

智慧供热的系统优化运行

演讲人: 赵岩

辽宁省供热管理与控制研究中心

目录

01 行业背景

02 问题分析

03 二 网 平 衡

04 热力计算对运行优化的作用

05 水力计算对设计、运行的意义

结束语

供热系统设计、运行特点

- 1. 随着热网巨型化的发展,传统运行调节方式越来越不适应节能降耗的要求。
- 2. 供热系统是按最不利情况来设计的,却很少在最不利状况下运行,运行条件又实时变化,这就要求设计要为运行调节创造条件,运行调节又要弥补设计的不足。
- 3. 供热运行的本质是系统优化,运行人员要把不同人,不同时期,甚至按不同理念设计的热源,一次网,换热站,二次网,热用户优化协调,在保障室温的前提下,节能降耗。
- 4. 只有做好过程控制,才有好的能耗结果。
- 5. 系统优化的工具就是热力工况与水力工况的分析计算。

目前热网智能化建设的效果

毫无效果

投资巨大,建设热网自动化,却在节能降耗方面毫无效果,甚至不知道为什么没 有效果,坚决反对继续实施。

效果显著

智能热网建设,收效显著,在供热面积大量增加的情况下,耗热量增加不大。

有待验证

热网自动化建设带来了节能效益,但这部分效益是由于原来粗放式管理造成的,还是热网智慧化建设带来的,需要细化分析。

供热运行面临的问题

熱力失调

用户冷热不均,投 诉量大,运行能耗 高。

一网水力失调

通过换热站无人值守 改造,一网水力平衡 实现可控,但都存在 自动化系统无法自动 优化运行的问题。

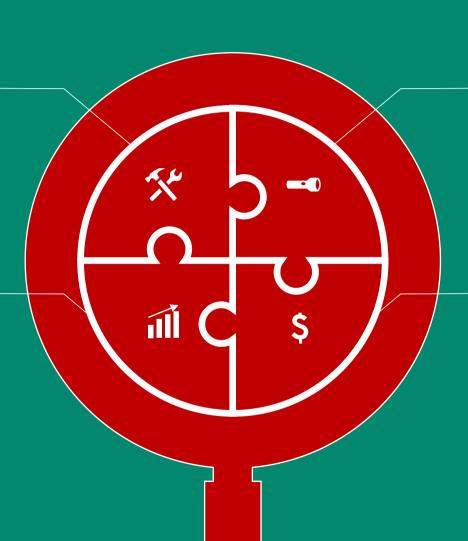
二网水力失调

绝大多数热力公司, 二网处于失控状态, 只能依靠大流量小温 差,缓解水力失调。

热网热效率低

北欧先进国家热网总 损失(包括管网水力 失调,散热,漏水) 控制在8%以内,我 国在30%。

热网自动化系统存在问题的根源

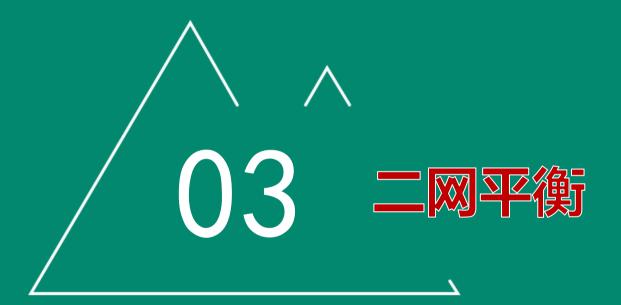

01 传统自动化系统

传统工业控制系统两大 基础:

- 1. 控制目标准确清晰,
- 2. 控制算法PID,要求反应灵敏。

02 供熟控制目标

室温是供热控制的最好目标,但由于二网失调,往往找不到最佳目标。一般由气候补偿曲线替代,但缺乏符合每个站供热特点的特制气候补偿曲线。

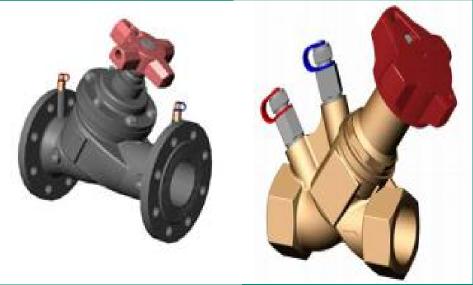

→03 熱网特点

换热站调节阀相互耦合,容易震荡; 热源能否适应变流量 运行。

→04 控制算法

由于建筑物热惰性大,新节能建筑惰性更大;热网规模大,水流延时,造成室温变化滞后严重,工业常用的PID算法不适用。

常用二网平衡方法


传统二网初调节

需要在楼栋入口及所有分支安装平衡阀,调节技术要求高,往往调节不好,效果差。

户用远程温控阀

投资大,维护量大。而且在按面积收费体制下,由企业控制用户室温,用户不配合。

水力分析法

测量平衡阀流量特性曲线,结合二网水力计算,选择合适的口径,并计算平衡阀开度,安装前锁定开度。 优点是投资小,见效快,维护量少。

老個门

针对未安装平衡阀的老旧管网,结合闸阀,球阀, 蝶阀流量特性,对管网进行调节,改善水力失调, 减少不热投诉,精细程度差。

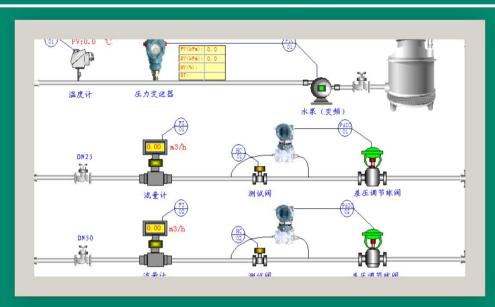
阀门流量特性测试平台

测试对象

调节阀,静态平衡阀,闸阀,球阀,蝶阀。

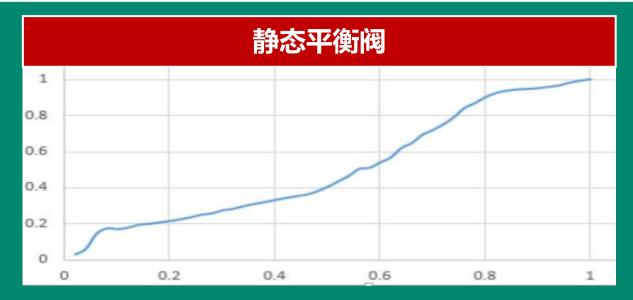
测试结果

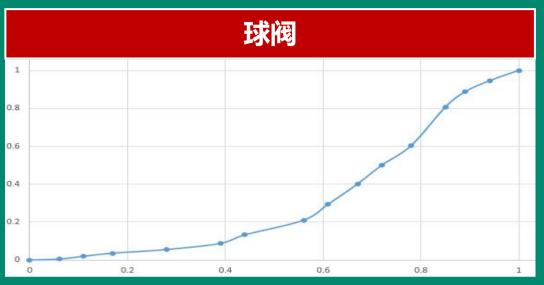
得到阀门在压差为100KPa下的流量特性曲线。

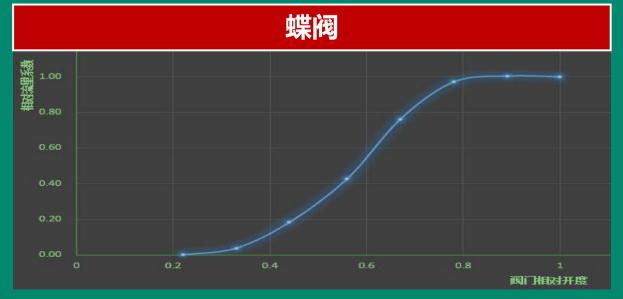

意义—设计工况

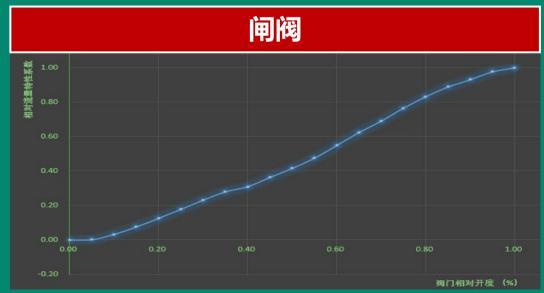
将曲线输入水力计算软件,设计工况下,根据预定开度或安全系数,计算阀门KV值,辅助选阀。

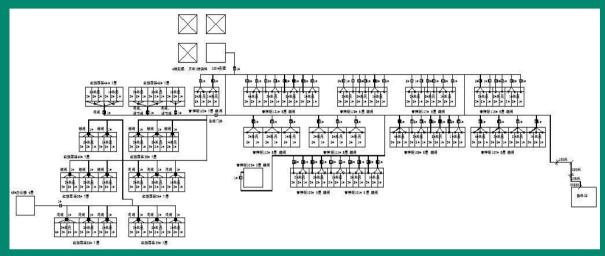
意义—模拟工况


将曲线输入水力计算软件,结合阀门KV值,模拟运行流量下,阀门开度。






阀门流量特性曲线



二网平衡案例

二网平面图

立管回水温度变化表

1						立電	**回水温	温度报表	[3₽					
8		楼	单元 1,回水立管 温度°C₽		单元 2,回水立管 温度°C₽			单元 3,回水立管温 度°C√			单元 4,回水立管 温度°C↔			
		号₽	东侧 管井₽	中间 管井4	西侧 管井₽	东侧 管井₽	中间 管井	西侧 管井↔	东侧 管井₽	中间 管井₽	西侧 管井₽	东侧 管井₽	中间 管井₽	西側管井
	16-44	121₽	35₽	38∂	42₽	38₽	37∉	38. 7₽	38. 8₽	40₽	39₽	38₽	41√	39
	换热	123₽	37₽	40₽	41₽	394						,		
阶	2000	30₽	<mark>37</mark> ₽			<mark>35. 8</mark> ₽			<mark>37. 6</mark> ₽			ļ		
段₽	四回	32₽	<mark>37. 5</mark> ₽			<mark>36</mark> ₽			<mark>36. 7</mark> ₽					
	水温度℃←	34₽	37. 9 ₽			<mark>38. 8</mark> ₽			<mark>38. 1</mark> ∂					
	遠し	36₽	<mark>37. 2</mark> ₽			<mark>38</mark> ₽			<mark>38. 1</mark> ∉					
		38₽	<mark>37. 5</mark> ₽			36. 7 ₽			<mark>37. 5</mark> ₽					
		40₽	39. 6			<mark>38</mark> ₽								
		42₽	<mark>40</mark> ₽			<mark>38</mark> ₽								
		44₽	<mark>38</mark> ₽		0	43								, NY

室温变化表

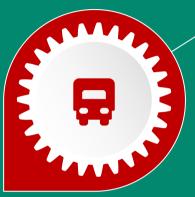
į,					室温	显报表↩					
	测温 <u>点信息</u> ₽		줕	図内温度℃	Z₽	住户室温统计₽			百分比‰		
序号₽	房号₽	楼面 积m²⊋	调整 前温 度₽	调整 之后 的温 度℃₽	前后 温 差℃₽	t<18℃ (户) ≠	18℃≪ t≪ 20℃ (戸) ↓	20℃ <t (户) ≠</t 	t<18℃₽	18℃ ≼t≤ 20℃≁	20℃ <t₽< th=""></t₽<>
1€	101-1-4-1	2040₽	18. 2	19. 3₽	-1.1						
2₽	103-3-1-3↔	3540₽	19.1	20. 3₽	-1.2						
3₽	105∉	600₽	20.6	21. 4₽	-0.8						
4₽	107-1-2-1	3816₽	22.3	20. 5₽	1.8						
5₽	109-1-2-1	3816₽	22.6	21.6₽	1.0						
6₽	111-1-3-1	3276₽	21.9	20. 9₽	1.0						
7₽	113-1-3-1	3636₽	21.5	20. 4₽	1. 1						
8₽	115-1-3-1∻	4302₽	23.6	22. 4	1.2						
9₽	117-1-6-1∉	4572₽	21.5	20. 1∉	1.4						
10↔	119-1-6-1∉	4194₽	22.8	22. 3₽	0.5						
11↔	121-1-5-1	4128↔	19. 1	20. 7↔	-1.6	042	5₽	16₽	0⊷	23. 8₽	76. 2₽

阀门开度表

							阀门报	長 1₽				1
阀门	井位	置₽	调图	整前阀i]参数₽	第一轮	调试↩	第二轮	调试₽	第三翰	论调试↩	
楼号₽	单 元 号↔	阅	阀 门 类型→	调整 前的 室内 温 度 [®] C₽	调整前 阀门的 开度₽	实际调 整开度↩	立管 回水 温 度°C₽	实际调 整开度↓	立管 回水 温 度°C₽	实际 调整 开度ℯ	立管 回水 温 度°Cℯ	备注₽
10 1∉	1 ↔	1∻	蝶阀	18. 2₽	4/10∂			3/10∉	32₽			再关小没有流。 量∉
14-		2∻	lix14-	Ì	5/10₽			3/10∉	35∉			
2 2	1↔	1∻		22. 3₽	7/10∂	5/10₽	38. 5₽		: 58	:		
10	2₽	1∉	蝶		6/10∂	5/10∂	33₽					再关小没有流。 量₄
7₽	3₽	1∻	阀↔		6. 5/10₽	6/10₽	39₽					再关小没有流。 量⊲
ar	4₽	1∻			6. 5/10₽	6/10∉	36₽					
	1↔	1∻		22. 6₽	6/10₽	5/10∉	38₽	3/10∉	36∉			
	1+	2∻			6/10∂		39∂	5/10∉	36. 5∉			

热力工况

- 1. 供热系统供热量、温度等参数的分布状况称为热力工况。在按面积收费的计划供热模式下,室温是否达标,将变为衡量供热这个商品质量优劣的唯
- 一标尺; 室温偏差度, 将成为衡量热力公司运行水平的重要指标。
- 2. 供热系统的特点决定了热力计算是智能热网的重要组成。是实现控制系统节能运行与自动运行的基础。
- 3. 负荷预测是热力计算的最基本应用,已经感到难度很大。


以室温为目标的热力计算是热网优化运行的基础

01 室温聚集

采集用户室温,结合数 据分析,确定模拟室温;

03运行优化

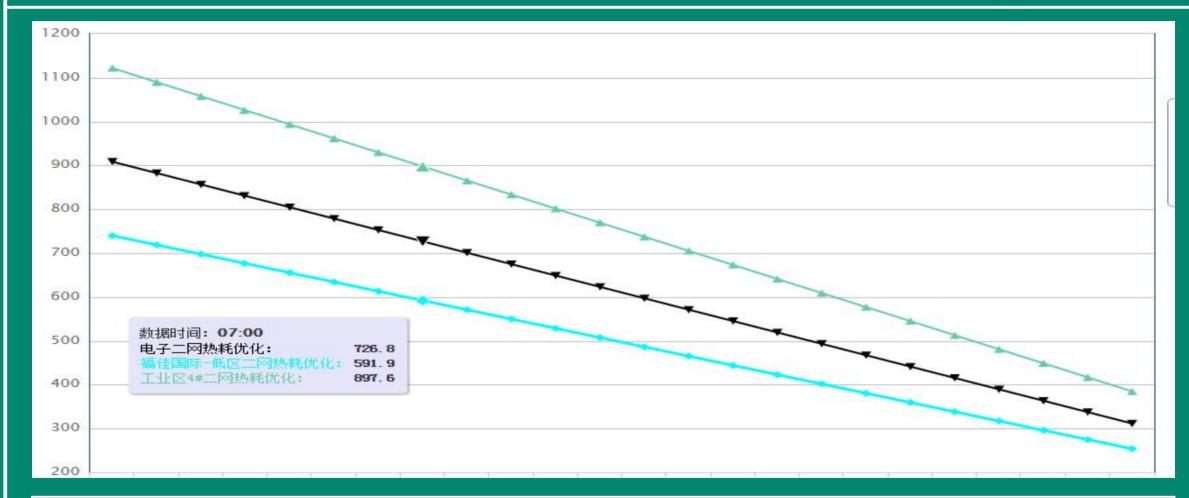
结合预报室外温度,各站设备特性,优化未来供热运行数据。

02大数据分析

以实际生产运行数据为依据,分析 热网设备特性。

当前实际运行数据是比较稳定的。

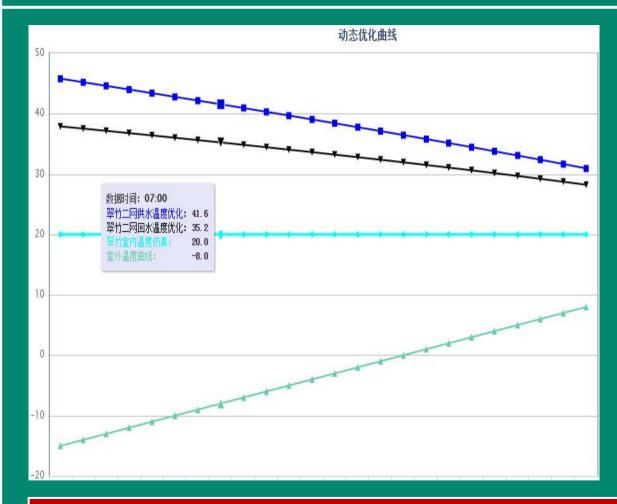
数据清洗非常重要。

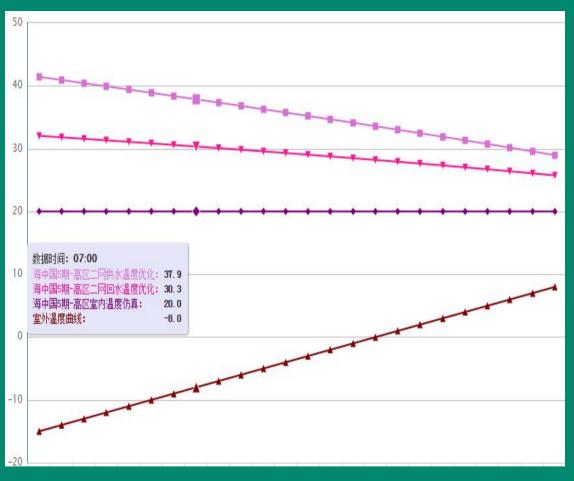


04机器学习

根据运行反馈数据,优化 数学模型,改进优化数据, 一般供热初期进行。

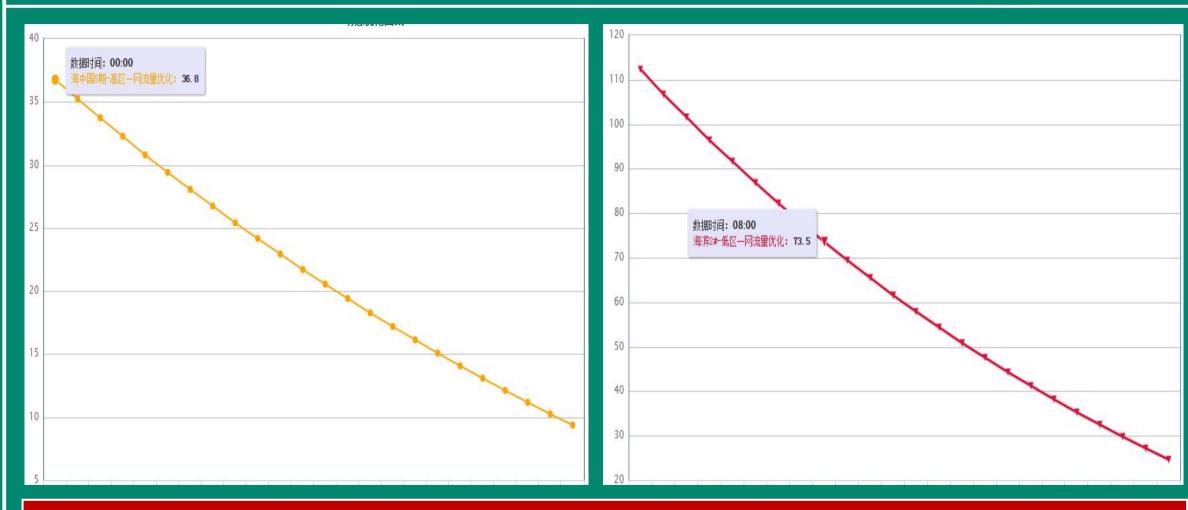
热负荷预测





模拟室外温度-15—8度变化, 室温保持设定20度时, 每个站的热负荷曲线。

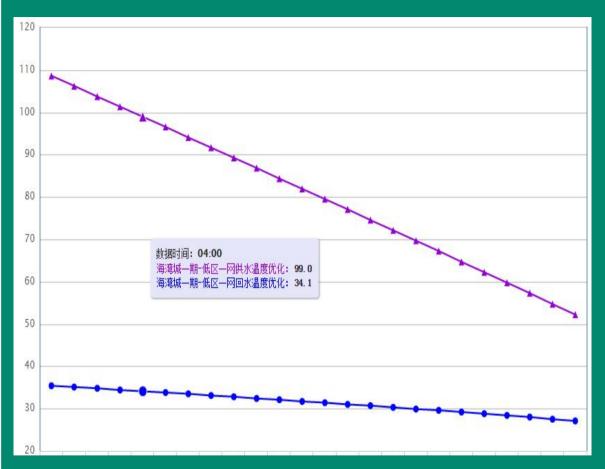
特性化的气候补偿曲线

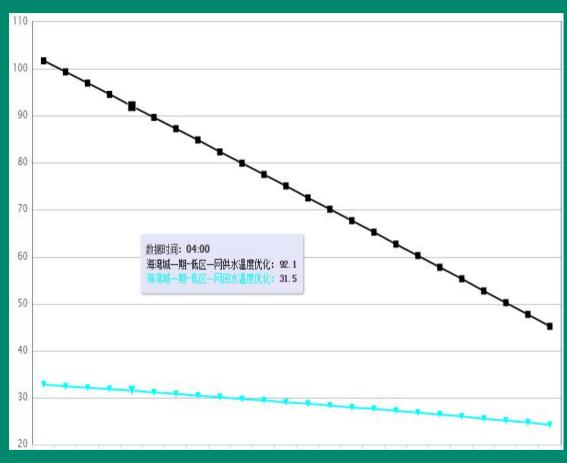


模拟室外温度-15—8度变化,室温保持设定20度时,二网供回水温度变化值,不但模拟供水温度,而且可以 模拟回水温度值,控制时也可以采用平均温度。

比负荷预测更进一步,最大限度避免超供,欠供,减少调整工作量。为换热站实现自动控制提供基础。

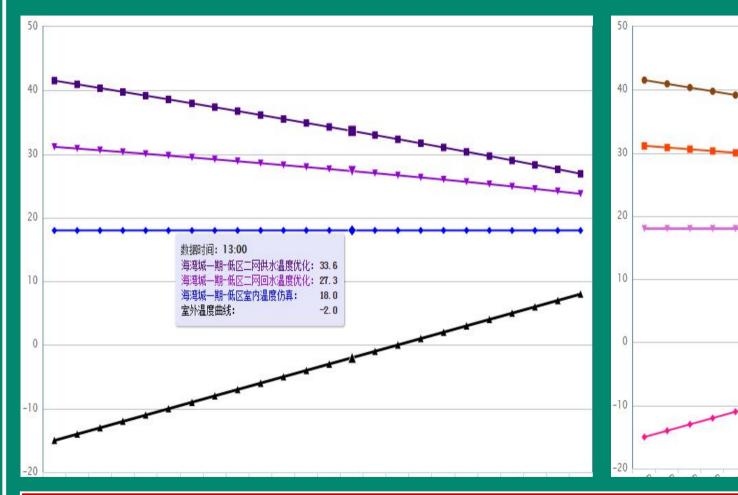
辅助调网

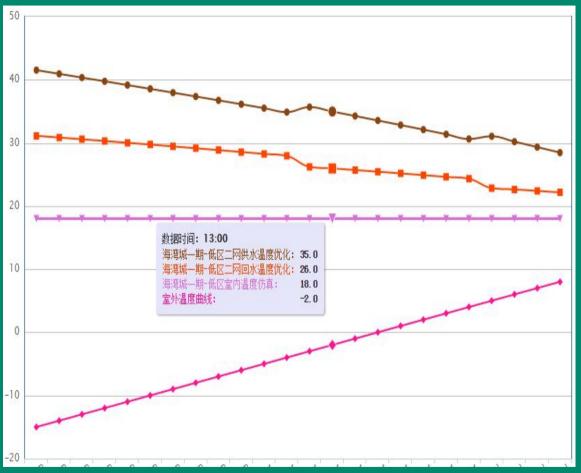




模拟室外温度-15—8度变化,室温保持设定20度,一网供水温度设定90度时,所有换热站的一网流量变化, 使调网变得简单易行。

热源运行参数预测



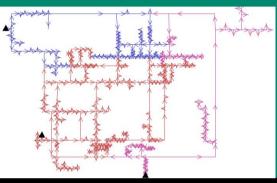


模拟室外温度-15—8度变化,室温保持设定20度或18度时,一网供水温度,回水温度的模拟优化,<u>使热源</u> 运行比简单的负荷预测更精准。

二网分阶段变流量

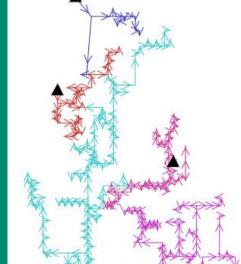
模拟室外温度-15—8度变化,室温保持设定18度时,二网分阶段(室外-3度,5度)变流量,二网供回水温 度变化。

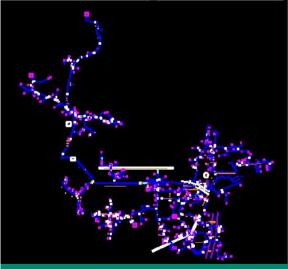
水力工况



- 1. 供热系统压力、流量等参数的分布状况称为水力状况。
- 2. 供热系统的供热量是通过热媒输送的,热媒的输送状况,直接影响供热量的分布状况,进而影响室内温度的分布状况。
- 3. 热媒的输送状况,通常是通过其压力、流量等来描述的。
- 4. 水力状况是热力工况的源头,研究热力工况,必须着手研究水力状况。

水力计算对供热设计、运行的意义


管网巨型化的必然要求


多热源环网运行是供热发展的必然趋势,凭经验已 <u>经无法运行管理,水力分析成为</u>基础工具。

设备选型

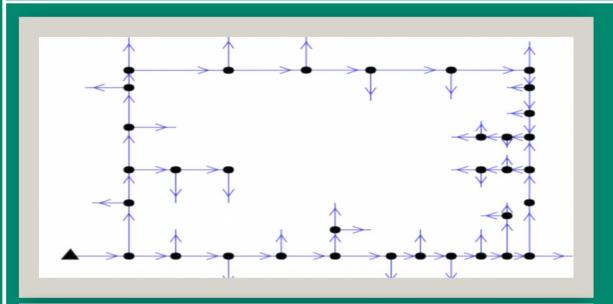
热网普遍存在泵,管网结构,管径,调节阀选型不合理,是能耗高,无法自动调节的重要原因。

制定热源运行方案

根据热源的经济性要求,合理调配,保证主热源满负荷供热,辅助热源随时调峰。

輔助调网

结合阀门流量特性曲线,直接计算换热站或二网楼 栋入口阀门开度,实现水力初平衡。



应急预案

针对热源故障,管网爆管,制定应急预案。

水力计算应用—分布泵改造

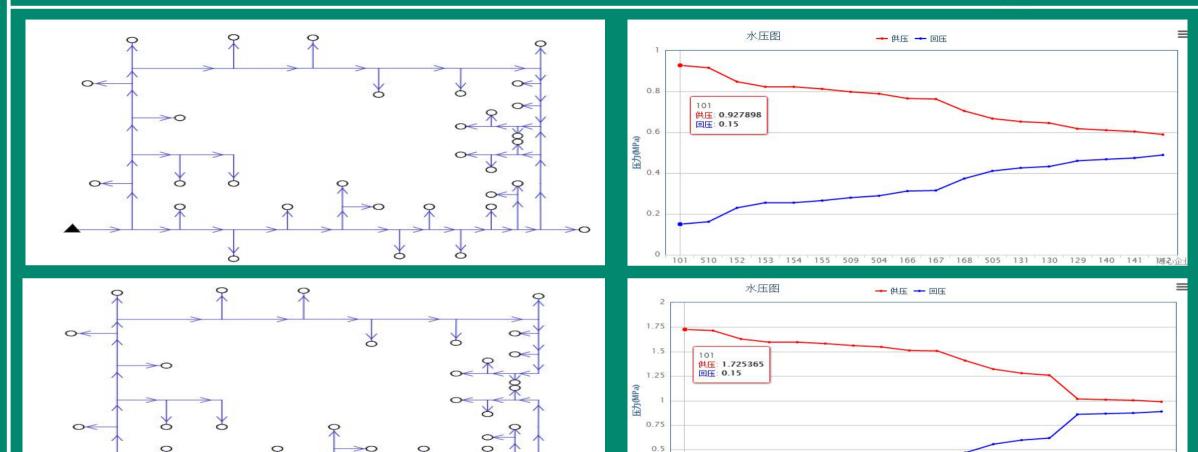
序号	换热站编号	换热站名称	流量 (t/h)	扬程 (m)
1	1023	星海四号	111.78	42.88
2	1024	星海三号	33.53	39.81
3	1025	星海二号	77.17	31.86
4	1026	星海六号	62.55	31.91
5	1027	星海一号	76.1	27.56
6	1028	星海五号	67.07	67.73
7	1029	未来城	78.25	13.04
8	1030	星海七号	87.27	38.71
9	1031	国滨馆	89.42	40.59
10	1034	星海八号	99.53	52.04
11	106	女子医院	11.18	17.83

分布泵选型

很多分布泵改造工程不做详细水力计算,完全依靠变频,效果不佳,甚至 导致改造失败。

节电效果分析

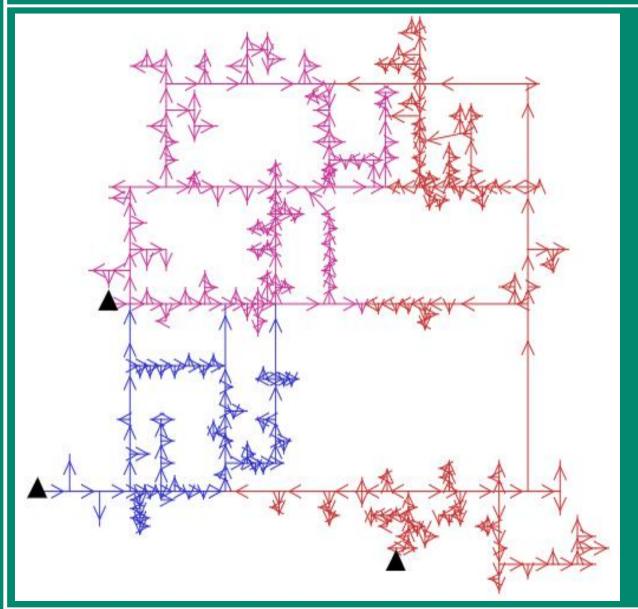
依靠数据分析节电效果, 实现精准改 造。


确定定压点压力

结合地势标高,确定管网各点实际压力,避免超压或汽化。

水力计算应用—环状管网设计运行

101 510 152 153 154 155 509 504 166 167 168 505 131 130 129 140 141 勝紀



环形管网, 热源泵扬程75米, 支状管网, 热源泵扬程175米

0.25

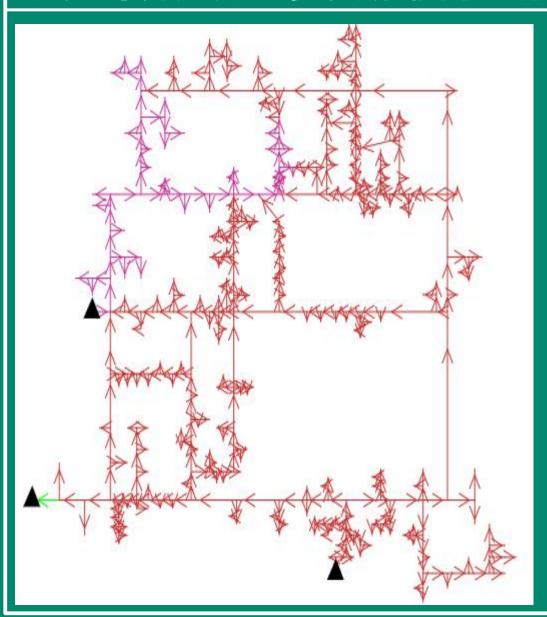
水力计算应用—多热源环网设计

管网结构优化

根据管网布局,合理搭建环形管网,改善管网布局。

管径, 阀门, 水泵选型

依靠计算结果,实现设备选型的精准。多热源联网运行,需要做多种运行方案的校核。



熱源。升压泵站选址优化

选择不同的建设位置,模拟分析运行 结果。

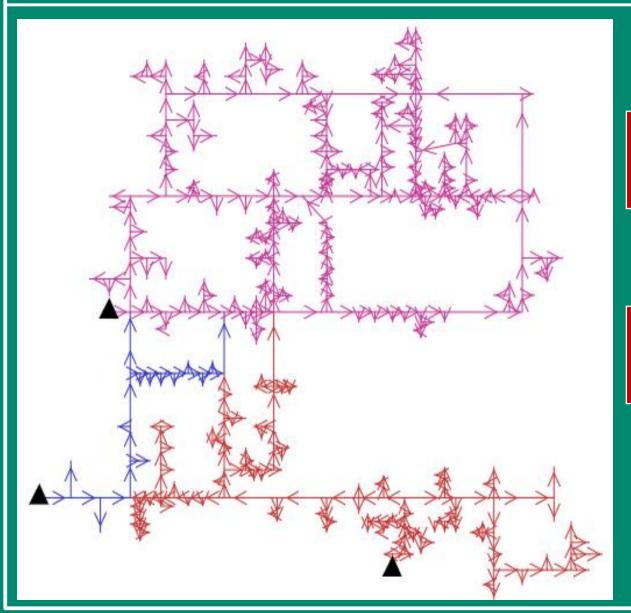
水力计算应用—多热源联网运行方案制定

不同室外温度下

根据不同室外温度下的负荷,设定热源运行方案,进行水力分析。

不同熱源狀态

根据热源情况,调配不同热源供热量、分析水力工况。



不同经济效果

根据能源价格的变化,合理调配各热源供热量。

水力计算应用—应急方案制定

管网爆管

管网发生爆管等紧急故障**,**制 定应急方案。

熱源故障

热源发生故障, 调用配用热源 补充供热。

智慧供热四个阶段

第I阶段

对运行参数实时采集上传,实现热力站无人值守;

对热力站实现远程集中控制;

实现一次管网全网平衡。

第II阶段

应用机器学习技术,实现热力站运行参数自寻优、自动控制;

利用现代化智能技术实现用户服务智能化功能。

第Ⅲ阶段

实现热源首站随热负荷变化进行自动调节。

第IV阶段

实现热用户自主调节,按需用能;

实现热力站、热源首站随热用户需求自动调节功能。

1.传统的供热都是凭经验,是在信息匮乏时代的长期经验积累,例如5万平的小区,水泵流量,扬程的选择;一个室外温度下的供回水温度等,其实质是热力与水力工况分析的实例化,简单易行,但不可避免的带有粗放性,缺乏普遍适用的科学性,尤其不适应目前热网规模、型式日新月异的变化。

2.运行人员运用专业知识(水力,热力计算),面对海量的运行数据,进行分析、计算、判断的习惯与能力培养是智慧热网建设成败的关键,也是智慧供热建设的价值所在,解决了计算无法校验、修正的难题,否则智慧供热的建设必然会变成面子工程。

大连海心信息工程有限公司

地址:大连市高新园区黄浦路541号网络产业大厦一层

邮政编码: 116023

电话: 0411—84458070, 15904947720

传真: 0411 - 83623536

E-mail: 2645540499@qq.com 网址: http://www.hx-soft.com