

# 第二届燃煤锅炉耦合生物质发电技术应用研讨会

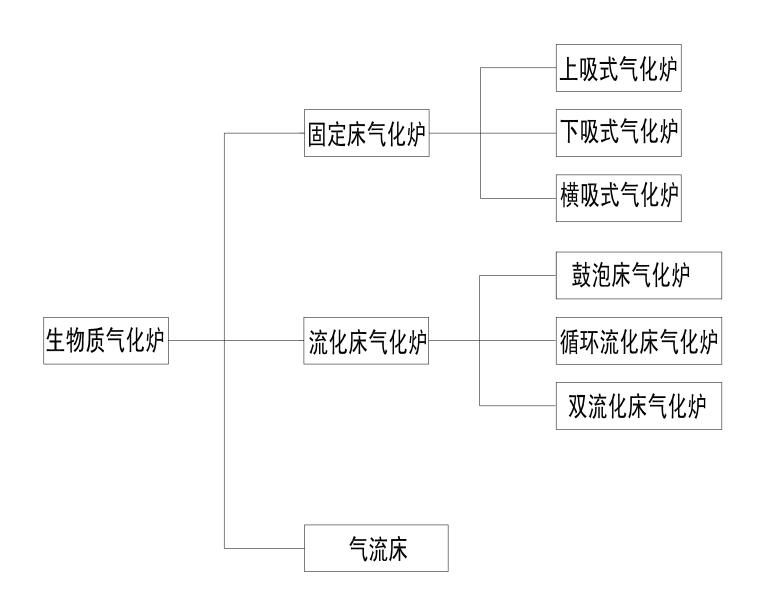


别如山

哈尔滨工业大学能源科学与工程学院教授,博导,循环流化床课题组组长。中国工业锅炉节能减排专业委员会委员,中国电器工业协会工业锅炉分会委员。主持完成循环流化床锅炉、生物质锅炉、生物质循环流化床气化炉、生活垃圾焚烧炉、垃圾飞灰高温熔融二恶英零排放研究、污泥干燥与焚烧处理、含盐有机废液焚烧炉、草浆造纸黑液流化床碱回收技术、医疗垃圾焚烧炉等科研及工程项目60余项。在国内外杂志上发表学术论文130余篇,其中SCI、EI收录50余篇。

## 生物质双循环流化床气化及污泥干化与燃煤锅炉耦合技术

2019年4月17-18日 中国・石家庄


# 生物质双循环流化床气化及污泥干化与燃煤锅炉耦合技术

哈尔滨工业大学

别如山

# 1、气化技术介绍

#### 1.1 生物质气化炉分类



#### 1.2 化学反应

热解 
$$C_x H_y O_z \longrightarrow H_2 + CO + CO_2 + C + tars + C_m H_n$$

燃烧 
$$H_2$$
, CO, C, 焦油(tars),  $C_mH_n + O_2$  — Heat

重新合成 焦油(tars), 
$$C_mH_n+$$
  $CO_2$   $CO_2+H_2$ 

焦炭气化 
$$C + H_2O \longrightarrow CO+H_2$$
  $CO_2 \longrightarrow 2CO$ 

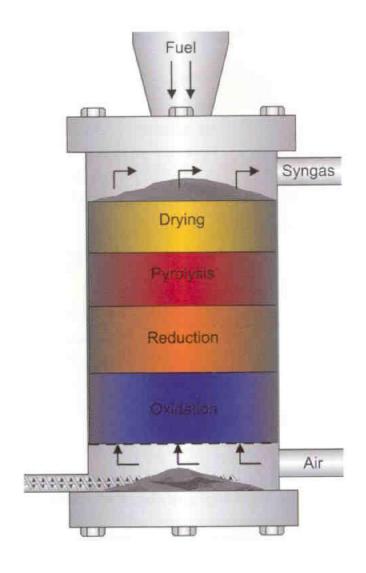
水煤气转化 
$$CO + H_2O \longleftrightarrow CO_2 + H_2$$

## 1.3 技术分类

- 气化剂
  - 空气
  - 氧气
  - 蒸汽
- 气化所需的热量
  - 自热式
  - 间接换热

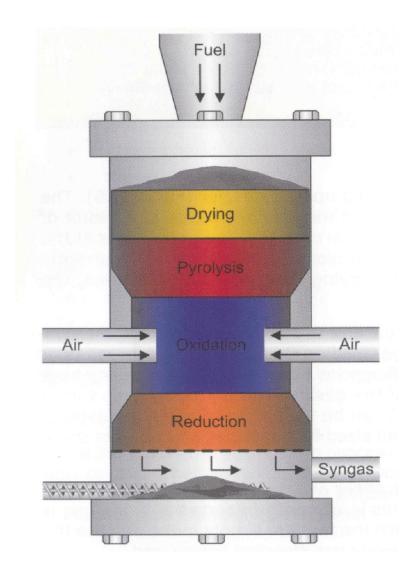
- 气化压力
  - 常压
  - 高压

## 1.4 固定床: 上吸式


• 特点 燃气向上,燃料向下

#### • 优点

- 结构简单
- 燃料适应性好


#### 缺点

- 焦油含量高
- 容量小
- 难以大型化

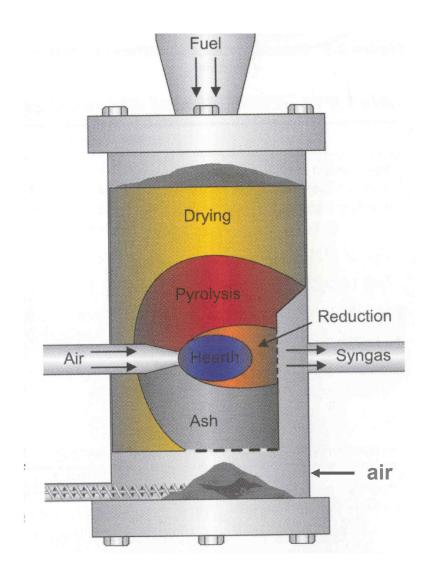


## 1.4 固定床: 下吸式

- 特点 燃气、燃料向下流动
- 优点
  - 焦油含量较低
  - 气化效率较高
- 缺点
  - 含灰量高
  - 难以大型化
  - 燃料要求严格 (水分< 25%, 粒径: 20~100 mm)



## 1.4 固定床: 横吸式


• 特点 中间进气,中间出气

#### • 优点

- 结合上吸式和下吸式优点;
- 低灰、低焦油

#### • 缺点

- 焦油分解能力有限
- 难以大型化
- 燃料要求严格 (同下吸式)

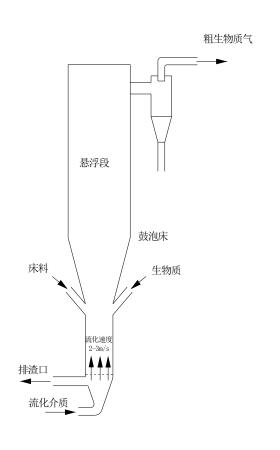


## 1.5 固定床特点

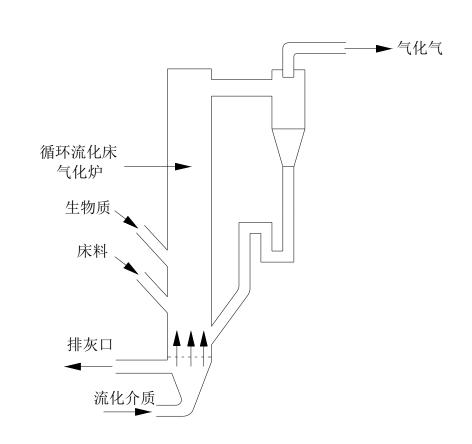
|                                                                                  | downdraft                                | updraft                                  | Cross draft                            |
|----------------------------------------------------------------------------------|------------------------------------------|------------------------------------------|----------------------------------------|
| Fuel (wood) - moist. cont. (% wet basis) - ash content (% dry basis) - size (mm) | 12 (max. 25)<br>0.5 (max. 6)<br>20 - 100 | 43 (max. 60)<br>1.4 (max. 25)<br>5 - 100 | (charcoal)<br>10-20<br>0.5-1.0<br>5-20 |
| Gas exit temp (°C)                                                               | 700                                      | 200-400                                  | 1250                                   |
| Tars (g/Nm) <sup>3</sup>                                                         | 0.015-0.5                                | 30 - 150                                 | 0.01 - 0.1                             |
| sensitivity to load fluctuations                                                 | sensitive                                | not sensitive                            | sensitive                              |

| Producer gas LHV (MJ/Nn | $n^3$ ) |
|-------------------------|---------|
|-------------------------|---------|

#### 1.6 固定床气化炉总体评价


#### 优点:

- ◇ 简单、价廉;
- ◇ 焦油含量较低 (下吸式及横吸式);
- ◇ 适用于高水分(上吸式)、尺寸较大的燃料.


#### 存在问题:

- ◆ 对高灰分燃料不太适用;
- ◆ 床内容易搭桥和穿孔;
- ◆ 形成结渣;
- ◆ 放大受限;

## 1.7 流化床和循环流化床气化炉

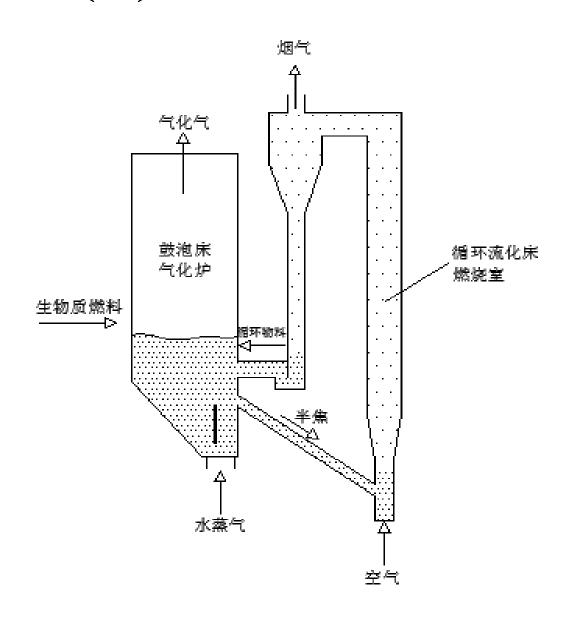


鼓泡床气化炉

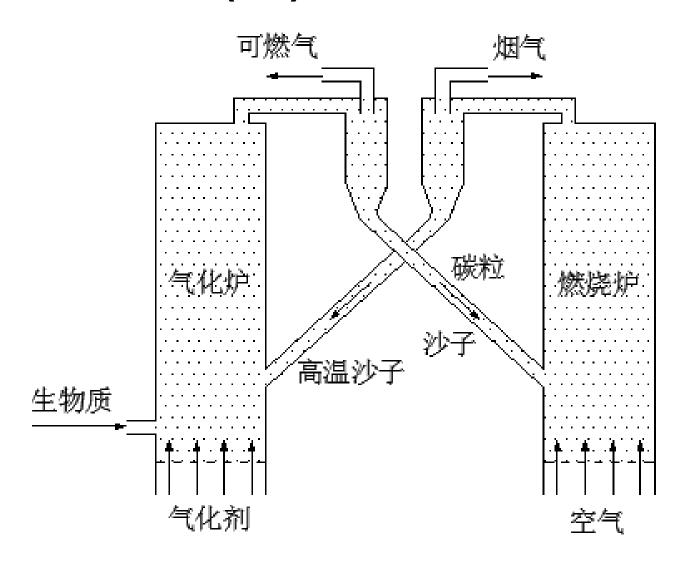


循环床气化炉

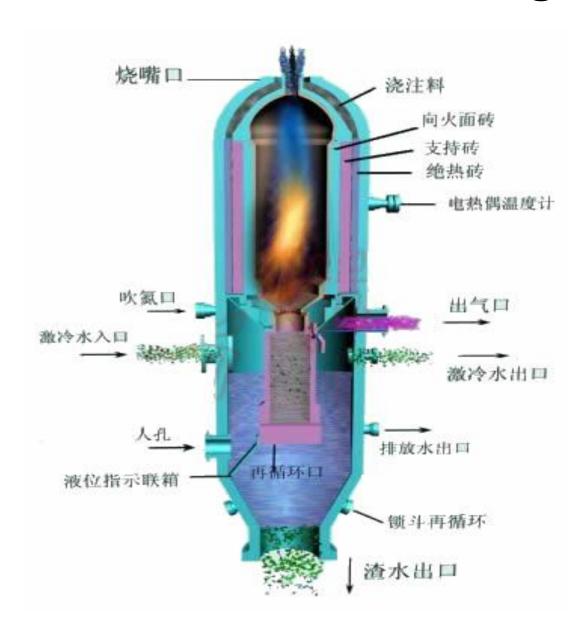
#### 1.8 BFB和CFB的优缺点:


#### • 优点

- -结构紧凑(换热速率高、反应速度快);
- -温度范围窄,对气化产物有利;
- 燃料适应性好 (水分<15%, 含灰量, 体积密度, 等);
- 允许较低的灰熔点 (<900℃);
- 适于大型化 (<100 MW<sub>th</sub>).


#### 缺点

- 灰量及焦油含量高;
- 含有碱金属蒸汽;
- 相对于固定床气化炉运行操作与控制难度较大.


## 1.9 双流化床(I)



## 1.9双流化床(Ⅱ)



## 1.10 气流床(Entrained flow gasifier)



#### 特点

- 固体或液态给料;
- 停留时间短 (1~3 s);
- 高温 (1300~1600 °C);
- 高压 (25~60 bar);
- 容量大 (>100 MW<sub>th</sub>);
- 燃气中没有焦油;
- 碳转化率高.

#### 缺点

- 成本高 (材料及空分系统);
- 控制、运行复杂;
- 仅适用于大型气化方式

## 2、双循环流化床气化炉+生物 质炭+燃煤锅炉耦合

- 循环流化床气化炉含碳量较高, 达到25-30%, 影响气化效率进一步提高;
- 提出双循环流化床气化炉, 飞灰含碳量低于10%.
- 采用高效低阻分离器, 减少系统阻力。

1200万 大卡环流化壳风 热气风炉



2台 20t/h-3.82-450双 循环流 化床稻 売气化 发电锅 炉



#### 特点

为了提高气化效率,降低飞灰含碳量, 飞灰含碳量小于10%,采用双循环流化床 气化炉+生物质炭+煤粉炉耦合,采用高效 低阻旋风分离器,3个分离器阻力相当于2 个旋风分离器,已获专利。

## 3、差速流化床气化炉+生物质 炭+燃煤锅炉耦合

- 基于鼓泡床气化炉中生物质与床料密度 差大,混合效果差,含碳量高,气化效率 较低;
- 提出差速流化床气化炉, 大幅改善生物质 与床料混合效果, 提高气化效率。

## 3、10t/h流化床气化炉



## 3、10T/h气化室控制柜

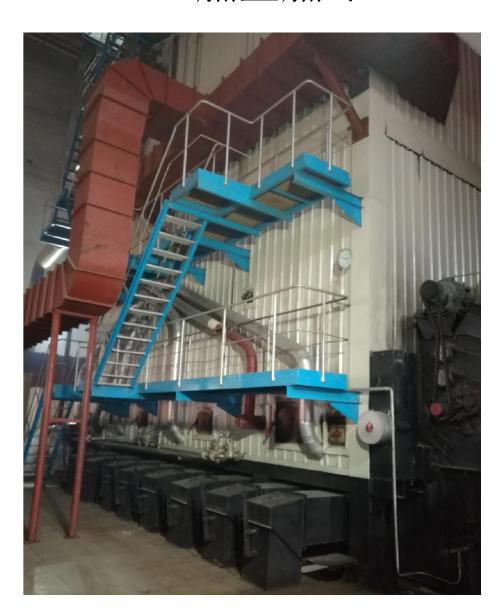


# 3、分离器排出的炭



# 3、布袋除尘器放灰




# 3、气化炭



## 4、层燃炉气化炉与燃煤锅炉耦合

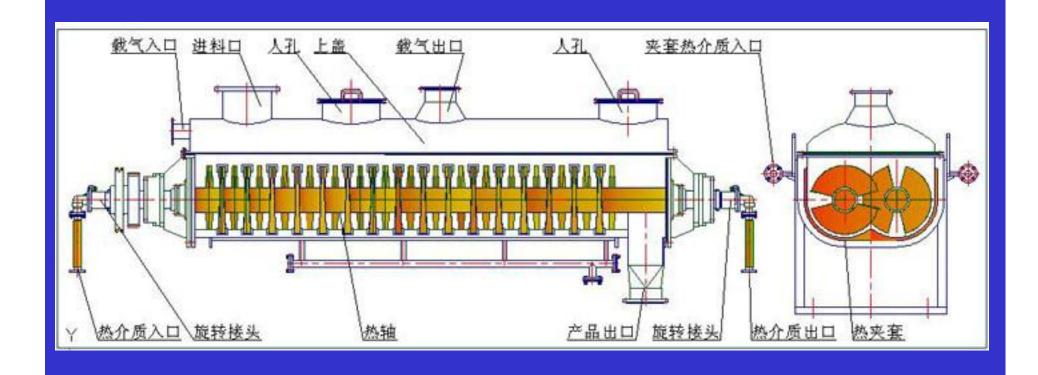
- 流化床及循环流化床气化炉需要高压鼓 风机,阻力大,电耗高,系统复杂,造 价高;
- 提出层燃炉气化炉+生物质炭+燃煤锅炉 耦合

#### 4、100t/h链条炉改为气化炉 +二燃室燃尽



#### 5、污泥处置现状

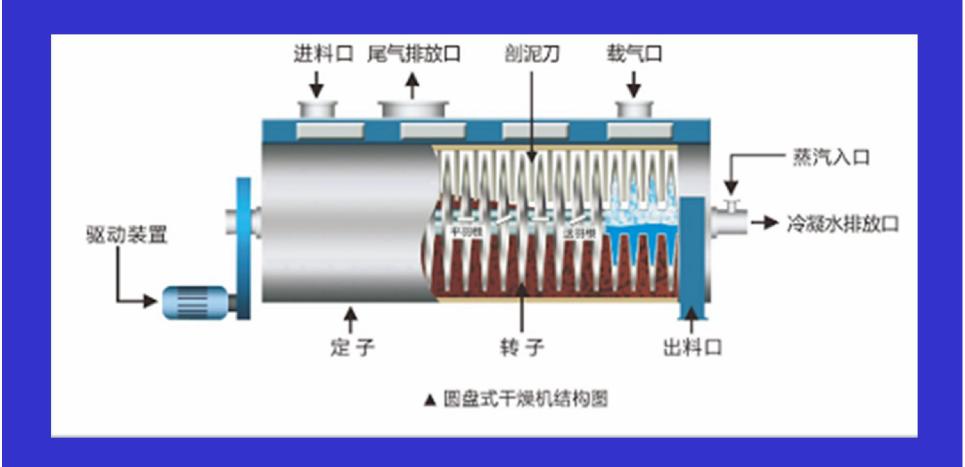
- 到2020年,污泥产量达到6000万吨(80%含水率),工业废水占比 40-50%,污水中60%污染物(有毒有机物,重金属,抗生素、化妆品等)富集在污泥中;
- 污泥处置方法:(1)卫生填埋,(2)好氧堆肥,(3)厌氧发酵,(4)焚烧,最彻底,(5)碳化(原则上可行,泥沙含量高,灰分45-50%,含碳量低,固定炭一般5-6%);
- 德国64%污泥焚烧处理, 日本80%焚烧处理;
- 沈阳一天1800t湿污泥(80%),不允许填埋,累计150万吨污泥要求
   3年处理完。


#### 5.1 目前国内污泥干化与焚烧模式

污泥干化采用桨叶干燥机、圆盘干化、薄层干化、流化床干化等间接干化(能耗高),焚烧采用流化床焚烧炉+余热锅炉。烟气净化采用炉内脱硫+SNCR+活性炭喷射+布袋除尘器+湿法脱硫。

#### 5.2、国内污泥干化设备

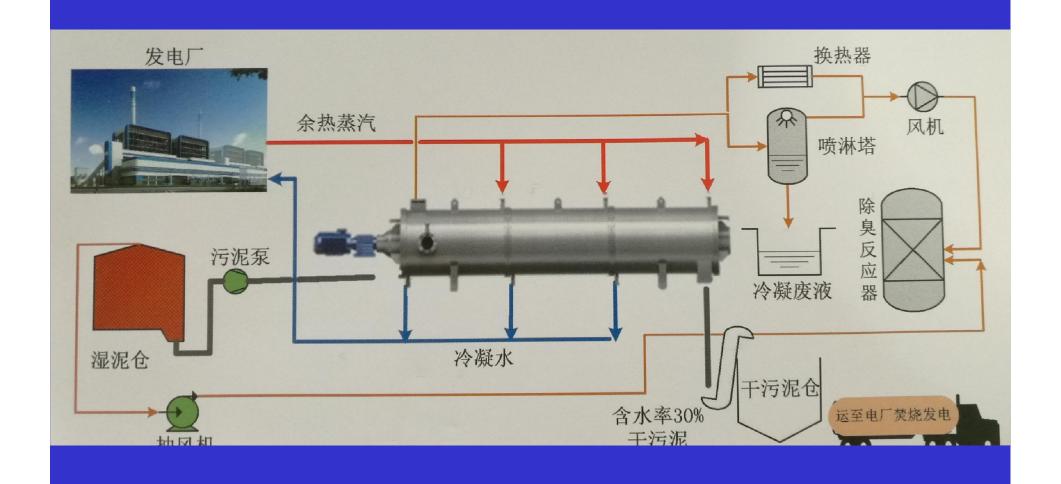
- 1、桨叶干燥机
- 2、圆盘干燥机
- 3、蒸汽薄层干燥机
- 4、流化床干燥机
- · 5、喷雾干燥机
- 6、空气能低温干化机


## 5.2.1 桨叶干燥机示意图



# 5.2.1 桨叶干燥机实物

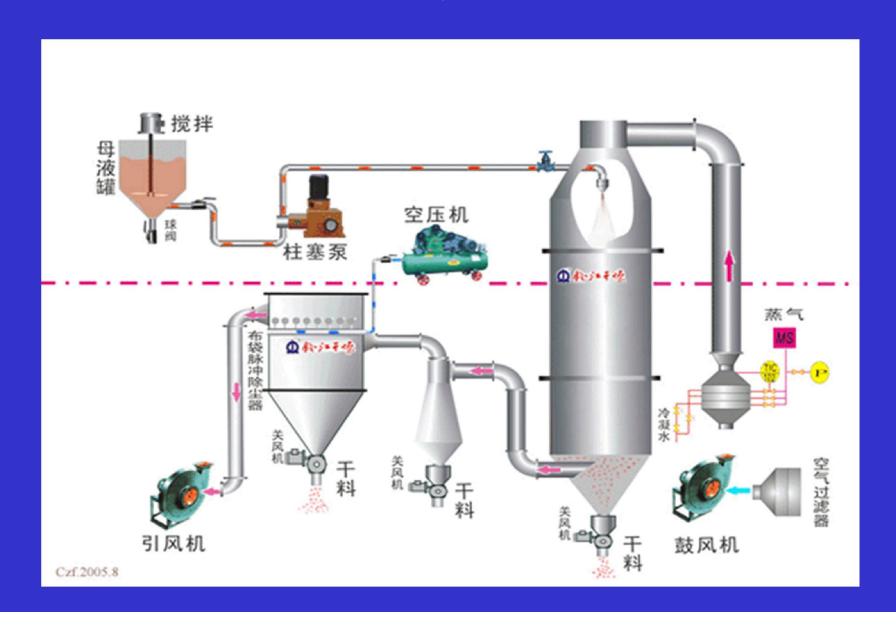



## 5.2.2 圆盘干燥机

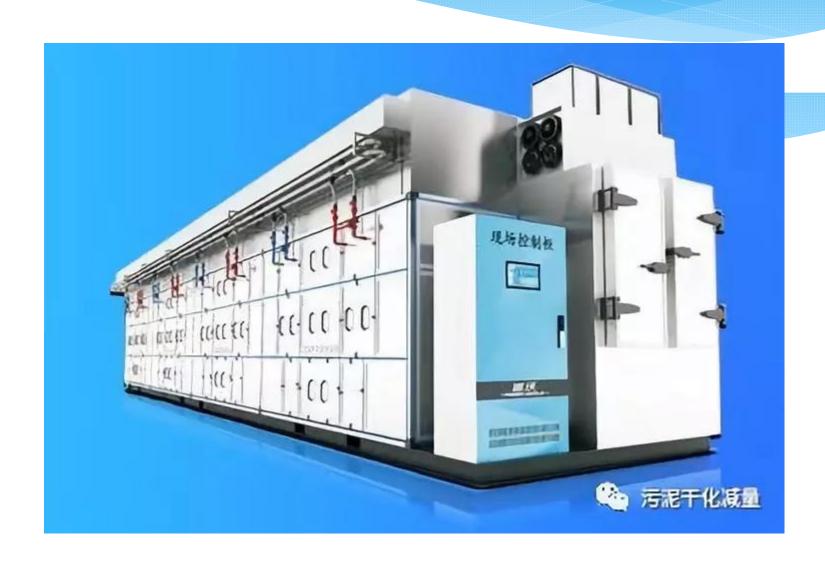


# 5.2.2 圆盘干燥机实物




### 5.2.3 蒸汽薄层干化系统




# 5.2.4 流化床污泥干燥机(上海石洞口)



## 5.2.5 污泥喷雾干燥器



#### 5.2.6 空气能低温冷凝干燥器



#### 6、日处理10t湿污泥中试研究

# 6.1 日处理10t湿污泥中试装置



### 6.1专家论证会



### 与会专家在华崴公司合影




#### 专家意见

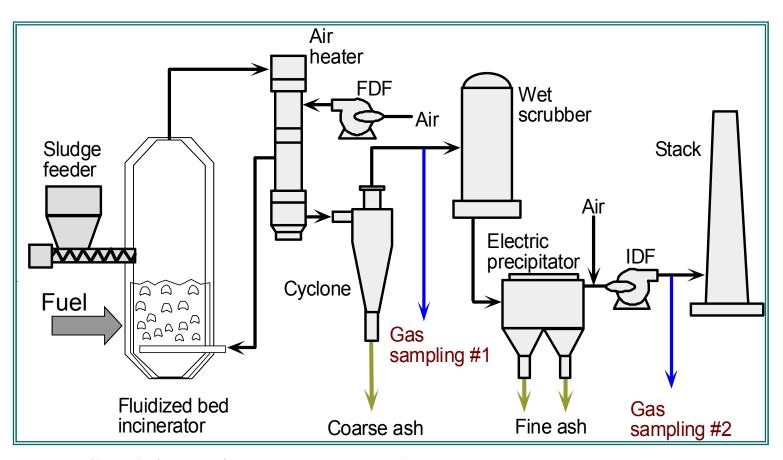
能量自给型污泥干化与循环流化床焚烧技术及装备,具有

- (1) 占地面积小,工艺简单,投资省,操作简便,投资成本仅为国内现有技术的1/2,运行成本是现有技术的1/2;
  - (2) 当污泥干基热值达到2200Kcal/kg,实现能量自给自足;
  - (3) 采用常压过热蒸汽干燥污泥, 无爆炸危险;
  - (4) 该工艺不设余热锅炉, 无承压部件, 不受特检部门监察;
  - (5) 环保效果好,采用循环流化床分级燃烧、烟气再循环技术
- ,配置布袋除尘及湿法烟气处理系统,各项污染物排放浓度均 优于国家排放标准GB18485-2014;
  - (6) 经查新与技术检索,此技术属国内领先,建议尽快产业化

#### 7、日处理30t(含水80%)工业示范

地址:哈尔滨市龙江环保院内






#### 8、污泥微干化与燃煤锅炉耦合

• 技术思路:

 污泥微干化后送绝热焚烧炉焚烧,实现自 持燃烧,尾气除尘后送入燃煤锅炉,完成 除尘、脱硝及脱硫。

#### 日本通用的污泥焚烧形式



- 典型容量为日处理100吨湿污泥
- 没有热量回收系统

# 谢谢!!