

空冷机组废水治理及零排放技术

大唐西北所 闫爱军 13891880695 yanai jun@vip. 163. com

目 录

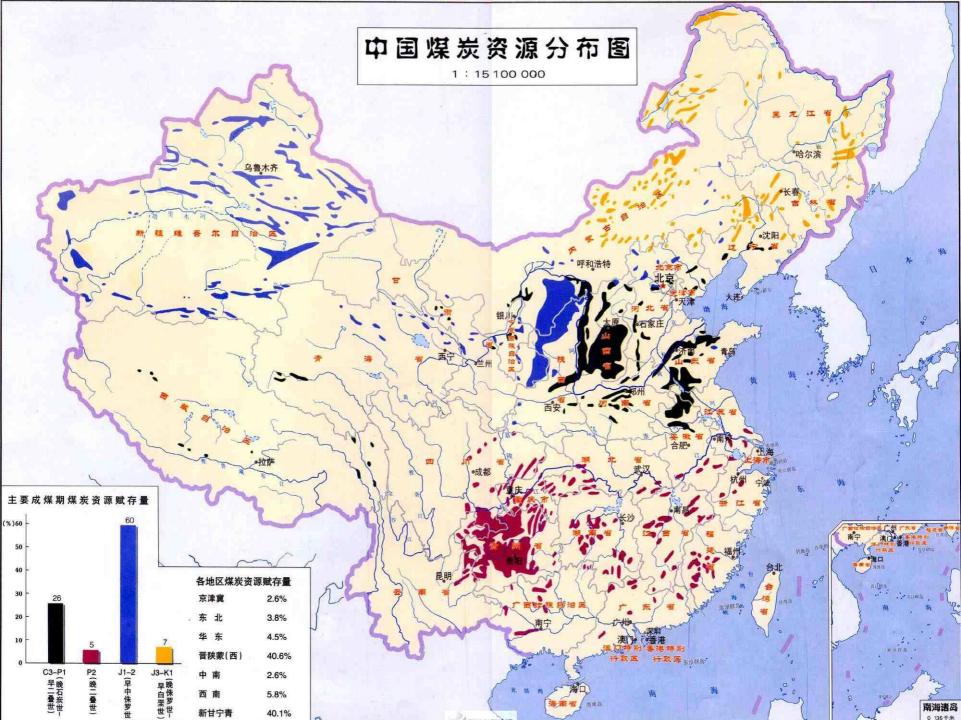
5

1 前言

2 西北区域空冷机组废水排放现状

3 空冷机组零排放途径分析

4 废水治理及零排放技术路线

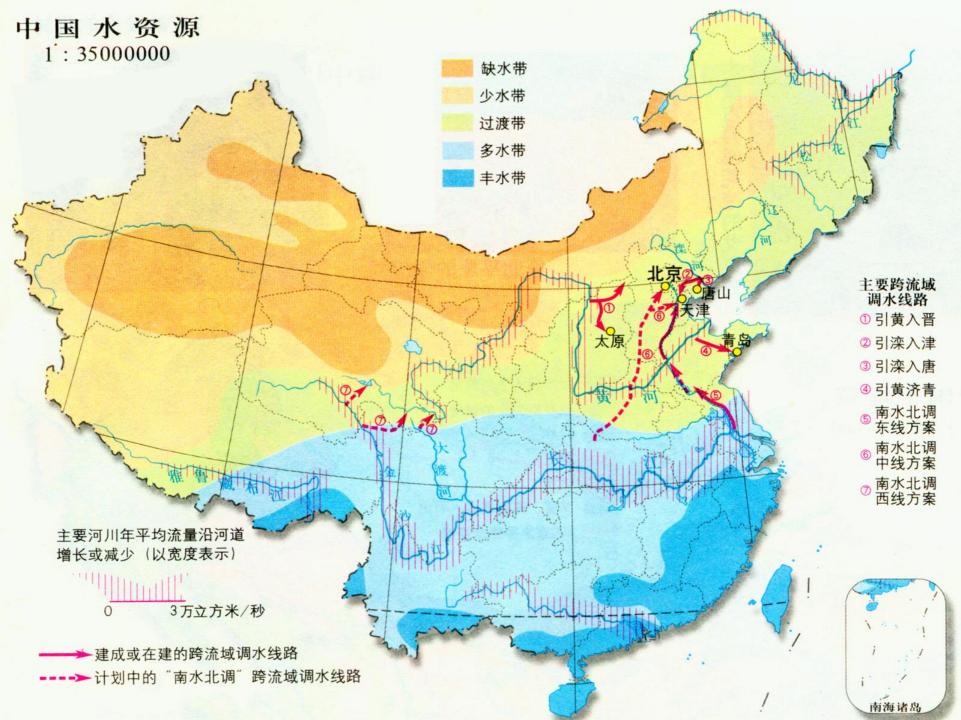

废水零排放技术案例

我国煤炭分布特点及发展规划

"十三五"能源规划,2020年我国将基本形成"五基两带"能源开发布局,重点建设山西、鄂尔多斯盆地、蒙东、西南、新疆五个重点能源基地和东部核电带、近海油气开发带

14个大型煤炭基地的产煤量占全国煤炭产量的比重在"十三五"期间将达到95%以上。由于煤炭供给过剩,因此对煤炭基地的规划将划分层次,区别对待。优先开发蒙东、黄陇和陕北基地,巩固发展神东、宁东、山西基地,限制发展东部即冀中、鲁西、河南、两淮基地,优化发展新疆基地。

"十三五"将把控制能源消费总量作为重要任务,其中煤炭作为控总量的重点,消费比重将从目前的66%降到60%以下



我国水资源分布的特点

总量并不丰富,人均占有量更低。中国水资源总量居世界第六位,人均占有量为2240立方米,约为世界人均的1/4,在世界银行连续统计的153个国家中居第88位。

地区分布极不均匀,水土资源不相匹配。长江流域及其以南地区国土面积只占全国的36.5%,其水资源量占全国的81%;淮河流域及其以北地区的国土面积占全国的63.5%,其水资源量仅占全国水资源总量的19%。

年内年际分配不匀,旱涝灾害频繁。大部分地区年内连续四个月降水量占全年的70%以上,连续丰水或连续枯水较为常见。

我国空冷机组发展方向

能源发展战略行动计划(2014-2020年)。建设高效节能环保 节水的燃煤发电示范工程,使其发电效率、污染物排放、耗 水等主要指标达到国际先进水平。

大型燃煤电厂综合节能、节水、环保的新技术以及集成应用 技术

废水零排放等环保新技术

主机、辅机空冷等节水新技术

采用最先进**节能节水环保发电技术**,重点建设晋北、晋中、晋东、陕北、哈密、准东、宁东等7个千万千瓦级大型煤电基地。

主要国家政策技术标准

国务院关于印发水污染防治行动计划的通知 国家能源局防止电力生产事故的二十五项重点要求2014 重点工业行业用水效率指南 能源发展战略行动计划(2014-2020年) 火力发电厂水务管理设计导则 GBT 18916.1-2012 取水定额 第1部分 火力发电 GBT 18820-2011 工业企业产品取水定额编制通则 GB8978-1996 污水综合排放标准 DL/T5046-2006 火力发电厂废水治理设计技术规程 DL/T 1337-2014 火力发电厂水务管理导则 DL/T 606.5-2009 火力发电厂能量平衡导:水平衡试验 DL/T 5483-2013 火力发电厂再生水深度处理设计规范 DL/T 414-2012 火电厂环境监测技术规范 DL/T5142-2012 火力发电厂除灰设计规程 DL/T5339-2006 火力发电厂水工设计规范 DL/T5068-2014 火力发电厂化学设计技术规程

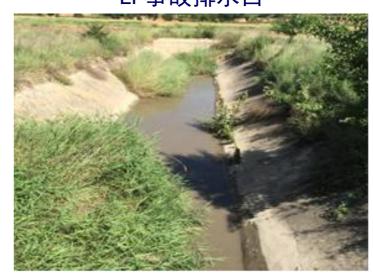
西北区域电厂装机容量及冷却方式

厂名	装机容量MW	备注
陕西省		
灞桥	$300 \times 2 + 125 \times 2$	循环冷却
宝热	330×2	循环冷却
彬长	630×2	空气冷却
韩二	600×4	空气冷却 循环冷却
户二	300×2	循环冷却
略阳	330×1	循环冷却
渭热	300×2	循环冷却
甘肃省		
甘谷	330×2	空气冷却
西固	330×2+165×2	循环冷却
景泰	660×2	空气冷却
连城	330×2	循环冷却
803	25×2+50×1	循环冷却

西北区域电厂装机容量及冷却方式

厂名	装机容量MW	备注
山西省		
云冈	300×2+220×2	空气冷却
神二	500×2	循环冷却
太二	3×200MW+ 2×300MW+2×330MW	空气冷却 循环冷却
临汾	2×300MW	空气冷却
阳城	6×350MW+2×600MW	空气冷却 循环冷却
运城	2×600MW	空气冷却
宁夏		
大坝	2×600MW	空气冷却
新疆		
呼图壁	2×300MW	空气冷却

西北区域空冷机组排水


YG事故排水口

YC事故水池

LF事故排水口

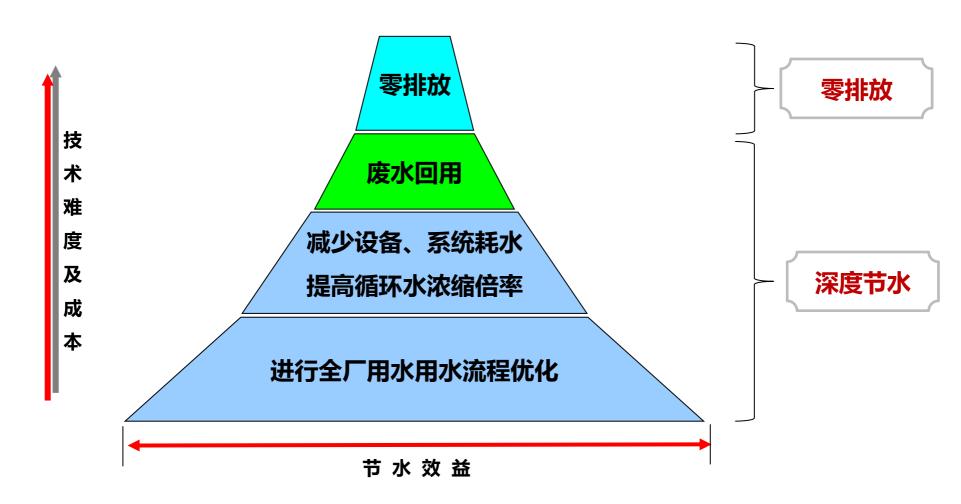
BC事故水池

西北区域空冷机组排水

JT事故排水口

GG事故水池

DB事故排水口


HTB事故水池

- 1、建设脱硫废水处理系统运行不正常 压滤机不能正常运行,废水加药系统不能正常投运,三联箱 堵塞频繁,澄清池出水效果差。
- 2、含煤废水处理系统运行不正常 脱泥机普遍不能正常运行,过滤器易堵塞,刮泥机故障多, 煤水提升泵易损坏、出水水质差。
- 3、机力通风塔冷却塔浓缩倍率低、排污量较大 两台机组同时运行时系统不能消耗全部的水塔排污,多余的 排污量均经雨水管网外排,

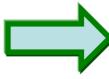
- 4、总排放口未安装废水流量自动监控设施 西北区域除云冈电厂、神头外,其余电厂废水总排放口,均 未见安装废水自动监控设施。
- 5、工业废水、生活污水处理系统运行不正常 存在超出工业废水装置处理能力,设备故障等问题。生活污水存在微生物死亡、罗茨风机故障、设备腐蚀损坏等问题
- 6、水平衡测试报告不能完全反映电厂的用水情况 测试单位无资质、人员水平有待提高;测试工况不满足要求 ;校核方法应改进

- 7、未建立完善的电厂水务管理体系 普遍没有建立完善的水务管理体系,水务管理内容及深度达 不到DL/T 1337-2014《火力发电厂水务管理导则》要求。
- 8、水处理正洗反洗水未回收利用水处理制水设备正洗、反洗水,均排入了化学废水系统。
- 9、部分重要系统无流量计或显示不准 一些重要系统无流量计或显示不准,如脱硫废液出口、生活 污水处理出口等无流量计,工业废水处理间澄清池进口流量 计显示不正常,流量计台账中未见检修及校验记录。

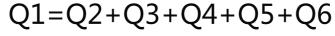
- 7、未建立完善的电厂水务管理体系 普遍没有建立完善的水务管理体系,水务管理内容及深度达 不到DL/T 1337-2014《火力发电厂水务管理导则》要求。
- 8、水处理正洗反洗水未回收利用水处理制水设备正洗、反洗水,均排入了化学废水系统。
- 9、部分重要系统无流量计或显示不准 一些重要系统无流量计或显示不准,如脱硫废液出口、生活 污水处理出口等无流量计,工业废水处理间澄清池进口流量 计显示不正常,流量计台账中未见检修及校验记录。

深度节水,是指在全厂建立水务管理系统的基础上,充分利用各种技术手段,使水资源在电厂内最大限度地梯级使用和处理回用,尽量减少废水排放量。

零排放,是指电厂不向外部水域排放任何废水,所有离开电厂的水都是以蒸汽的形式蒸发到大气中,或是以少量的水分包含在灰和渣中。


空冷机组水量平衡

冷却塔 蒸发+风 吹损失 Q2 脱硫 蒸发 损失 Q3


煤场灰 场道路 蒸发损 失Q4

热网补充抽汽 及锅炉 损失 Q5

原水 Q1

灰渣石膏等携带损失Q6

空冷机组氯离子平衡

冷却塔风吹损失q4

2×300MW供热空冷燃煤发电机组冬季耗水量如下表:单位:m3/h 项目 需水量 回收水量 实耗水量 备 注

序号	项目	需水量	回收水量	实耗水量	备 注
1	机力通风冷却塔蒸发损失	19	0	19	地表水来水
2	机力通风冷却塔风吹损失	3.5	0	3.5	地表水来水
3	机力通风冷却塔排污损失	136.5	136.5	0	地表水来水
4	化学水处理用水	279	20	259	地表水来水
5	制氢站用水	35	35	0	地表水来水
6	空调补充用水	5	0	5	地表水来水
7	除渣搅拌用水	1	0	1	循环水排污水及回收复用水
8	干灰加湿用水	10	0	10	循环水排污水及回收复用水
9	输煤系统冲洗除尘用水	10	0	10	循环水排污水及回收复用水
10	灰场喷洒用水	0	0	0	工业水回收复用水
11	浇洒道路及绿化用水	0	0	0	生活水回收复用水
12	生活用水	5	4	1	工业园区生活水管网来水
13	煤场喷洒用水	0	0	0	脱硫回收水及工业水回收复用水
14	脱硫用水	140	10	130	循环水排污水及回收复用水
15	预留脱销用水	5	0	5	循环水排污水及回收复用水
16	未预见用水	5	0	5	地表水来水
17	地表水净化自用水	1.5	0	1.5	地表水来水
18	共计 (m³/h)	655.5	205.5	450	655.5
19	电厂耗水量(m³/h)	450			
	# + + + + + + + + + + + + + + + + + + +	0.	140		扣洛孙是白田水工业抽汽田水207~2/6

某2×300MW空冷机组零排放途径分析

相关主要参数:

水量:450m3/h

水中氯离子浓度: 5.94mg/L

水中氯离子总量: 2.7kg(忽略)

燃煤量:285.95t/h、灰渣57.18t/h、石膏9.59t/h

煤场面积:160×80=12800m2

灰场面积:80000m2

煤中氯离子含量:小于0.05% 煤中氯离子总量:小于143kg

烟气量:593.89Nm3/s

FGD前烟气中氯离子浓度: < 80mg/m3

FGD前烟气中氯离子总量: < 171kg

控制FGD浆液氯离子浓度:20000mg/L

按143kg计算,脱硫废水量:7.15m3

脱硫废水设计排放量:10m3时,CI:14300mg/L

某2×300MW空冷机组零排放途径分析

气象观测台多年逐月气象要素及月蒸发水量

月 份		<u> </u>	三	四	五.	六	七	八	九	十	+	十二
平均蒸发量	8.2	15.7	62.5	209.1	330.8	386.1	392.1	342.8	231.9	114.1	30.1	8.0
煤场蒸发水量	105	201	800	2676	4234	4942	5019	4388	2968	1460	385	102
灰场蒸发水量	656	1256	5000	16728	26464	30888	31368	27424	18552	9128	2408	640

脱硫废水月产生量 单位: m3

小时排放量	1	2	3	4	5	6	7	8	9	10	11	12
月废水量	475	950	1425	1900	2375	2850	3325	3800	4275	4750	5225	5700

某2×300MW空冷机组零排放途径分析

煤中不同氯离子含量对应废水排放量

煤中氯离子 含量 %	0.01	0.015	0.02	0.025	0.03	0.035	0.04	0.045	0.05
煤中氯离子 总量kg/h	29	43	57	71	86	100	114	129	143
废水量t/h 10000mg/L	2.86	4.29	5.72	7.15	8.58	10.01	11.44	12.87	14.30
废水量t/h 15000mg/L	1.91	2.86	3.81	4.77	5.72	6.67	7.63	8.58	9.53
废水量t/h 20000mg/L	1.43	2.14	2.86	3.57	4.29	5.00	5.72	6.43	7.15
灰渣中氯离子含量%	0.05	0.08	0.10	0.13	0.15	0.18	0.20	0.23	0.25

某2×300MW空冷机组零排放途径分析

水中不同氯离子浓度对应的总氯离子量

水中氯离子 浓度 mg/L	10	20	30	40	50	100	150	200	250
水中氯离子 总量kg/h				18	22.5	45	67.5	90	112.5

备注: GB50050-2007《工业循环冷却水处理设计规范》及GB/T19923-2002《城市污水再生利用工业用水水质》规定,循环冷却水系统补充水中氯离子浓度≤250mg/L

景泰电厂:

设计煤耗: 564t/h, 以0.05%氯离子含量计, 煤中氯离子总量: 282kg/h; 水中氯离子40.17mg/L,设计水量635t/h,水中氯离子总量: 25.5kg/h, 是煤中氯离子的9%。零排放计算时应考虑。

某2×300MW空冷机组零排放途径分析

GB/T 1596-2005用于水泥和混凝土中的粉煤灰 表1 拌制混凝土和砂浆用粉煤灰技术要求

元 年 日	技术要求					
项目	I 级	II级	III级			
细度(45µm方孔筛筛余),不大 于/%	F类粉煤灰 C类粉煤灰	12.0	25.0	45.0		
需水量比,不大于/%	F类粉煤灰 C类粉煤灰	95	105	115		
烧失量,不大于/%	F类粉煤灰 C类粉煤灰	5.0	8.0	15.0		
含水量,不大于/%	F类粉煤灰 C类粉煤灰					
三氧化硫,不大于/%	F类粉煤灰 C类粉煤灰	3.0				
游离氧化钙,不大于/%	F类粉煤灰 C类粉煤灰	1.0 4.0				
安定性 雷氏夹沸煮后增加距离 ,不大于/mm	C类粉煤灰		5.0			

某2×300MW空冷机组零排放途径分析

1、氟、氯都是易挥发元素,当煤燃烧时80~90%氟化物和 氯化物在高温下分解成气态HF、HCl和少量的SiF4,并随烟 气进入FGD装置。HF和HCl均为酸性气体,几乎被碱性吸收 剂吸收进入工艺液中。(火电厂湿法烟气脱硫技术手册)

脱硫废水用于煤场喷洒后,大部分CI仍进入 FGD吸收液。**不应煤场喷洒**

2、美国FGD浆液系统氯化物设计浓度10000~50000mg/L如:佛罗里达州奥兰多(Orlando)公用电厂能源中心Cl运行浓度:20000~80000mg/L

适当提高CI离子运行浓度,降低废水排放量

3、捞渣机捞出渣的含水率约为30%(火力发电厂除灰设计 技术规程)

渣携带可以降低废水排放量、其余灰场喷洒

某2×300MW空冷机组零排放途径分析

1、水量零排放:蒸发+供汽+携带

途径:提高冷却塔浓缩倍率

增大喷洒蒸发量

2、CI零排放:灰渣、石膏携带、喷洒

途径:灰渣携带

增大灰场喷洒蒸发量

除尘器前蒸发、存储、结晶、电解

4.1 空冷机组废水治理

- 1、预处理:澄清排泥水、过滤反冲洗水→污泥浓缩→回收至 预处理进口
- 2、补给水处理系统:过滤+除盐反冲洗→沉淀澄清→回收至 预处理进口(或循环冷却水补充水) 高含盐浓水→脱硫、输煤、除渣补充水 再生高含盐量废水→干灰调湿、灰场抑尘
- 3、循环冷却水→动态模拟试验→高浓缩倍率→减少排污
 - →脱硫、除渣补充水
 - →输煤、煤场喷洒
 - →深度脱盐→锅炉补给水、循环冷却水补充水
- 4、脱硫系统→采用循环排污水、反渗透浓水、工业生活废排水、城市再生水
- 5、除灰系统→采用循环排污水、反渗透浓水、脱硫废水

4.1 空冷机组废水治理

- 6、湿除渣系统→采用循环排污水、反渗透浓水、脱硫废水
- 7、输煤系统→采用循环排污水、工业生活废排水等,循环无排放 排放
- 8、生活污水→节水→绿化、循环冷却水及脱硫补充水
- 9、缺水地区:雨水收集回用→循环冷却水、工业用水
- 10、仪表:配备率、合格率、检测率、计量率100% 关键部位流量计→实时采集、在线监测、超限报警。

11、水务管理:

专人负责管理 用水管理和考核制度 水务计量仪表维护细则 水务管理档案 节水改造方案

4.2 空冷机组废水零排放技术路线

原则	适用水质	主要途径	关键技术
减 量 化	循环冷却水脱硫废水	提高浓缩倍率	动态模拟实验 在线监控 阶梯浓缩

循环利用

含灰渣废水 含煤废水 预处理排泥 水反冲洗水

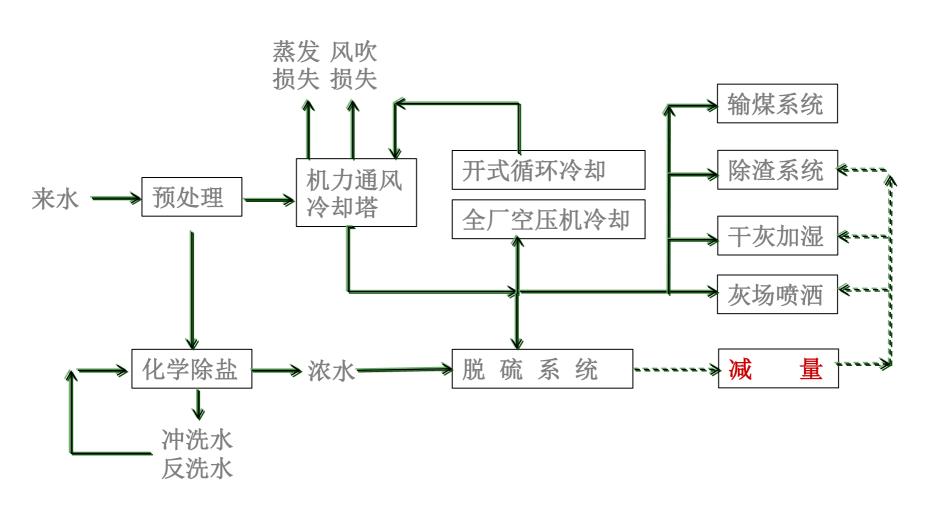
优化工艺流程

提高设备可靠性 优化运行参数 在线监控 加强设备运维管理

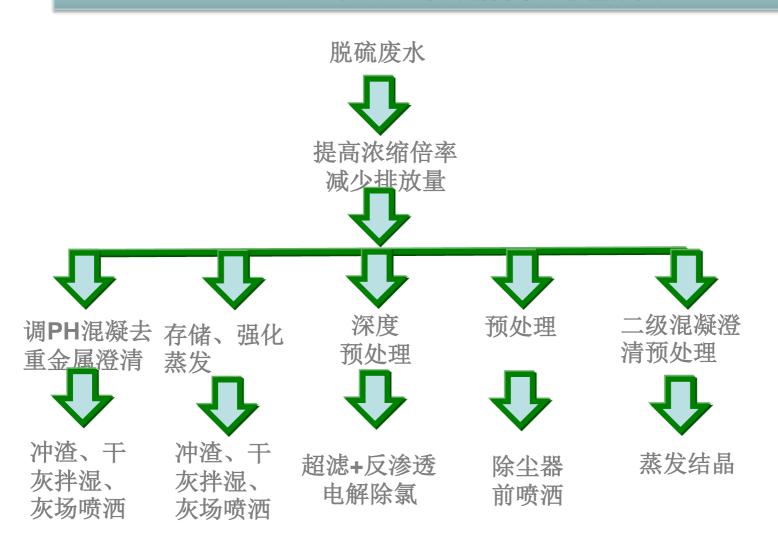
梯级利用

冲灰渣废水

清污分流 分类回收 分质回用


流程优化 在线监控

末端治理


含灰渣废水 脱硫废水 高含盐废水

深度处理 蒸发 喷洒 灰渣携带 灰场喷洒 强制蒸发 蒸发结晶 除尘器前蒸发 反渗透+电解

4.3 空冷机组零排放水平衡简图

4.4 空冷机组脱硫废水处理技术

建议

- 1、建立健全水务管理体系
- 2、地下管网整改并标识编号。
- 3、开展水平衡测试。
- 4、开展零排放可行性技术研究。
- 5、积极开展新技术研究。
- 6、稳妥推进零排放工程示范。
- 7、脱硫废水不应煤场喷洒。
- 8、建议开展煤中氯离子检测。

5.1河源电厂废水零排放

深能源河源电厂一期工程项目装机容量2×600MW,位于深圳和香港等城市的供水水源地一东江约500米,地理位置较为敏感。根据国家环评规定,电厂必须实现全厂废水零排放,不能设置任何废水排放口。

河源电厂废水零排放系统于2009年投入运行,截止目前为止,仍是国内惟一一家真正实现零排放的电厂,国务院副总理汪洋、国家发改委、环保部、广东省等领导先后参观过该项目,华能集团高层领导也参观过该项目。电厂每年内接待国内各行各业参观用户100余家,在废水零排放方面具有较高的知名度,已成为深能源对外进行企业环保宣传的一面旗帜。

5. 2河源电厂废水零排放

- 循环水系统高浓缩倍率: 6.3倍提高到10倍左右,排污水主要用于脱硫、煤场补水。
- 工业废水处理回用:锅炉补给水系统反洗废水、凝结水精处理系统冲洗废水、R0浓水、机组排水等处理后主要用于脱硫、煤场补水。
- 煤场废水处理回用:混凝澄清工艺并循环使用
- 生活污水处理回用:曝气生物滤池处理并回用至循环水

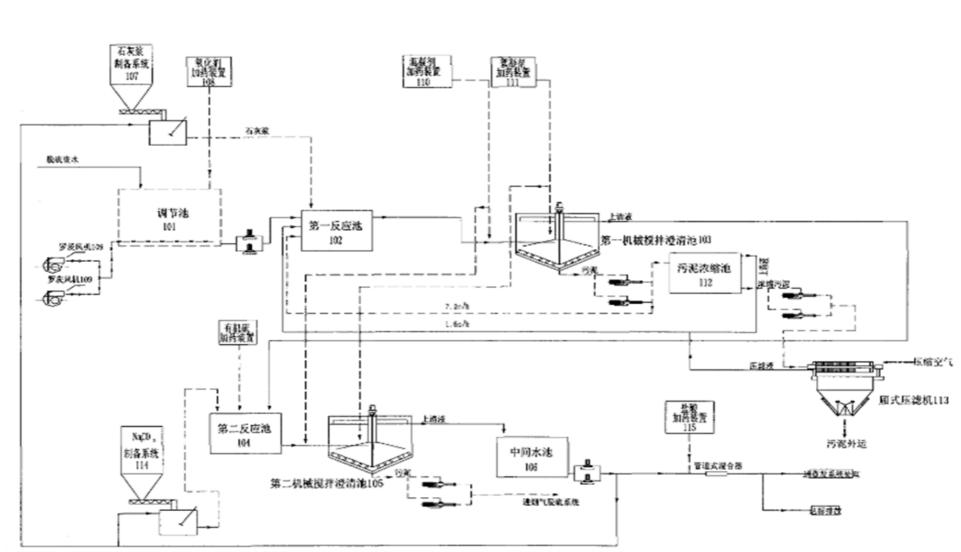
5.2 河源电厂废水零排放

- ▶ 脱硫废水、精处理再生废水处理回用:
 - (1) 用于干灰、干渣拌湿
 - (2) 采用预处理-蒸发结晶工艺处理(运行成本200元/T)

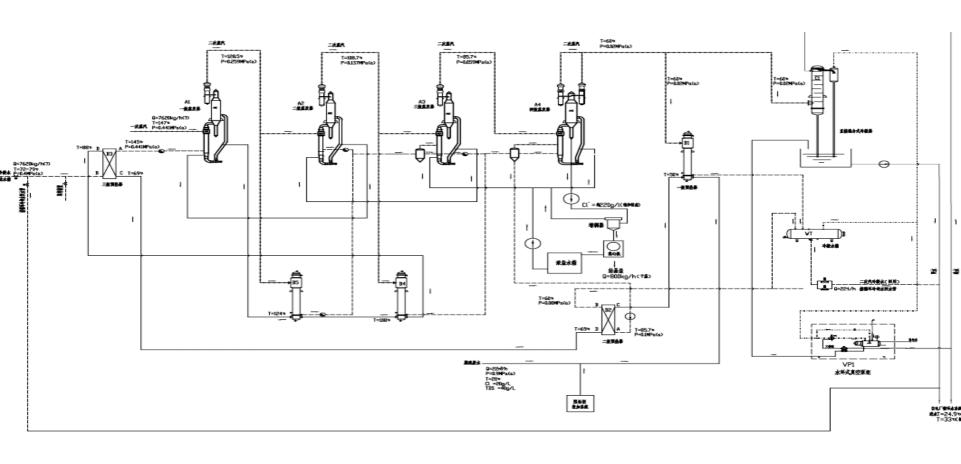
蒸发结晶: 加热蒸发溶剂, 使溶液由不饱和变为饱和, 继续蒸发

, 过剩的溶质就会呈晶体析出。进水要求:

序号	项目	单位	控制值	期望值
1	Ca ²⁺	mg/L	≤500	100
2	${ m Mg}^{2+}$	mg/L	≤200	50
3	SO ₄ ²⁻	mg/L	≤2000	2000
4	SiO ₂	mg/L	≤50	50


5.2 河源电厂废水零排放

▶ 脱硫废水预处理

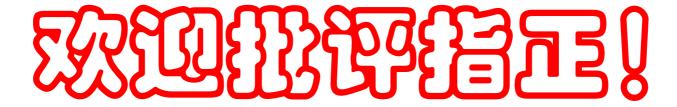

РН	Ca ²⁺	Mg²+	Cl-	SO ₄ ²⁻	SS	SiO ₂	TDS
	mg/L	mg/L	mg/L	mg/L	%	mg/L	mg/L
5.2-5.8	1300-	3500-	11000-	2500-	1.0-	100-	>25000
	3500	6000	19000	6000	3.3	200	>23000

- (1) 设计处理水量: 25 m3/h
- (2)设计出水水质标准: GB50050-2007《工业循环冷却水处理设计规范》中"间冷开式系统循环冷却水水质指标"。
 - (3) 蒸发结晶系统进水要求
 - (4) 预处理系统图如下:

5.3 河源电厂脱硫废水预处理

5.4 河源电厂脱硫废水蒸发结晶

5.5 河源电厂脱硫废水处理效果



脱硫废水原水

预处理出水

蒸发结晶出水

废水结晶盐

