------------------------	----------	------------	-------

inch	1/4"	3/8"	1/2"	1"	11/4"	11/2"	2"	2½"	3"	4"	5"	6"	8"	10"	12"	1/4"
DN(mm)	8	10	15	25	32	40	50	65	80	100	125	150	200	250	300	8
inch	14"	16"	18"	24"	26"	28"	30"	32"	36"	48"	60"	72"	80"	88"	96"	14"
DN(mm)	350	400	450	600	650	700	750	800	900	1200	1500	1800	2000	2200	2400	350

Material Comparison Table

TRADE NAME	ASTM P I PE	SPECIFICATION FITTINGS	UNS	WERKST OFF	DIN	BARSTOCK	FORGING	CASTING
FERRALIUM © 255	A790	A815	\$32550					
NICKEL200	B161	B366/WPN B366/PNL	N02200 N02201	2.4066 2.4068		B160 B160	B564 NO2200 B564 NO2201	
MICKEL201 MONEL ® 400	B165	B366/WPNC	NO4400	2,4360		B164 NO4400	B564 NO4400	A494 M35-1
MONEL ® K500		0500/11110	N05500	2.4375		B865 N05500		11.511.1051
INCOLOY @ 800	B163	B366-WPNIC	N08800	1.4876	X10NiCrAITi3320	B408 N08800	B564 N08800	
INCOLOY @ 800H	B407	B366/WPNIC10	N08810	1.4958		B408 N08810	B564 N08810	
INCOLOY @ 800HT		B366-WPNIC11	N08811	1.4959		8408 N08811	B564 N08811	
INCOLOY © 825 INCONEL © 600	B423 B167	B366/WPNICMC B366/WPNCI	N08825 N06600	2.4858	NiFe30Cr21Mo3	B425 N08825 B166 N06600	B564 N08825 B564 N06600	A494 CY40
INCONEL ® 625	B444	B366/PNCMC	N06625	2.4816	NiCr22Mn9Nh	B446 NO6625	B564 N06625	A494 CV 6MC
INCONEL690	Detect	DOOD/THENIC	N06690	2.4050	MOLLMONIO	B166 N06690	D30-11000E3	NAVA CIT ONC
INCONEL718			N07718			B637 N07718	B637	
INCONEL ® X750			N07750	2.4669		B637 N07750	B637	
HASTELLOY ® B2	B622	B366/WPHB-2	N1 0665	2.4617		B335 N10665	B564 N1 0665	A494 N 12MV
HASTELLOY ® B3			N10675	2.4600		B335 N10675	B564 N1 0675	
HASTELLOY ® C	B622	Page supurgas	N1 0002 N06022	2.4602	N/C 0484 4 444	D574 NOCODO	B574 N06022	A494 CW6M
HASTELLOY ® C22 HASTELLOY ® C276	B622	B366/WPHC22 B366/WPHC276	N10276	2.4819	NiCr21Ma14W	B574 N06022 B574 N10276	B564 N10276	A494 CX2MW
HASTELLOY ® C4	B622	B366/WPHC4	N06455	2.4610		B574 N06455	B574 N06455	
HASTELLOY G	DOLL.	B366-WPHG	N06007	2.4010		B581 N06007	B564	
HASTELLOY G3		B366-WPHG3	N06985			B581 N06985	B564	
HASTEILOY G30		B366-WPHG30	N06030			B581 N06030	B564	
HASTELLOY X		B366-WPHX	N06002			8572 N06002	B564	
TANTALUM ©			R05200					
TITANUM GR.1			R50250	3.7025		B348 GR.1	B381 F1	B367 C1
TITANIUM GR.2	B337/B861	B363/WPT-2	R50400	3.7035		B348 GR.2	B381 F2	B367 C2
TITANIUUM GR.3			R50400	3.7055		B348 GR.3	8381 F3	B367 C3
TITANIUM GR.5	B377/B861		R50400	3.7165		B348 GR.5	8381 F5	B367 C5
TITANIUM GR.7	B377/B861	B363/WPT-7	R52400	3.7235		B348 GR.7	8381 F7	B367 C7
7 IRCONIUM® 702 ZIRCONIUM® 705		B653-PZ(Gr)	R60702 R60705			B550	B493	
904L	B677	A403/WP904L	N08904	1,4432	X1 NiCrMoCu25205	B649 N08904	B625 N08904	
ALU5083	B241	B361/WP5083	5083	1,4539 3,3547	XTINICIMOCUZSZUS	B473	B462	A351 CN7M
CARPENTER 20	B729	B366/WP20CB	N08020	2.4660				
DUPLEX 4462	A190	A815	S31803	1.4462	X2CrNiMoN2253	A276 or A479 S31803	A182 F51	A890 Gr 4A
SAF 2507	A790	A815	\$32750	1.4469	G-X-25Cr7Ni4MoN	A276/479 \$32750	A182 F53	A890 Gr6A
								A351 Gr CD4Mcu
ZERON 100			S32760	1.4501		A276/479 S32760	A182 F55	A351 Gr CD3MWCrN
CuAl10NiSFe4			C63000 C63200	2.0966	QAL10-4-4	B150	B124	
CuA[10Ni			C95800	2.0976		B148		
CuAl11Ni			C95500	2.0981		B148		B271
CuAl10Fe			C61900	2.0936	QAL10-3-1			
CuAlBFe CuAl9Mn			C61000	2.0930 2.0960	QAL9-4 QAL9-2			
Bronze			C83600	2.0960	QAL9-2	BSB4		B62
Bronze			C92200			B584		B61
Bronze			C84400			B584		
Brass			C36000					816
CARBON STEEL(C22)			K30504	1.0402	C22	A105	A105	A216 WCB
CARBON STEEL(C22.8)			100004	1.0460	966	A105N	A105N	ALTO NED
LOW TEMP CARBON STEEL			K03011	1.0508	TT St E 36	A350 LF2	A350 LF2	A352 LCB
HIGH YIELD STEEL			K03014			A694 F60	A694 F60	
3 1/2 NICKEL STEEL			K32025	1.5639		A350 LF3	A350 LF3	A352 LC3
5 CHROME,1/2 MOLY			K41 545	1.7362	12CrMo19.5	A182 F5	A182 F5	A217 C5
1/4 CHROME,1/2 MOLY			K11572 K11597	1.7733 1.7335	24CrMoV-55 13 CrMo 44	A739 B11	A182 F11	A217 WC6
2 1/4 CHROME.1/2 MOLY			K11597 K21590	1.7335	13 CrMo 44 10CrMo9.10	A739 B22	A182 F22	A217 WC9
9 CHROME,1 MOLY			K21590 K90941	1,7380	1001009.10	A739 B22 A182 F9	A182 F22	A217 WC9 A217 CW6
X 12 CHROME,091 MOLY			K91560	1.4903		7 T OE 1 3	A182 F91	A217 C12
13 CHROME			541,000			A276 or A479 410	A182 F6A	A351 CA15
17-4PH			\$17400	1.4542		A564 630	A564 630	ADDI CATO
254 SMo	A312	A403/WPS31254	S31254	1.4547		A.482 F44	A182 F44	A351 CK3MCuN
304	A312	A403/WP304	530400	1.4301	XSCrNi1810/XSCrNi189	A276 or A479 304	A182 F304	A351 CF8
304H			\$30409	1.4948	X6CrNi1811			
304L			S30403	1.4306	X2CrNi1911	A276 or A479 304L	A182 F304L	A351 CF3
309	A312	A403/WP309	\$30900	1,4828	X15CrNiSi2012	A276 or A479 309	A182 F309	
310 310S	A312	A403/N/P310S	\$31008 \$31008	1,4845	MACHERES	A479 310	1102 52105	A351 CK20
310/314	A312 A312	A403/N/P310S A403/WP310	S31008 S31000	1,4845	X12CrNi2521 X15CrNiSi2520	A276 or A479 310S A276 or A479 310	A182 F310S A182 F310	A351 CK20
310/314	A312	A403/WP310 A403/WP316	S31600	1.4401	X5CrNiMo17122 X5CrNiMo17133	A276 or A479 316	A182 F316	A351 CF8M
	ASIZ	A4U3/WP310		1.4436	X5 CrNiMo1810	WS10 0LW41A 310	A102 F310	MOTU ICCA
316H 316L	A312	A403/WP316L	\$31609 \$31603	1.4919	X8CrNiMo1712 X2CrNiMo17132	A276 or A479 316L	A182 F316L	A351 CF3M
316Ti	A312 A312	A403/WP316L A403/P316Ti	\$31603 \$31635	1,4404	X2CrNiMo17132 X6CrNiMoTi17122	A276 or A479 316L A276 or A479 316Ti	A182 F316L A182 F316Ti	MODI LEGIM
317	A312	A403/WP317	531700	1,4449	X5CrNiMo1713	A276 or A479 317	A182 F317L	
317L	A312	A403/WP317L	S31703	1.4438	X2CrNiMoN18164	A276 or A479 317L	A182 F317L	A351 CG8M
321	A312	A403/WP321	S32100	1.4541	X6CrNi1810	A276 or A479 321	A182 F321	A351 CG8M
347	A312	A403/WP347	\$34700	1.4550	X6CrNiNb1810	A276 or A479 347	A182 F347	A351 CF8C
WCB	A216							
WCC	A216							
LCC	A352							
WC6	A217							
WC9 C5	A217 A217							
C12	A217 A217							

 $\frac{3}{3}$

Comparison Table for Corrosion of Special Materials

Media	Concentration (W/W)	Temperature (°C)	316	F55	Titanium	HASTELLOY® B-3	HASTELLOY®C-276	Alloy 20	F51	Avesta 254 SMO®	INCONEL®625	INCONEL®825	MONEL®400
acetic acid	All	to 60°℃	•	•	•	•	•	•	•	•	•	•	•
acetic acid	0-50%	Boiling	A	•	•	•	•	•	•	•	•	•	A
acetic acid	50-100%	80°C	•	•	•	•	•	•	•	•	•	•	•
acetic acid vapor	100%	140°C	•	•	Х	•	•	A	ND	ND	•	•	•
acetic anhydride	0-100%	to Boiling	•	•	•	A	•	•	•	•	ND	•	•
acety l ch l oride	100%	20°C	A	•	•	•	•	ND	ND	ND	ND	ND	ND
nitric acid + su l furic acid	50%+50%	to Boiling	A	•	Х	Х	Χ	•	ND	ND	Х	Х	X
nitric acid + su l furic acid	50%+20%	80°C	A	•	ND	ND	ND	ND	•	•	ND	ND	ND
nitric acid + sulfuric acid	75%+25%	to Boiling	Х	A	Х	Х	Х	ND	ND	ND	Х	Х	X
nitric acid + phosphoric acid	50%+50%	70 - 80°C	Х	A	Х	Х	Χ	ND	ND	ND	Х	Х	Х
alcohol	100%	to Boiling	A	•	•	•	•	•	•	•	•	•	•
ethanol	All	20C-BP	•	•	•	•	•	•	•	•	•	•	•
aluminium oxide	All	20°C	Х	A	Х	•	•	A	SC	SC	ND	ND	•
aluminium oxide	5%	100°C	Х	A	•	ND	ND	ND	•	•	ND	ND	ND
aluminium oxide	25%	60°C	Х	A	•	ND	ND	ND	Х	•	ND	ND	ND
potassium aluminum sulfate	All	20°C	•	•	•	•	•	•	•	•	•	•	A
potassium aluminum sulfate	All	Boiling	•	A	•	Х	•	•	•	ND	•	•	•
ammonium carbamate	40%	to 120℃	•	•	•	•	•	ND	•	ND	•	•	ND
ammonium chloride	All	75℃	Х	•	•	•	•	A	SC	SC	•	•	A
ammonium ch l oride	50%	115℃	Х	•	•	•	•	ND	•	•	•	•	ND
ammonium hydroxide	All	0°C-BP	•	•	•	•	•	•	•	•	•	•	Х
ammonium nitrate	All	Boiling	•	•	•	•	•	•	•	•	•	•	Х
ammonium sulfate	All	70°°C	Х	•	•	Х	A	•	•	•	•	•	•
ammonium sulfate	All	20°C-BP	Х	•	•	Х	•	•	•	•	•	•	•
benzenamine	0-100%	20°C	•	•	•	•	•	•	•	•	•	•	•
benzene	100%	100°C	A	•	•	•	•	•	•	•	•	•	•
benzene{wet}	Pure	Boiling	Х	ND	•	•	•	Х	ND	ND	•	•	X
tetrafluoromethane{dry}	100%		A	•	•	A	•	•	•	•	•	•	•
citric acid	All	to Boiling	A	•	•	•	•	•	•	•	•	•	•
citric acid	0.70%	Boiling	•	•	•	•	•	•	•	•	•	•	•
citric acid + 6 % sodium oxide	5%	140°C	A	•	•	•	•	•	ND	ND	ND	ND	ND
Chlorine {wet gas}	-	20°C	Х	ND	•	Х	•	Х	Х	Х	Х	Х	Х
magnesium sulfate+sulfuric acid	10%+10%	to Boiling	A	•	•	X	Χ	•	•	•	ND	ND	ND
diethy l ether	100%	20°C	•	•	•	•	•	ND	•	•	•	•	•

Media	Concentration (W/W)	Temperature (°C)	316	F55	Titanium	HASTELLOY® B-3	HASTELLOY®C-276	Alloy 20	F51	Avesta 254 SMO®	INCONEL®625	INCONEL®825	MONEL®400
ethyl chloride (dry)	100%	to 60°℃	•	•	•	•	•	•	•	•	•	•	A
ethyl chloride (dry)	100%	ВР	•	•	•	•	•	•	•	•	•	•	A
vinyl chloride (dry)	100%	20°C	ND	•	•	•	•	•	•	•	•	•	ND
vinyl chloride (dry)	100%	20°°C-BP	ND	•	•	•	A	•	•	•	•	•	ND
diethy l ether	100%	20°C	•	•	•	•	•	•	•	•	•	•	A
(Fe2(SO4)3)ferric sulfate	0-10%	to Boiling	•	•	•	Х	•	•	ND	ND	•	•	×
(Fe2(SO4)4)ferric sulfate	10%-30%	70°C	•	•	•	Х	•	•	•	•	•	•	×
fluorine (dry)	100%	20°C	•	•	Х	Х	•	•	ND	ND	•	ND	ND
fluorine (dry)	100%	100°C	•	•	Х	Х	•	•	•	•	•	•	A
formaldehyde	All	20°°C - BP	•	•	•	•	•	•	•	•	ND	ND	A
formic acid	All	66°C	A	•	Х	•	•	Х	A	•	•	•	Χ
formic acid	100%	BP(1000°C)	•	•	Х	•	•	Х	SC	SC	•	•	Χ
hydrochloric acid	1%	to Boiling	Х	•	A	•	•	Х	A	•	•	A	A
hydrochloric acid	1%	80℃	Х	•	A	•	•	Х	Х	Х	•	•	•
hydrochloric acid	1%	Boiling	×	•	A	•	•	Х	A	•	•	•	A
hydrochloric acid	1%	20°C	Х	•	Х	•	•	Х	X	•	•	•	•
chlorofluoric acid	10%	20°C	Х	A	Х	•	•	Х	Х	A	•	•	•
hydrofluoric Acid	0-100%	20°C	Х	ND	Х	•	•	Х	SC	SC	•	•	•
hydrochloric acid	1%	40°C	Х	ND	ND	•	•	ND	ND	•	ND	ND	•
chlorofluoric acid	0.5%	50°C	ND	ND	ND	•	•	ND	ND	A	ND	ND	•
hydrofluoric Acid	0-100%	50°C	Х	ND	Х	•	•	Х	SC	SC	•	Х	•
hydrogen peroxide	50%	20°C	•	•	•	Х	•	•	•	•	•	•	•
hydrogen peroxide	50%	40°C	•	•	•	Х	•	ND	•	•	•	•	A
hydrogen su l fide (dry)	4%	200°C	•	•	•	•	•	•	•	•	•	•	•
hydrogen su l fide (dry)	100%	to 250°C	•	•	•	•	•	•	SC	SC	•	•	A
hydrogen su l fide (wet)	-	20°C	A	•	•	•	•	A	A	ND	•	•	Χ
lactic acid	20%	100°C	Х	•	•	•	•	A	SC	SC	•	•	A
lactic acid	90%	Boiling	Х	•	ND	ND	ND	ND	•	•	ND	ND	ND
magnesium chloride	10-30%	20°C	•	•	•	•	•	•	•	•	•	•	•
magnesium chloride	5%	Boiling	•	•	•	•	•	•	•	•	•	•	•
nickel sulphate	All	Roiling	•	•	•	Х	•	A	•	•	•	•	A
nitric acid	0-70%	20°C	•	•	•	Х	•	•	•	•	•	•	Х
nitric acid	100%	20℃	A	•	•	Х	•	•	ND	ND		A	Χ

Formula for Temperature Calculation

- $C = \frac{5}{9} (F-32), F = \frac{9}{5} C+32$
- ◆ C+273.15 = K Kelvin
- ◆ F+459.67 = R Rankine

Bars bar	
x 100	= Kilopascals(kPa)
x 14.504	= Pounds-force per square inch (psi)
x 33.52	= Feet of water(ft H ₂ O)at 68°F
x 29.53	= Inches of mercury (inHg)at 0°C
x 1.0197	= Kilograms-force per square centimeter (kg/cm²)
x 0.98692	= Atmospheres (atm) sea-level standard
x 1.0443	= Tons-force per square foot(tonf/ft²)
x 750.06	= Torr(torr)(-mmHg at 0°C.)

Kilopasc	Kilopascals-kPa									
x 10³	= Pascals(Pa)or newtons per square meter (N/m²)									
x 0.1450	= Pounds-force per square inch (psi)									
x 0.010197	= Kilograms-force per square centimeter (kg/cm²)									
x 0.2953	= Inches of mercury (inHg)at 32°F									
x 0.3351	= Feet of water (ft H ₂ O) at 68°F									
x 4.021	= Inches of water (inH ₂ O)at 68°F									

Pounds-	Pounds-Force Per Square Inch - psi									
x 6.896	= Kilopascals (kPa)									
x 0.06805	= Standard atmospheres									
x 2.311	= Feet of water (ftH ₂ O) at 68°F									
x 27.73	= Inches of water (in H ₂ O)at 68°F									
x 2.036	= Inches of mercury (inHg)at 0°C									
x 0.07031	 Kilograms-force per square centimeter (kg/cm²) 									

Temperature Comparison Table

-459.4°to 0° Cent.			1°to 60° Cent.			61°to 290° Cent.			300°to 890° Cent.			900°to 3000° Cent.		
	Fah.		1-0	Fah.			Fah.			Fah.			Fah.	
-273 -268	-459.4 -450		-17.2 -16.7	1 2	33.8 35.6	16.1 16.7	61 62	141.8 143.6	149 154	300 310	572 590	482 488	900 910	1652 1670
-262	-450 -440		-16.1	3	37.4	17.2	63	145.4	160	320	608	493	920	1688
-257	-430		-15.6	4	39.2	17.8	64	147.2	166	330	626	499	930	1706
-251	-420		-15.0	5	41.0	18.3	65	149.0	171	340	644	504	940	1724
-246	-410		-14.4	6	42.8	18.9	66	150.8	177	350	662	510	950	1742
-240	-400		-13.9	7	44.6	19.4	67	152.6	182	360	680	516	960	1760
-234	-390		-13.3	8	46.4	20.0	68	154.4	188	370	698	521	970	1778
-229	-380		-12.8	9	48.2	20.6	69	156.2	193	380	716	527	980	1796
-223	-370		-12.2	10	50.0	21.1	70	158.0	199	390	734	532	990	1814
-218	-360		-11.7	11	51.8	21.7	71	159.8	204	400	752	538	1000	1832
-212 -207	-350 -340		-11.1 -10.6	12 13	53.6 55.4	22.2	72 73	161.6 163.4	210 215	410 420	770 788	849 560	1020 1040	1868 1904
-207	-340		-10.0	14	57.2	23.3	74	165.2	221	430	806	571	1060	1904
-196	-320		-9.4	15	59.0	23.9	75	167.0	227	440	824	582	1080	1976
-190	-310		-8.9	16	60.8	24.4	76	168.8	232	450	842	593	1100	2012
-184	-300		-8.3	17	62.6	25.0	77	170.6	238	460	860	604	1120	2048
-179	-290		-7.8	18	64.4	25.6	78	172.4	243	470	878	616	1140	2084
-173	-280		-7.2	19	66.2	26.1	79	174.2	249	480	896	627	1160	2120
-169	-273	-459.4	-6.7	20	68.0	26.7	80	176.0	254	490	914	638	1180	2156
-168	- 270	-494	-6.1	21	69.8	27.2	81	177.8	260	500	932	649	1200	2192
-162	-260	-436	-5.6	22	71.6	27.8	82	179.6	266	510	950	660	1220	2228
-157	-250	-418	-5.0	23	73.4	28.3	83	181.4	271	520	968	671	1240	2264
-151	-240	-400	-4.4	24	75.2	28.9	84	183.2	277	530	986	682	1260	2300
-146 -140	-230 -220	-382 -364	-3.9 -3.3	25 26	77.0 78.8	29.4 30.0	85 86	185.0 186.8	282	540 550	1004 1022	693 704	1280 1300	2336 2372
-134	-220	-346	-2.8	27	80.6	30.6	87	188.6	293	560	1044	732	1350	2462
-129	-200	-328	-2.2	28	82.4	31.1	88	190.4	299	570	1058	760	1400	2552
-123	-190	-310	-1.7	29	84.2	31.7	89	192.2	304	580	1076	788	1450	2642
-118	-180	-292	-1.1	30	86.0	32.2	90	194.0	310	590	1094	816	1500	2732
-112	-170	-274	-0.6	31	87.8	32.8	91	195.8	316	600	1112	843	1550	2822
-107	-160	-256	0.0	32	89.6	33.3	92	197.6	321	610	1130	871	1600	2912
-101	-150	-238	0.6	33	91.4	33.9	93	199.4	327	620	1148	899	1650	3002
-96	-140	-220	1.1	34	93.2	34.4	94	210.2	332	630	1166	927	1700	3092
-90	-130	-202	1.7	35	95.0	35.0	95	203.0	338	640	1184	954	1750	3182
-84	-120	-184	2.2	36	96.8	35.6	96	204.8	343	650	1202	982	1800	3272
-79 -73	-110 -100	-166 -148	2.8	37 38	98.6 100.4	36.1 36.7	97 98	206.6 208.4	349 354	660 670	1220 1238	1010 1038	1850 1900	3362 3452
-68	-90	-130	3.9	39	100.4	37.2	99	210.2	360	680	1256	1056	1950	3442
-62	-80	-112	4.4	40	104.0	37.8	100	212.0	366	690	1274	1093	2000	3632
-57	-70	-94	5.0	41	105.8	43	110	230	371	700	1292	1121	2050	3722
-51	-60	-76	5.6	42	107.6	49	120	248	377	710	1310	1149	2100	3812
-46	-50	-58	6.1	43	109.4	54	130	266	382	720	1328	1177	2150	3902
-40	-40	-40	6.7	44	111.2	60	140	284	388	730	1346	1204	2200	3992
-34	-30	-22	7.2	45	113.0	66	150	302	392	740	1364	1232	2250	4082
-29	-20	-4	7.8	46	14.8	71	160	320	399	750	1382	1260	2300	4172
-23	-10	14	8.3	47	116.6	77	170	338	404	760	1400	1288	2350	4262
-17.8	0	32	8.9	48	118.4	82	180	356	410	770	1418	1316	2400	4352
			9.4	49	120.2	88	190	374	416	780	1436	1343	2450	4442
			10.0	50 51	122.0 123.8	93 99	200 210	392 410	421 427	790 800	1454 1472	1371 1399	2500 2550	4532 4622
			11,1	52	125.6	100	210	413.6	432	810	1472	1427	2600	4712
			11.7	53	127.4	104	220	428	438	820	1508	1454	2650	4802
			12.2	54	129.2	110	230	446	443	830	1526	1482	2700	4892
			12.8	55	131.0	116	240	464	449	840	1544	1510	2750	4982
			13.3	56	132.8	121	250	482	454	850	1562	1538	2800	8072
			13.9	57	134.6	127	260	500	460	860	1580	1566	2850	5162
			14.4	58	136.4	132	270	518	466	870	1598	1593	2900	5252
			15.0	59	138.2	138	280	536	471	880	1616	1621	2950	5342
			15.6	60	140.0	143	290	554	477	890	1634	1649	3000	5432