# 节能启停评价在火电厂节能降耗方面的探索与实践

『演讲人』 王滨

『时 间』2015年3月20日

# 目录『contents』

| $\begin{bmatrix} 1 \end{bmatrix}$ | 前言          | 3  |
|-----------------------------------|-------------|----|
| 2                                 | 实施背景        | 6  |
| 3                                 | 成果的内涵       | 10 |
| 4                                 | 主要做法        | 15 |
| 5                                 | 成果实施后所产生的效果 | 15 |

#### 华电潍坊发电公司简介

华电潍坊发电有限公司(以下简称潍坊公司)位于世界风筝都——潍坊市东郊,总装机容量200万千瓦,由华电国际电力股份有限公司、山东省国际信托有限公司、潍坊市投资公司按45%:30%:25%组建,系山东电力中部枢纽发电企业。

潍坊公司一期工程建设两台30万千瓦凝汽式燃煤机组,分别于1993年和1994年投产发电。二期工程建设两台67万千瓦超临界燃煤发电机组,分别于2006年和2007年投产发电。



#### 一、前言

- 二、实施背景
- 三、成果的内涵
- 四、主要做法
- 五、成果实施后产生的效果



# 后停能耗评价是什么?



机组启停是发电生产过程中能耗较 高的特殊阶段,不同启停方式的能耗差距 巨大。机组节能启停评价是为更好的提高 机组节能启停工作质量,最大限度降低机 组启停过程中的能源消耗,实现成本最小 化、效率最优化、效益最大化。

# 启停能耗评价『NO energy control』



# 节能启停评价需要做什么?

节能评价对机组启停的全过程涉 及的管理措施、技术措施、安全性、 经济性和用时等几个方面做出了详细 要求与规定,使机组启停过程节能效 果在定性分析的基础上有了定量评价 的依据,并通过启停得分对启停操作 进行奖惩,大幅降低了各种能源的消 耗。



### 启停能耗评价『NO energy control』



CC 我们的做法! JUST DO……

潍坊公司通过在 管理和技术方面不断 总结经验,摸索出了 一套通过机组启停节 能评价提高机组能耗 管理水平的方法

组织开展机组启停阶段能耗分析

制定机组启停节能评分表

各部门意见征集节能操作完善

形成节能评分表

## 启停能耗评价『NO energy control』



我们的做法!

JUST DO.....

1 2 3 4

该评分表对机组启停的全过程涉及的管理措施、技术措施、安全性、经济性和用时5个方面的101个项目做出了详细要求与规定,并根据权重分解制定了具体评分标准,使机组启停过程节能效果在定性分析的基础上有了定量评价的依据,并通过启停得分对启停操作进行奖惩,大幅降低了各种能源的消耗。

一、前言



#### 二、实施背景

- 三、成果的内涵
- 四、主要做法
- 五、成果实施后产生的效果

#### (一)国家节能要求

能源匮乏与环境变承载能力弱是中国经济发展面临的最大难题。随着我国工业化、城镇化的快速发展,能源供需矛盾和环境问题更显突出。节能降耗既是我国经济社会发展的一项长远战略方针,也是当前一项紧迫任务。

我国的能源消费结构是以煤为主。我国的能源利用效率与世界先进水平存在较大的差距,单位GDP能耗高于世界平均水平3倍;做为既是二次能源生产行业,也是一次能源的消费大户的火力发电厂的平均热效率为33%-35%,比发达国家低5-7个百分点。

#### (一)国家节能要求

国务院《"十二五"节能减排综合性工作方案》(国 发【2011】26号)要求: "节能管理水平显著提升,长效 节能机制基本形成","至2015年单位国内生产总值能耗 要比2010年降低16%"。《煤电节能减排升级与改造行动 计划》(国办发〔2014〕31号)要求"到2020年,现役 燃煤发电机组改造后平均供电煤耗低于310克/千瓦时,其 中现役60万千瓦及以上机组(除空冷机组外)改造后平均 供电煤耗低于300克/千瓦时。

#### (二)公司自身发展需要



潍坊公司现有四台机组(一期 2×330MW,二期2×670MW) 2014年供电煤耗完成值分别 313.04克/千瓦时和305.29克/千瓦 时,与《煤电节能减排升级与改造 行动计划》要求还有不小的差距, 节能降耗任务艰巨。

尤其是潍坊公司一期两台330MW机组投产较早,随着我国火力发电技术的进步,330MW机组的安全性能、能耗指标、环保性能相对滞后,但是机组本身运营良好,不符合"退役"条件。如何更好的发挥330MW机组效能,成为潍坊公司生产运营管理的焦点,同时也是发电行业亟待解决的难题。



#### 2、机组启停阶段的耗能特点。



燃煤发电机组启停过程消耗高、 产出低,各种能源耗费能量巨大。 据统计660MW机组的一次冷态启 动各种消耗:燃油约50-100吨,燃 煤800-1000吨,除盐水2000-3000 吨,厂用电20-30万度。一次启动 对机组供电煤耗的影响在10-15 克/ 千瓦时左右。

而目前机组启停更多的是考虑安全性的因素,对启停过程中的节能管理重视不够。如何在保证机组安全启停的前提下,尽可能的缩短机组启停时间,减少启停过程中各种能源的消耗量,对降低机组能耗有着重要意义。

为此,潍坊公司通过开展机组启停节能评价工作,将燃煤发电机组节能降耗工作向机组启停阶段延伸,在常规运行优化和节能技术改造之外,扩大火电厂的节能视角,深入挖掘机组启停环节的节能潜力,指导和督促燃煤发电机组节能工作的深入开展,有效降低机组启停过程中的能源消耗。开辟了一条火电厂节能降耗的新途径。

- 一、前言
- 二、实施背景



#### 三、成果的内涵

- 四、主要做法
- 五、成果实施后产生的效果

#### 三、成果的内涵

该项目针对机组启停阶段时间长、缺陷多、消耗高的 特点,结合设备状况,在保证机组安全启停、环保启停的 前提下,对机组启停过程中的各个阶段进行统筹安排,合 理搭接各个进程和环节,协调系统、设备的投停时机,优 化运行参数的控制,优先应用微油点火、炉底加热、邻炉 输粉、电机变频等既有节能装置,对机组启停过程进行节 能控制,并制订意外情况的应急措施;每次启停后应及时 进行横向、纵向对比和总结、评分。

#### 三、成果的内涵

2

根据得分进行奖惩,不断完善、优化节能启、停机的操作流程。通过管理思路创新和技术创新的转换,有效的缩短了机组启停的时间,大幅降低了各种能源的消耗,实现机组效能的有效提升,经济、社会效益明显,企业核心竞争力大幅上升,具有很强的探索示范和创新意义。

- 一、前言
- 二、实施背景
- 三、成果的内涵



• 五、成果实施后产生的效果

#### (一)节能启停控制和评价的主要思路

不同的启停方式,耗能差异巨大。通过优化运行各 专业(岗位)之间的启停逻辑关系,统筹安排、协调控制 系统、设备的投停时机和进程,可以有效缩短无效运行和 等待时间。并且,在保证安全和环保的前提下,优先使用 微油点火、等离子点火、炉底加热、邻炉输粉、电机变频 等既有节能装置,可以在不增加设备投入的情况下,显著 降低启动油耗、电耗和水耗。



绘制机组不节序确组不节序确点人员的时间,但不可能网络节节的一种,有人员有的一种,是人员,是一个一种,是一个一种,是一个一种。

1、绘制机组不同状态下的节能启、停时序网络图,明确各环节的重点操作内容和人员要求,指导运行人员操作。

进行机组启停各系统、设备投停操作所需操作量的统计;梳理启停过程中的主线操作和控制节点;制定机组启停各阶段能耗量标准;根据人员配置情况,将所有操作与主线操作进行融合、排序;汇总机组启停机过程中典型的缺陷和影响能耗的进程,做好预防性工作,制定防范措施。和影响能耗的进程,做好预防性工作,制定防范措施。

2、结合机组节能启停网络图及过程能耗标准,制定机组节能启、停评价体系,并做好机组启、停机台帐;每次启停后应及时进行横向、纵向对比和总结、评分,并不断完善、优化节能启、停机的操作流程。

根据机组启停前状态及主要系统、辅机运行方式;评价机组启停前工作准备情况、总耗时、各阶段能耗量、各阶段节点控制与基准的偏差、主要辅机启停控制以及启停过程中安全评价、管理评价及相应的评价标准;总结机组启停过程中的经验教训,根据评价得分进行月度奖惩。

#### 《2015节能管办法》...第十一条 运行节能管理...第4款

4、机组节能启停奖惩。检修专业加强设备维护消缺,保证机 组零缺陷启动,运行专业启停中严格遵守规程及设备经济运行措 施中相关节能要求、控制机组燃油、燃煤、用水、辅机、变频等 设备的投停,保证机组节能启停。节能办公室按照《设备经济运 行措施》中机组节能启停评分标准对机组启、停过程进行节能评 价,启停过程中因设备缺陷或异常影响节能效果造成评价得分降 低,按照100元/分的标准考核设备责任部门;机组启停评价得分 超过或低于80分部分(扣除设备异常因素),按照100元/分的标 准奖惩运行部门。↓

#### 节能奖奖励通报。

(2015-06)

节能办公室

签发: 马绍杰

节能启停 奖惩 .

3月5日,#1机组进行了机组停机;3月6日,#3机组进行了机组启动。节能办公室按照机组节能启停评价表对两次机组启停进行了评价,其中#1机组停机评价得分82分,#3机组启动评价得分89分,根据《2015年节能管理办法》第十一条第4款,奖励运行分场1100元。4

望运行分场不断总结机组启停的节能经验,细化操作流程,进一步做好机组启停的节能工作。↓

ψ

节能办公室↩

2015年3月15日↓

3、合理安排辅助厂用蒸汽运行方式,制定旁路系统不能正常投运、给煤机断煤等意外情况的应急措施。

针对启停不同阶段的参数要求,优先采用低参数汽源并合理安排切换时机。根据应急措施,正确及时的处理启停过程中的异常,保证启停过程的安全经济性。

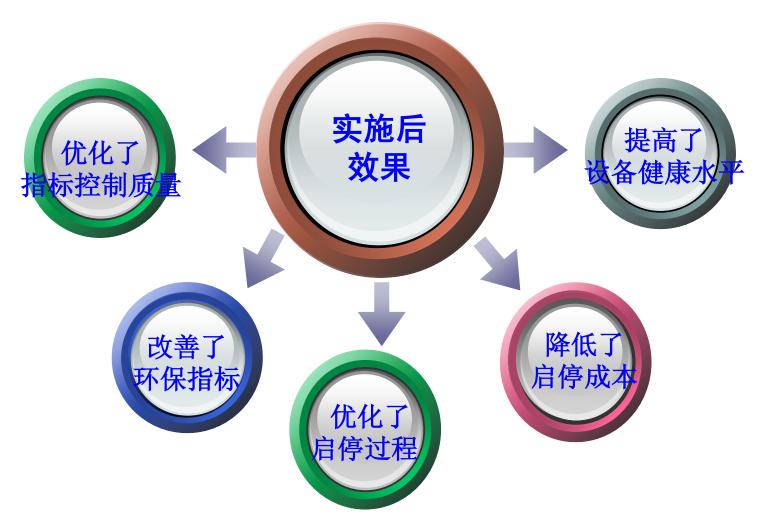
#### (二)主要技术方案

针对不同的机组,机组启停的不同状态和阶段,结合节能启、停时序网络图和实际状况,制订机组节能启、停评价评分表,对以下各阶段的操作进行指导和评分,包括:启动前的准备、锅炉点火阶段操作、汽轮机冲转、并网及带负荷阶段、停运准备、停运操作、停运后的工作。

#### (二)主要技术方案

- 1、启动前准备,以减少设备空转和无效运行时间为重点, 着重做好各阶段工作的合理搭接
  - **2**、锅炉点火阶段,以减少燃油消耗为核心, 严控机组燃油量、燃煤量
    - 3、汽轮机冲转,以控制机组振动为导向,重点做好汽轮机暖机工作,实现暖机时间短且效果好的目的
      - 4、发电机并网及带负荷,以参数控制为载体, 严控机组升负荷速率
    - 5、停运前的准备,以设备试验为重点, 确保机组停运时设备运行正常
  - 6、停运操作,以减少工质、热量损失为目标, 重点做好停运环节的统筹安排
  - 7、停运后的工作,以设备保护和降低消耗为目的, 着重做好相关设备的及时停运

2 锅炉点火阶段,以减少燃油消耗为核心,严控机组燃油量、燃煤量


不同的启停方式,耗能差异巨大。通过优化运行各 专业(岗位)之间的启停逻辑关系,统筹安排、协调控制 系统、设备的投停时机和进程,可以有效缩短无效运行和 等待时间。并且,在保证安全和环保的前提下,优先使用 微油点火、等离子点火、炉底加热、邻炉输粉、电机变频 等既有节能装置,可以在不增加设备投入的情况下,显著 降低启动油耗、电耗和水耗。

#### (三)相应管理措施

机组启停中应按照规程及节能启停要求控制机组燃油、 燃煤、用水、辅机设备的启停,变频设备投运等相关操作, 及时消除设备缺陷,防止设备缺陷或运行操作不及时造成 机组启停时间的延长。依据节能启、停评分表的各个细目, 对整个启停过程中的相关操作进行评价打分,启停过程中 发生的设备缺陷或异常的,按照100元/分的标准考核责任 部门。机组启停评价得分扣除异常因素得分后,超过或低 于80分部分,按照100元/分的标准奖惩运行部门。

- 一、前言
- 二、实施背景
- 三、成果的内涵
- 四、主要做法





#### (一)管理和技术角度

- 1、优化了机组启停过程。通过各环节的合理有效搭接,大大缩短了机组启停时间,减少了不必要的等待时间, 为机组早并网和及早开展检修工作创造了条件。
- 2、降低了机组启停成本。一次机组启动从准备到带满负荷,消耗的费用惊人,以660MW机组冷态启动为例,各种燃油、燃煤、水、汽的不耗费用在50万元左右,通过节能启停评价,每次节约费用在10万元左右。

- 3、提高了设备的健康水平。由于严格控制设备参数,不仅减少了各种"过度"的消耗,也极大降低了主辅设备的各种热冲击,提高了设备使用寿命,降低了人工维护成本,节约了维护费用。
- 4、改善了环保指标。由于启停时间合理缩短,环保指标更容易控制,减少了SO2、NOX等环保指标排放浓度 异常的时间段,确保的公司的环保安全。

5、优化了指标控制质量。由于进行严格的过程控制, 炉膛压力、主再热汽温等参数控制在较好范围内,避免了 由于操作次序的不合理造成的反复;实现了主要参数的平 稳控制。

#### (二)经济和社会效益

1、缩短启动时间。以670MW机组为例,缩短启动时间1.5小时,早并网发电1.5时,以平均负荷75%计算,上网电量增加75万kWh,以上网电价0.42元/kWh计算,收益为75×0.42=31.5万元。

#### (二)经济和社会效益

2、启停成本节约。通过微油点火、邻炉输粉、炉底加热、循环加热等方式的严格实施,启动可节约燃油8吨(2014年11月8日#4机组(670MW)启动),节约燃煤200吨,节约厂用电3万kWh,除盐水500吨,总收益:8×0.7+0.02×480+3×0.42+0.05×4=16.66万元。

- (二)经济和社会效益
- 3、降低环保风险。因启停时间平均缩短1.5-2小时,减少SO2、NOX排放量5吨。社会效益显著。
  - 4、项目投入资金。0元。

#### (二)经济和社会效益

5、总效益。本项目依靠管理创新提升,在没有任何 投入的情况下,通过优化过程管理,严格过程参数控制, 每次机组启动总收益为48.16万元(670MW),这还未包 括设备健康水平提高的隐性收益。按每台机组年启停2次计 算,年度效益可达(330MW机组按节能量的50%计算): 48.16×2×(2+2×0.5)=288.96万元,经济效益非常明 显。

# THANKS FOR YOUR LINSTENING!

谢谢您的聆听!

2015.3.25