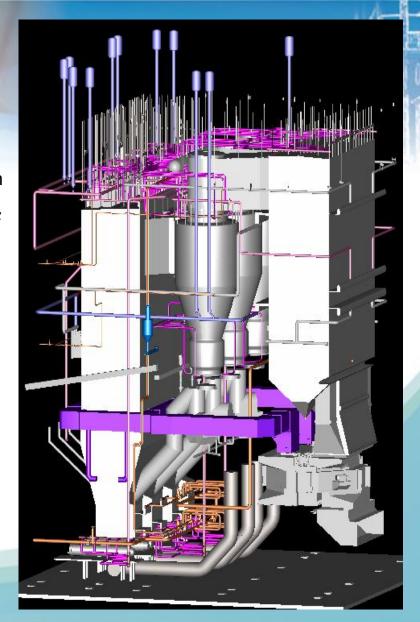


广东粤电云浮发电厂300MWCFB

机组开创纯烧低灰份褐煤的先河


云浮发电厂300MWCFB锅炉: #5机2010年7月6日投产, #6机2010年8月24日投产。

300MW CFB锅炉总体布置

- 1、单炉膛 炉膛尺寸 宽28m,深8.96m,高40m
- 2、3个绝热旋风分离器采用常规M型布置,分离器内径9.2m
- 3、不采用外置式换热器,炉内布置水冷屏(4)、中温过热屏(12)、高温过热屏(12)和高温再热屏(6)。
- 4、尾部采用双烟道布置,低温过热器和低温再热器布置在 对流烟道内,烟气档板调节再热蒸汽温度。
- 5、采用1个四分仓回转式空气预热器。
- 6、采用前墙8点给料方式。
- 7、4台滚筒冷渣器。
- 8、床上床下联合点火方式。

#5、6机组均为上海电气集团具有自主知识产权的300MW循环流化床机组

云浮电厂C厂#5、6机组300MWCFB锅炉原设计燃烧烟煤,根据燃料市场的变化,于2011年5月11日开始进行了褐煤掺烧,褐煤掺烧是在烟煤单烧的基础上,进行的一种突破性的尝试,为燃料选择提供更广阔的空间,在源头上控制燃料成本。

1. 设计燃料

符号	単位	设计	校核燃料1	校核燃料
Mar	%	4. 2	13.7	7. 9
Mad	%	2. 36	1.84	
Aar	%	20. 15	17. 18	26. 2
Vdaf	%	34. 18	38. 02	7. 84
Qnet.a	kJ/kg	22697	21286	22487
Car	kcal/k g	5421	5084	5371
Har	%	60. 38	56. 6	57. 97
0ar	%	3. 26	3. 56	3. 16
Nar	%	10.4	7. 46	2. 9
Sar	%	0.71	0.81	1. 07

云浮电厂C厂#5、6机组300MWCFB于2011年7月份开始进行纯烧低灰份褐煤的突破性的尝试。

#5、6炉纯纯烧低灰份烟煤煤种:

V			"大福星	"西佛诺
名 称	符号	单位	"1306航	斯" 1321
			次	航次
收到基全水 份	Mt.ar	%	21.55	16.06
空气干燥基 水份	Mad	%	43.6	38.5
收到基灰份	Aar	%	4.48	4.28
干燥无灰基 挥发份	Vdaf	%	39.62	41.36
收到基低位 发热量	Qnet.ar	Kcal/kg	34.35	38.30
收到基碳	Car	%	20.01	22.56
收到基氢	Har	%	12.83	15.02
收到基氧	Oar	%	25.50	26.88
收到基氮	Nar	%	3068	3592
收到基硫	St.ar	%	0.08	0.12

云浮电厂#5、6机组纯烧低灰份<mark>褐煤</mark>,出现床压难以维持及床温高的问题, 严重影响锅炉正常排渣和床温正常维持,严重影响锅炉长期安全运行。

其它电厂CFB机组烧烟 煤出现的主要问题:

- 1、一次风喷口严重烧变形;
- 2、床温超温,严重超温时造成锅炉结焦或MFT;
- 3、风帽烧坏,严重时出现开 裂或烧断;
- 4、回料腿烧红或回料阀烧红

云浮电厂控制床温、床压的措施:

- 1、若单点床温达到970℃或平均床温超940℃时,通过增加一、二次风量和添加床料、置换床料控制。置换床料采用A、B厂的炉渣,降床温的效果要比采用#5、6炉底渣的效果要好些。
- 2、若床温(单点985℃且上层或下层平均床温950℃)在增加一、 二次风量后仍然无法控制,继续上升,及时汇报部门领导,采取 减少给煤量,降低负荷运行,稳定燃烧,确保床温不超限。
- 3、锅炉旋风分离器入口或出口烟温达到1050℃时,MFT保护动作,按规程处理。
- 5、控制床压在正常范围(一次风室风压14.8KPa~15.5KPa,避免床压过低,流化不均,造成床温偏差大和流化恶化结焦。
- 6、出渣系统发生故障时应立即联系检修处理。
- 7、床料添加系统每个值第二个白班安排试运一次,并做好记录,确 保此系统处于良好备用状态。

控制床温、床压的措施:

- 8、加强监盘,特别对床温、床压、一次风室风压、炉膛差压、一次风量、氧量、回料腿压力、排烟温度等重要参数监视,出现异常要立即处理。
- 9、每班要加强检查床料流化的情况,通过就地观火装置观察流化情况,并及通过床温、床压、一次风室风压等参数的判断流化是否良好,如出现床温、床压、一次风室风压波动大,或出现床温偏差不断增大,甚至床温急升后降低,严重时床温大幅度降低后不动等现象,则可判断为流化恶化或结焦。出现以上情况要立即按规程和事故预案处理,并立即汇报部门专业主管及领导。
- **10**、根据不同的入炉煤,由锅炉工程师通知燃料部调整合适 、合格的入炉煤粒径,保证炉内循环物料的正常循环,从 而保证锅炉的正常运行。

效果:

- 1、一次风喷口严重烧变形;
- 2、无出现锅炉结焦或MFT;
- 3、无出现风帽烧坏;
- 4、无出现回料腿烧红。

2012年,在粤电集团和厂部的正确领导下,我厂部全体员工团结一致,努力遵循"安全第一、效益优先"的企业价值观,紧密围绕厂部工作大纲提出的生产与工作目标,在夯实安全基础的前提下,努力开展对标工作,不断提高机组的各项经济技术指标,2012年度各项经济指标更上一层楼。在全厂职工的共同努力下,创下我厂安全生产天数历史新高,至2012年12月31日,安全生产天数达3995天。2012年#5机组连续运行225天,#6机组连续运行263天;两台机组分别创下投产以来连续运行时间最好记录;

2012年度安全指标:

- 1、没有发生人身轻伤及以上事故,没有发生设备事故;
- 2、无C类障碍以上事件;
- 3、A类异常2次;
- 4、B类异常2次。

2012年度#5、6机组经济指标:

名称	2011年	2012年	备注
总发电量万MWh	189. 90/173.45	137.38/148.31	受经济下滑影响,发电量同 比大幅下降
供电标煤耗	338/338g/kw.h	336.4/336.1g/kw.h	下降1.6/1.9g/kw.h
直接厂用电率	7.35/7.08	7.53 %	
等效可用系数	87.12/80.36	86.09/91.85	
飞灰可燃物%	2.06/2.4	2.38/2.98	
排烟温度℃	137.52/138.64	130.4/131.4	
非计划停运次数	2/4	0/1	非计划停运次数大幅下降
出力系数	85.29/84.5	73.07/70.9	同比大幅下降12-13%
可用小时H	7631/7039	7562.53/8068.52	
启停用油T	50-80吨/次	降至25吨/次	床上、床下油枪联合启动

运行部制定机组控制参数制定座签表,为值班员操作提供明确指引

#5 炉运行参数控制 (20130716) 负荷(MW) 单位 180 200 一次风量 kNm3/h 350-370 360-380 370-390 390-410 410-450 490-510 二次风量 kNm3/h 160-200 200-270 240-300 250-320 300-360 300-360 kPa 12-12.5 11.5-12 11.2-11.5 10.5-11 10.3-10.8 10-10.5 2.5-3.5 氧量(省煤器出口) 2.5-3.5% 2.5-3% 2.5-3% 2-2.5% 2-2.5% 空预出口二次风压 kPa >5.0 >5.0 >4.5 >4.5 >4.5 >4.5 上层总二次风门 10-30 10-30 20-40 25-50 35-60 35-60 下层总二次风门 20-50 20-50 40-70 50-80 60-100 60-100 床上油枪风门 A-D 10-15 10-15 10-15 10-15 15-30 15-30 床上油枪风门 E-F 10-30 10-30 10-30 30-60 30-60 30-60 回料器返料风门 100 100 100 100 100 100 回料器松动风门 30 30 30 30 30 锥段吹扫风门 1、本意只列出典型工况控制参数,其它工况参数按最接近的典型工况控制。 2、炉雕负压控制在 50-100 Pa. 烟肉 NOx 折算后含量低于 200mg/Nm

床压离于上限值 0.3Kpa 开始排渣,排低至下限值后停止排渣,排涤时要求冷渣器全

『均上星床温控制 < 945℃、最高点床温不超过 980℃、相邻的二点床温不超过 975%

自动进行均匀排渣,如冷渣器有故障要及时联系检修处理

设制不低于 13KPa、否则必须降负荷运行

制加强对标管理, 开创节能降耗新局面

效果:

- 1、#5、6炉主蒸汽、再热蒸汽温度在实行对标管理后,比之前有明显提高,5号机组提高5℃,6号机组提高6.8℃。月度平均值达到设计额定值。
- 2、加强5、6号机组循环流化床锅炉的燃烧优化试验,使得飞灰含碳量大幅下降,锅炉热效率同比去年提高了1%。
- 3、9月份通过对5、6号循环流化床锅炉的燃烧优化试验,降低了风量,在保证锅炉热效率的情况下,使得风机耗电率由4.3%下降至3.7%。
- 4、通过对机组冷态启动的摸索,降低了5 、6机组冷态启动耗油量,10月15日, 我厂五号机组冷态启动,启动油耗仅 用了25吨。

重视经营管理,推行成本在线管理系统

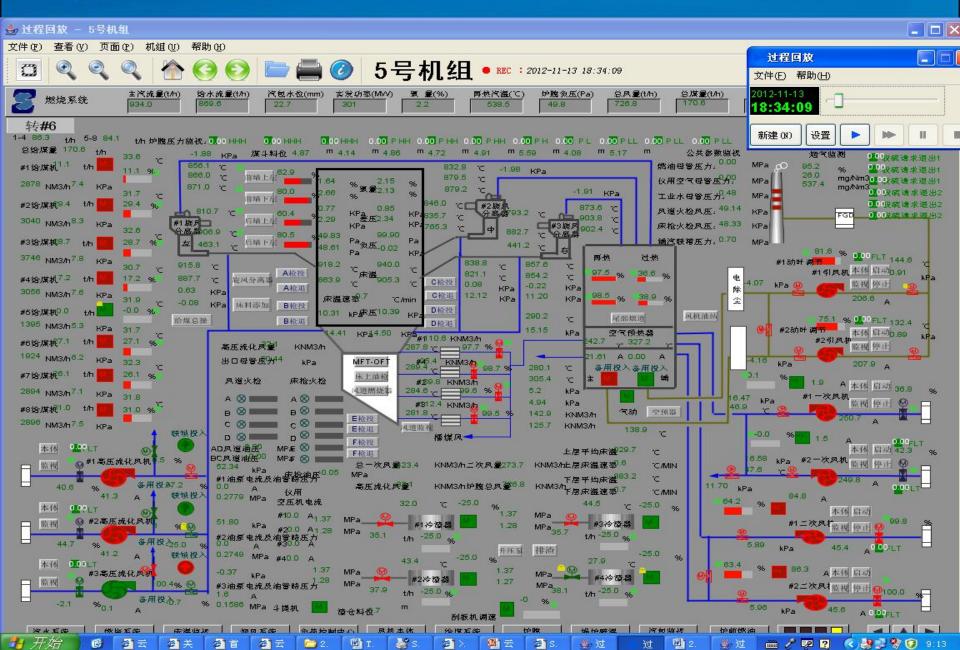
影響的音樂器響

C厂成本在线管理系统于5月8 日投运,根据厂部要求, 体现安全生产与经营并重 原则,提高对企业效益关 注度,部门制定发布了"C 厂成本在线数据与效益挂 勾管理办法",运用小指 标管理平台,每月从C厂小 指标总额中提取作为专项 激励金,按月度利润率排 名进行奖励考核。针对实 施过程出现问题,及时跟 进完善,切实维护好系统 正常运作,促使经营管理 工作再上新台阶。

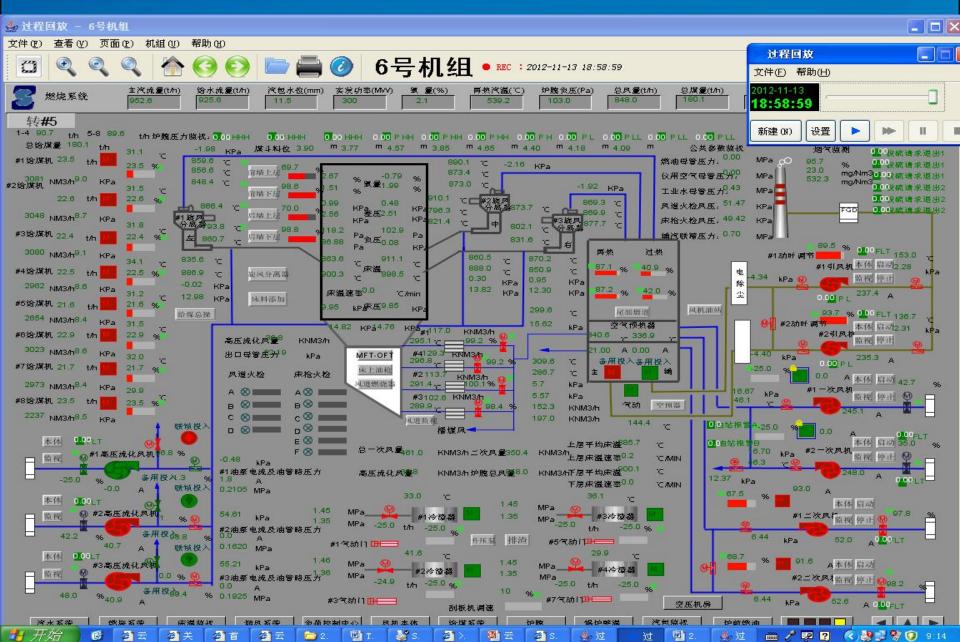
20	13年9	月C厂	直际在	线盈利	能力竞	赛表
直别	上网电量 (kW.h)	生产用标煤 (吨)	有效运行小时	盈亏 (元)	利润率 (元/分钟)	排名
甲班	8,798,872	3,185.58	29.45	425,143	240.60	2
乙班	9,025,510	3,337.55	32.61	275,751	140.93	4
万班	8,728,098	3,011.41	25.23	710,509	469.34	1
丁班	6,128,061	2,232.33	21.89	222,851	169.70	3
戈班	7,771,326	2,856.72	29.72	173,742	97.44	5
		7 元/吨,边际 3元 >> ¥82				0秒
					☐ ☐ Internet	₹ 100

2012年#5、6炉运行情况

#5、6炉运行情况:

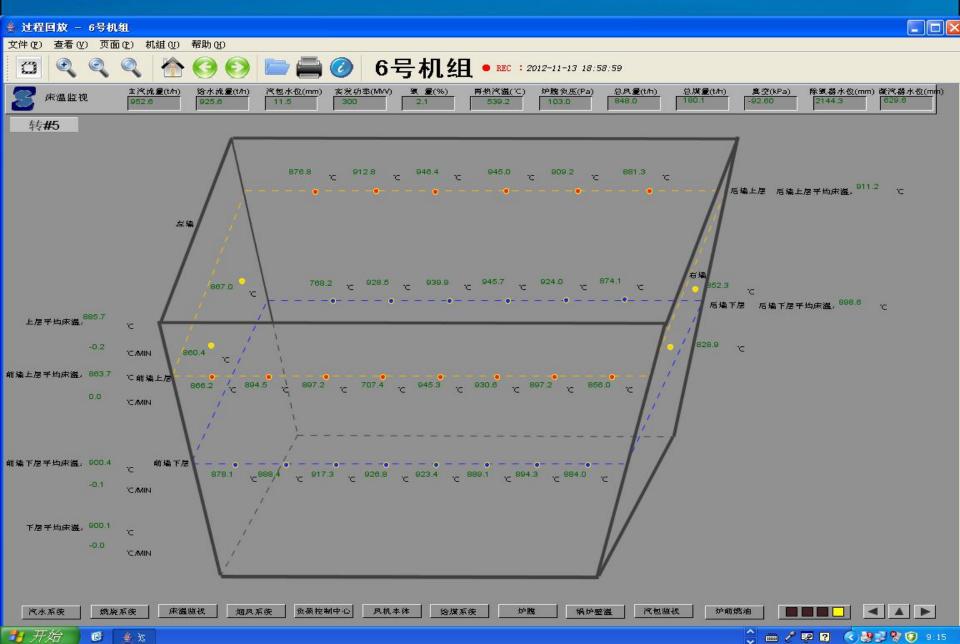

- 1、各种负荷下受热面的安全(不超温、温度偏差非常小,炉内屏式受热面不变形);
- 2、风帽阻力较适中、布风均匀、流化均匀、风帽磨损轻微;
 - 3、过度光管区磨损轻微;
 - 4、返料畅通,返料口磨损轻微;
- 5、3个分离器和回料器温度温度分布均匀,炉膛温度分布均匀;
 - 6、飞灰、底渣含碳量低,锅炉排烟温度低;
 - 7、锅炉可靠性高。

2012年#5、6炉节能工作亮点


#5、6炉燃烧印尼煤,床温、床压一直较高,使得风机 耗电率较大。为了节能降耗,降低厂用电率,公司多次 请国家CFB专家王大军讲课,并请华能清洁能源研究院 积极开展燃烧优化试验。通过印尼煤煤种变化、配风调 整、设备改造等方式进行了两个多月的摸索,找到了较 适合5、6号循环流化床锅炉燃烧的印尼煤,以及各类印 尼煤煤种在各种负荷下的最佳配风比。10月份数据显示 , 5、6号机组在各变频风机投入变频器相同的情况下, 炉内床温有较大下降,使得一二次风机及引风机耗电率 环比下降0.69%。而与此同时,飞灰含碳量、排烟温度 也有下降,锅炉热效率提高了0.5-0.8%。使得在机组停 运及负荷率环比下降的情况下,厂用电率、供电标煤耗 有进一步下降。2012年度#5、6机组供电标煤耗比2011 年度分别下降1.6/1.9g/kw.h。

2012年#5、6炉还存在的主要问题

- 1、床温偏高;
- 2、分离器靶区出现局部小面积烧红;
- 3、一次风室膨胀节漏风;
- 4、低床压运行时风帽漏渣;
- 5、局部风帽磨损(两侧人孔门三排)。



开始

粤 远

▲ 过程回放 - 5号机组 文件(P) 查看(V) 页面(P) 机组(U) 帮助(H) **⊘ 5号机组 • № :** 2012-11-13 18:58:59 主汽流量(t/h) 941.0 给水流量(t/h) 再热汽温(℃) 总风量(t/h) 总煤量(t/h) 真空(kPa) 除氨器水位(mm) 凝汽器水位(mm) 汽包水位(mm) 炉膜负压(Pa) 床温监视 转#6 957.9 °C 960.7 后端上层 后端上层平均床温。938.3 895.1 C 952.3 C 835.7 C 917.9 C 934.2 C 913.6 C 908.9 912.1 后编下层 后编下层平均床温。908.2 ~ 上层平均床温。928.2 902.4 0.3 906.7 C/MIN 前端上层平均床温。917.1 /C 930.1 c 981.7 c 929.8 c 914.7 c 932.5 c 918.9 c 703.0 c 0.2 CIMIN 前壩下层平均床温: 867.9 -704,5 - 722.2 - 901.2 - 933.0 - 933.2 - 914.5 - 911.8 CIMIN 下层平均床温。884.8 CMIN 汽水系统 燃烧系统

👶 🖮 🥜 💹 😰 🌾 🐉 🦻 🦻 9:14

开始

包云

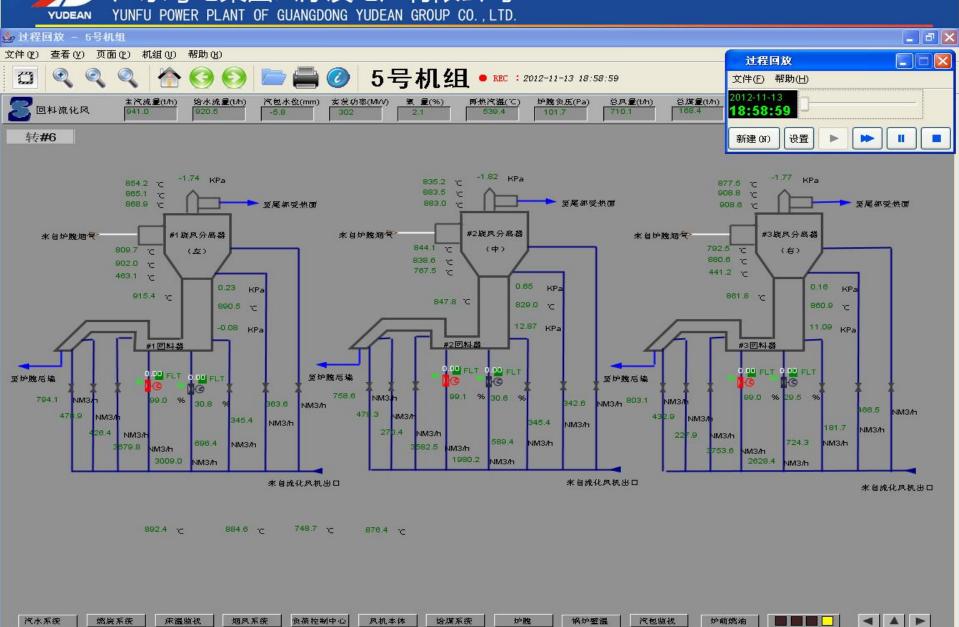
智 关

智首.

包云

2 2.

型 T


學士

a s

四 2

倒云.

多过

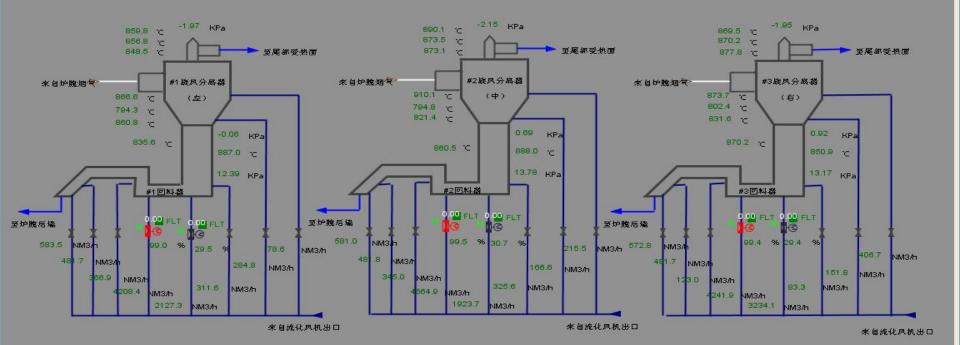
iiii 🥕 🐶 😰 🗘 🤻 😵 🦁 9:29

多.过.

🍨 过程回放 - 6号机组

文件(P) 查看(Y) 页面(P) 机组(U) 帮助(H)





2 回料流化风	主 汽流量(t/h) 952.7	给水流量(t/h) 921.9	汽包水位(mm) 17.1	支发功率(M/V) 300	复量(%)	再热汽温(℃) 539.3	炉腹负压(Pa) 82.8	※具量(t/h) 857.3	总煤量(t/h) 180.9	真空(kPa) -92.60	除氨器水位(mm) 2143.4) 凝汽器水位(mr 629.3	D

转#5

≥ 0.008 899.6 -839.7 -867.8 -

汽水系统

燃烧系统

床温监视

图首.

烟风系统 负荷控制中心

风机本体

给煤系统

炉腹

锅炉壁温

汽包监视

炉前燃油

每云

图关.

图 云

四 T.

學士

S.

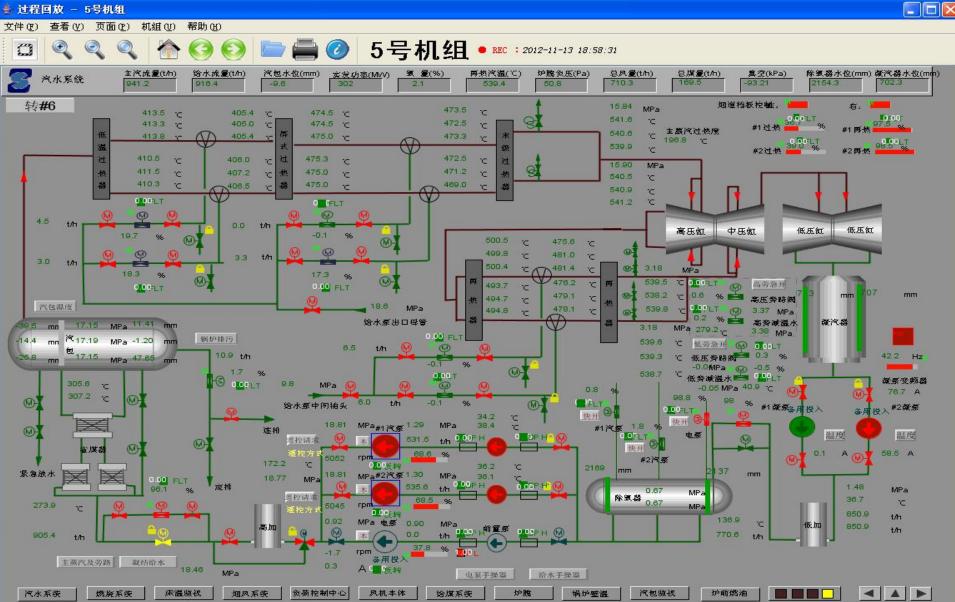
四 2.

图云.

● 过.

参过.

i 🗎 🥕 💀 🛛 📮 🤻 📢 🦻 😏 9:30



🚜 开始

倒云

多关

色首

() 9:40

iiii 🥕 💯 🛜

≗ 过...

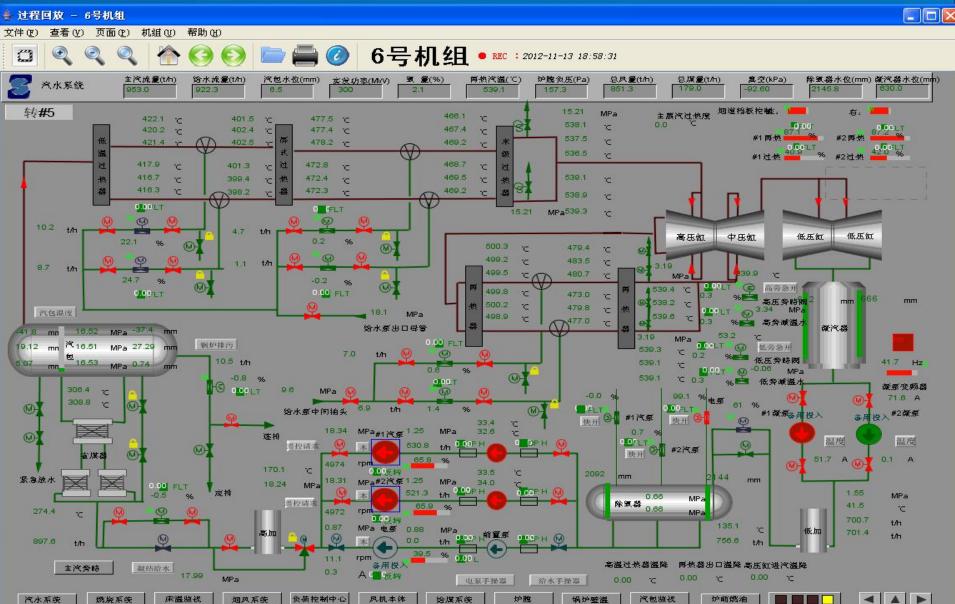
學 云

Pp.

SI.

● 过.

御云.



🚜 开始

图云

多美

色首

學云

图 云

2 P.

C S.

多 过.

i 🥕 🥕 💀 🔞 👙

四 2.

● 过.

(4) 9:41

欢迎多提富贵意见!

谢谢!