

低碳所常温结晶分盐零排放 脱硫废水处理技术

熊日华 博士 水处理平台技术总监 国家能源集团北京低碳清洁能源研究所

燃煤电厂全厂废水综合利用及废水零排放技术交流研讨会 2018年7月10-13日 内蒙古包头市

背景 ... 国家能源集团与低碳所概况

国家能源集团

八大业务板块

四个世界第一

北京低碳清洁能源研究所

低碳所基本情况

国家能源集团直属工业研发机构 国家级创新创业基地,央企研发试验田 3个研发基地、550名 员工、18位千人专家

低碳所六大技术平台

低碳所水处理平台

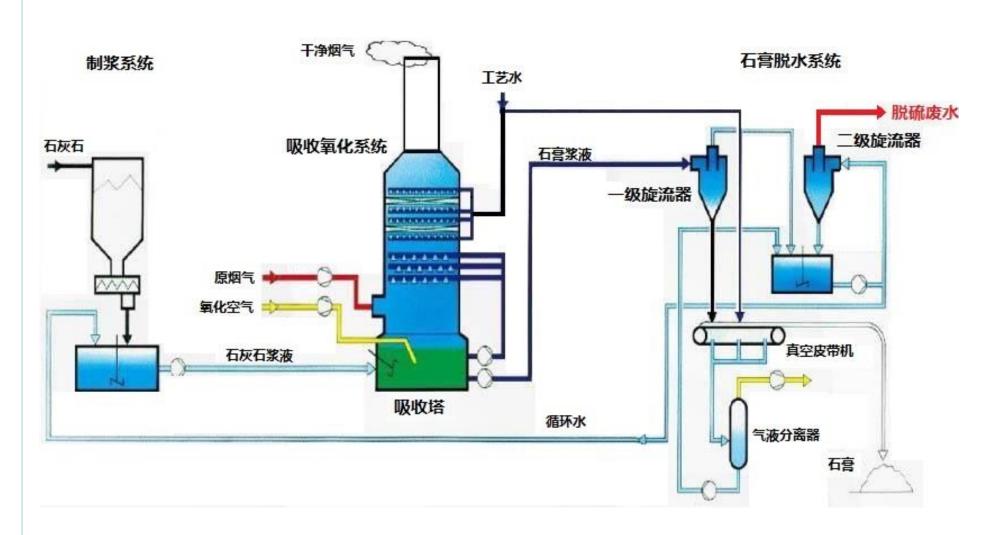
团队

20多位硕士 以上专职研 究人员,多 数为博士

硬件

完备的分析 表征、基础 实验、小试 与中试平台

技术

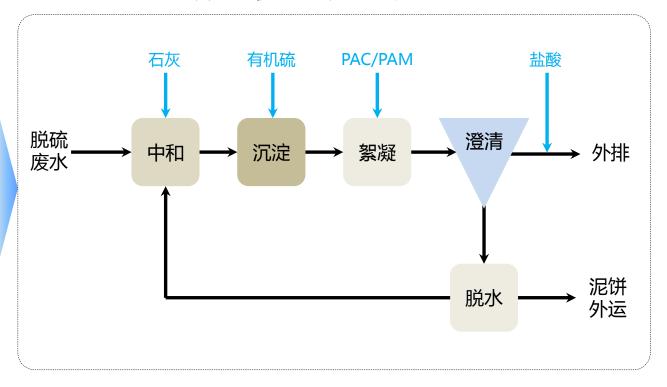

脱硫废水、 煤化工废水 与矿井水零 排放处理

成果

自主创新零 排放技术体 系,申请专 利50多项

背景...脱硫废水的产生与特点

脱硫废水的特点:高悬浮物、高含盐、高氯离子、高硬、含重金属


背景 ... 脱硫废水的常规处理

电力行业标准DL/T997-2006 脱硫废水处理系统出口水质控制

序号	监测项目	最高允许排 放浓度值
1	总汞	0.05 mg/L
2	总镉	0.1 mg/L
3	总铬	1.5 mg/L
4	总砷	0.5 mg/L
5	总铅	1.0 mg/L
6	总镍	1.0 mg/L
7	总锌	2.0 mg/L
8	悬浮物	70 mg/L
9	化学需氧量	150 mg/L
10	氟化物	30 mg/L
11	硫化物	1.0 mg/L
12	рН	6~9

传统三联箱脱硫废水处理工艺

DL/T997-2006同时规定:

厂区排放口增加硫酸盐监测项目,其最高允许排放浓度为2000mg/L

脱硫废水零排放 ... 相关政策

时间	政策法规名称	主要内容
2006	电力行业《火力发电厂废水治理设计技术规程》	火电厂的脱硫废水处理设施要单独设置,按连 续运行方式设计。
2006	电力行业《火电厂石灰石-石膏湿法 脱硫废水水质控制指标》	规定了脱硫废水处理系统排放口的重金属限值; 规定了全厂排放口的硫酸盐排放限值。
2011	《国家环境保护十二五规划》	研究鼓励企业废水零排放的政策措施。
2015	国务院《水污染防治行动计划》	狠抓工业污染防治,专项整治十大重点行业, 集中治理工业集聚区水污染。
2016	国务院《控制污染物排放许可制实施 方案》	率先对火电、造纸行业企业核发排污许可证。
2017	环保部《火电厂污染防治技术政策》	脱硫废水宜经石灰处理、混凝、澄清、中和等 工艺处理后回用。鼓励采用蒸发干燥或蒸发结 晶等处理工艺,实现脱硫废水不外排。

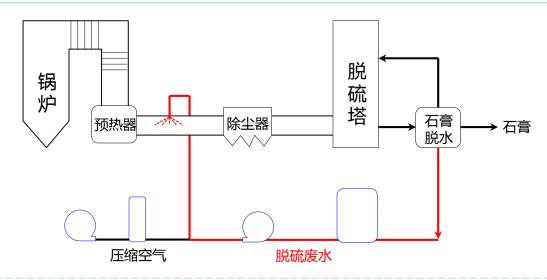
脱硫废水零排放 ... 技术路径

脱硫废水零排放

烟气蒸发

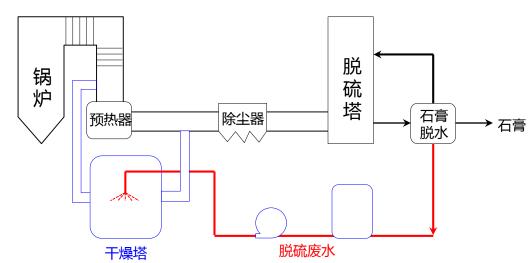
• 通过雾化喷嘴将浓缩后的脱 硫废水喷人烟道或旁路烟道 内,雾化后经烟气加热蒸发, 溶解性盐结晶析出,随烟气 中的烟尘一起被除尘器捕集。

蒸发结晶


• 利用蒸汽、热水或烟气等热 源蒸发脱硫废水,蒸发冷凝 水回用,废水中的溶解盐被 蒸发结晶,干燥后装袋外运, 进行综合利用或处置,避免 产生二次污染。

来源:环境保护部《火电厂污染防治可行技术指南》 HJ 2301-2017

烟气蒸发零排放 ... 工艺路线



1 烟 道 直 喷

- 投资费用低
- 处理量有限
- 雾化喷嘴易堵塞
- 烟道腐蚀与积灰风险

2 旁 路 蒸 发

- 无烟道腐蚀与积灰风险
- 雾化喷嘴适应性强
- 投资费用较高
- 影响锅炉热效率

旁路蒸发(喷雾干燥)已发展为烟气蒸发零排放路径的代表性技术

烟气蒸发零排放 ... 潜在影响

①对锅炉效率的影响

- 脱硫废水的汽化潜热:~550 KCal/kg; 煤炭的热值:~5500 KCal/kg
- 吨水耗煤(耗电):~100 kg/m³(~333 kWh/m³, 较蒸发结晶路线高一个数量级以上)
- 全水量蒸发对煤耗的影响: 0.7-1.0 g/kWh(0.22-0.33%↑)

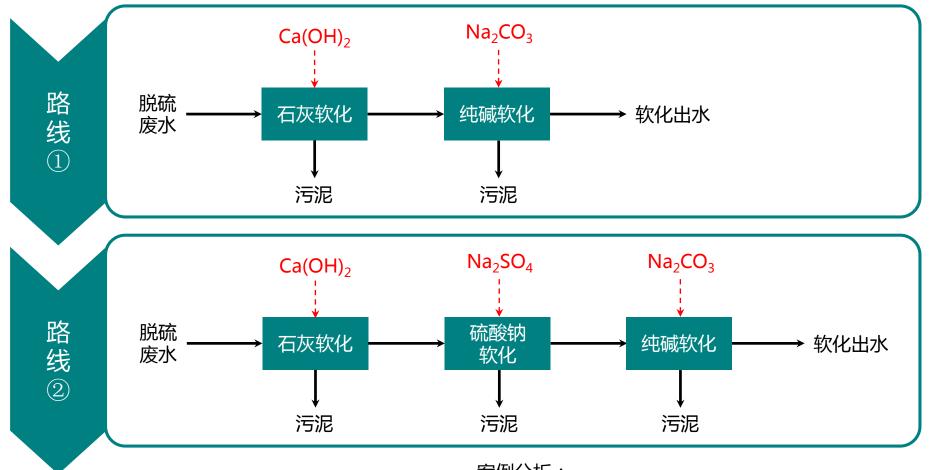
②对粉煤灰品质的影响...以100万机组为例

- 脱硫废水中氯离子总量:~100kg/h;粉煤灰产量:~75t/h;氯离子净增加:~0.13%↑
- GB50010-2010混凝土结构设计规范:混凝土中氯离子含量<=(0.05-0.30%)
- GB/T 1596-2017用于水泥和混凝土中的粉煤灰: 没有对氯离子进行限定!
- JGJ206-2010海砂混凝土应用技术规范: 氯离子含量<=0.06%, 禁止配制预应力钢混土



③是否存在合规风险

- 如果脱硫废水全部采用烟气蒸发,每年将有2000-3000万吨盐进入粉煤灰
- 《环境保护法》第四十条:企业应当优先使用污染物无害化处理技术
- 《环境保护法》第六十八条:采用逃避监管的方式排放污染物需要承担法律责任


蒸发结晶零排放 ... 工艺路线

蒸发结晶零排放 ... 化学软化

案例分析:

假设某脱硫废水中 Mg^{2+} 、 Ca^{2+} 和 SO_4^{2-} 浓度分别为4000、2000和6000mg/l,则路线1和2的吨水软化药剂成本约分别为61.1元和31.3元。

硫酸钠软化将脱硫废水的软化药剂成本降低了约50%

蒸发结晶零排放 ... 膜浓缩

膜浓缩工艺	浓缩极限	是否分盐	投资成本	运行成本
SWRO				
SWRO+FO				
SWRO+DTRO				
NF+SWRO+DTRO				

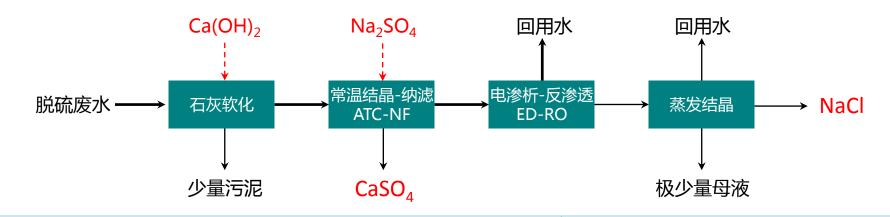
- 膜浓缩的应用将蒸发水量减少了70-85%,有效降低了投资与运行成本
- 纳滤的采用大幅提升了结晶盐纯度,为资源化利用创造了条件

蒸发结晶零排放 ... 优化方向

软化,进一步大幅度降低软化药耗

膜浓缩

提高可靠性,保证浓缩极限,降低成本

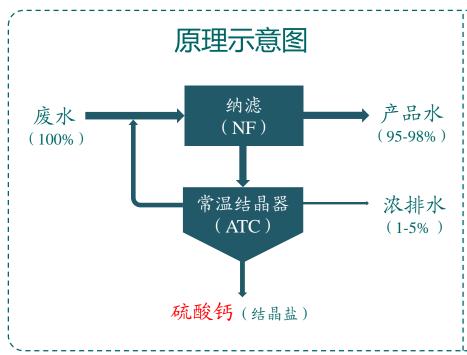

资源化

保证结晶盐纯度,提高结晶盐资源化比例

低碳所脱硫废水零排放 ... 总体工艺

nie 低碳所常温结晶分盐零排放脱硫废水处理专有工艺

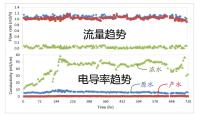
- 独创常温结晶-纳滤分盐软化工艺
 - ✓ 实现CaSO4受控结晶,消除碳酸钠软化 → 药剂成本再降45%
 - ✓ 回收高品质石膏,减少软化污泥量,降低下游盐负荷
 - ✓ 保证一价盐纯度, 大幅提高无机盐资源化比例
- ▶ 集成电渗析-反渗透极限膜浓缩工艺
 - ✓ 浓水浓缩至18-20% → 蒸发水量减少40-50%
 - ✓ 有效降低蒸发结晶系统及整体投资与能耗


不同软化工艺的药剂成本比较*

低药耗、低能耗、低投资、结晶盐资源化率高,申请专利超过10项

低碳所脱硫废水零排放 ... 分盐软化

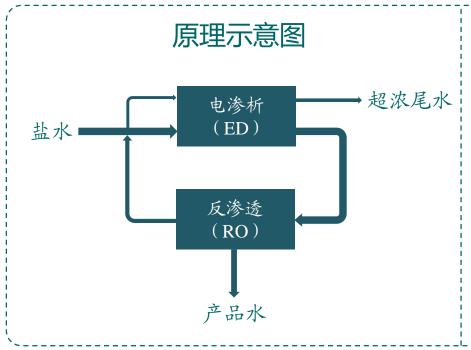
nie 低碳所常温结晶-纳滤(ATC-NF™)技术


技术特点与优势

- 独创常温结晶工艺与设备,打破硫酸钙溶解度对膜系统回收率的限制;
- 消除碳酸钠软化处理,大幅减少药剂消耗与污泥量,软化成本降低40-60%;
- 同步实现高效率分盐,保证氯化钠结晶 盐副产品纯度与资源化比例;
- 不发生水的相变,能耗低,在生产高纯度石膏副产品的同时,降低下游盐负荷。

基础实验

小试研究


现场中试

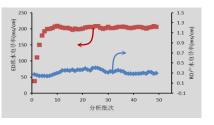
中试生产的硫酸钙

720小时运行数据

低碳所脱硫废水零排放 ... 极限膜浓缩 niC

nie 低碳所电渗析-反渗透(ED-RO)浓缩技术

技术特点与优势


- 结合RO在中低浓度下的绝对脱盐特性 与ED在中高浓度下的出色浓缩性能;
- ED采用均相离子交换膜,浓缩极限可提 高至20%以上的含盐量;
- 大幅减少超浓尾水体积和后续蒸发量, 降低零排放整体成本;
- 采用优化的系统设计与运行模式,降低 系统投资,追求最低能耗。

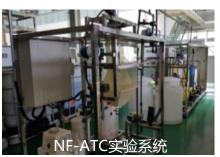
浓缩极限实验 (a) 250 (b) 200 Operation time (min)

小试装置

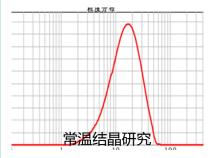
小试研究

中试系统

中试膜堆


720小时运行数据

低碳所脱硫废水零排放 ... 研发历程 niC


Stage 1	Stage 2	Stage 3-1	Stage 3-2
1Q2016	2Q3Q 2016	4Q2016 – 3Q2017	4Q2017-4Q2018
技术调研	烧杯实验	整体工艺现场中试研究	工艺包与可研评审
工艺形成	小试实验	系统设计与参数优化	示范工程立项与建设
内部立项	常温结晶单元现场中试	示范工程可研编制	成果转化

低碳所脱硫废水零排放 ... 中试系统

中试基地外景

ATC-NF与ED-RO集装箱

常温结晶-软化系统

砂滤-超滤系统

NF系统

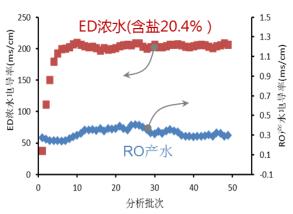
ED-RO系统

低碳所脱硫废水零排放 ... 中试结果

中试基本情况

■ 原水水质:镁3000-5000 钙1300-2500 硫酸根5000-13000mg/l

■ 中试系统处理规模: 1.0 m³/h (产水)


■ 性能考察周期:720小时连续运行

■ 膜系统水回收率:90%

■ 吨水药剂成本:14.1元

吨水电耗成本:6.8元(不含蒸发结晶)

■ 全工艺吨水直接运行成本(药耗+能耗):<24.0元

电渗析浓水与RO产水电导率趋势

中试现场水样

常温结晶石膏产品

▶ 纯度:95.8%

▶ 优于脱硫石膏一级(JC/T2074-2011)

电渗析浓水蒸发结晶氯化钠产品

▶ 纯度:>99.0%

▶ 满足工业盐一级(GB5462-2015)

低碳所脱硫废水零排放 ... 专家评审

神华福能发电有限公司 脱硫废水常温结晶分盐零排放中试项目技术评审会 评 审 意 见

2017年6月7日

- ✓ 该技术以低碳所自主开发的常温结晶技术为核心 并优化集成电渗析与反渗透耦合的极限浓缩技 术……思路新颖、创新性强。
- ✓ 常温结晶与纳滤结合可大大降低预处理药耗成本, 实现了一二价盐的分离……实现了资源化。
- ✓ 现场中试运行稳定……投资和运行成本有较强的竞争优势,具备了工程示范与产业化的条件。

国家能源集团神华福能发电有限责任公司 超超临界百万机组脱硫废水零排放工业示范研究及应用项目 可研报告评审会专家意见

2018年1月26日

- ✓ 项目技术调研和研究工作扎实,研究链完整,技术数据翔实可靠,中试验证稳定可靠.....
- ✓ 采用自主研发的常温结晶-纳滤(ATC-NF)分盐 核心技术,集成电渗析-反渗透(ED-RO)极限浓缩……工艺流程简洁高效。
- ✓ 项目总投资和运行成本低,技术经济性良好。

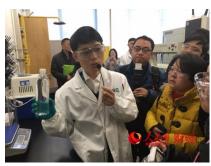
结语 ... 脱硫废水零排放

- 1. 受到日益趋严的环保法规、相关政策、环评要求等影响,燃煤 电厂脱硫废水零排放越来越受到重视。
- 2. 脱硫废水零排放有烟气蒸发和蒸发结晶两条途径。烟气蒸发需 要考虑能效、粉煤灰利用、潜在合规风险等影响。
- 3. 现有蒸发结晶零排放工艺在降低软化药耗、减少蒸发水量、降 低投资与运行成本等方面取得了显著的技术进步。
- 4. 低碳所独创ATC-NF分盐软化技术,集成ED-RO极限浓缩技术, 自主研发形成特色脱硫废水零排放工艺,软化药耗进一步降低 45%,蒸发水量减少至10%,运行成本和投资具有显著优势。

结语 ... 技术合作

我们致力于成为 国内领先的 工业废水零排放处理技术 专业提供商

熊日华 博士


水处理平台技术总监

国家能源集团 | 北京低碳清洁能源研究所

电话: 133-1126-8187

邮箱: xiongrihua@nicenergy.com

