

# 目录



## 一、设备概述

- 1. 锅炉型号为SG—1170/17.5—M722,系上海电气股份有限公司上海锅炉厂生产的亚临界参数、一次中间再热、自然循环汽包炉。
- 2. 锅炉采用:单炉膛IT型布置、平衡通风、冷一次风正压直吹式制粉系统,采用四角切向燃烧技术并配置全摆动上下浓淡分离直流燃烧器。
- 3. 制粉系统采用冷一次风正压直吹式系统,配置了五台正压直吹式中速辊式磨煤机。在炉膛上部布置有墙式再热器、分隔屏、后屏过热器,水平烟道内沿烟气流向布置有后屏再热器、末级再热器和末级过热器,深度为6528mm。后烟道竖井内布置有低温过热器和省煤器,深度为10260mm,后烟道下部布置两台三分仓回转式空气预热器。

# 一、设备概述

- 4. 主汽度的调整通过喷水减温进行,一级减温水流量设计为 110t/h,二级减温水流量设计为15t/h。
- 5. 再热汽温的调整主要通过摆动式燃烧器,为防止墙式再热器超温,在其进口设有一级事故喷温水减温,设计流量为25t/h。
- 6. 锅炉底渣设1台风冷带式排渣机,利用锅炉炉膛的负压将冷却空气吸入干排渣机将渣冷却,排渣机正常出力为4.5t/h,最大出力为10t/h,可连续运行。
- 7. 锅炉主要设计参数见表1。

## 表一:锅炉主要设计参数

| 序号 | 项目             | 単位  | BMCR   | ECR    |
|----|----------------|-----|--------|--------|
| 1  | 锅炉设计压力         | MPa | 19. 95 | 19     |
| 2  | 过热蒸汽流量         | t/h | 1170   | 1035   |
| 3  | 过热蒸汽出口压力       | MPa | 17.5   | 17. 31 |
| 4  | 过热蒸汽出口温度       | °C  | 541    | 541    |
| 5  | 再热蒸汽流量         | t/h | 980    | 873    |
| 6  | 再热蒸汽进口压力       | MPa | 4. 15  | 3.697  |
| 7  | 再热蒸汽出口压力       | MPa | 3.934  | 3.504  |
| 8  | 再热蒸汽进口温度       | °C  | 339    | 328    |
| 9  | 再热蒸汽出口温度       | °C  | 541    | 541    |
| 10 | 给水温度           | °C  | 278    | 272    |
| 11 | 排烟温度           | °C  | 131    | 127    |
| 12 | 预热器一次风进风次风进风温度 | °C  | 28     | 28     |
| 13 | 预热器二次风进风次风进风温度 | °C  | 23     | 23     |
| 14 | 预热器一次风出风次风出口温度 | °C  | 344    | 338    |
| 15 | 预热器二次风出风次风出口温度 | °C  | 332    | 329    |
| 16 | 锅炉效率           | %   | 93. 32 | 93. 38 |



#### 2.1干式排渣机漏风

干式排渣机设计漏风率为1%。实际运行时钢带底部漏风量为55t/h,端部进入冷却风量为15t/h左右,总漏风量为70t/h,占总送风量1333t/h的5.26%。可见,干式排渣机漏风量明显偏大。在锅炉氧量保持不变的前提下,炉底漏风量增加,将导致火焰中心上移,排烟温度升高。

#### 2.2燃烧器摆角上扬

在机组负荷、煤质和氧量等条件不变时,燃烧器摆角上扬将导致 火焰中心上移,排烟温度上升。燃烧器摆角主要用于调节再热蒸汽 温度,在再热蒸汽温度满足要求的条件下,尽量将燃烧器摆角下摆, 以降低火焰中心高度,降低排烟温度。

#### 2.3煤粉细度

设计煤粉细度R90为25%,实际煤粉细度测试结果见表2。由表2可见,A磨煤机R90为22%,C磨煤机R90为20%,D磨煤机R90为18%。在其他条件不变时,若煤粉细度偏粗,会导致火焰中心上移,排烟温度升高,当前煤粉细度比设计值偏细,不会导致排烟温度升高。

## 表二煤粉细度测试结果

| 磨组  | A磨          |      | B磨   |       | C磨   |      | D磨   |     | E磨   |     |
|-----|-------------|------|------|-------|------|------|------|-----|------|-----|
|     | R200        | R90  | R200 | R90   | R200 | R90  | R200 | R90 | R200 | R90 |
| 控制值 | R90=20%~25% |      |      |       |      |      |      |     |      |     |
| 测试值 | 1.91        | 21.5 | 3.01 | 24. 5 | 2.45 | 19.8 | 1.32 | 18  | 2.06 | 23  |

#### 2.4燃尽风开度

在氧量不变的前提下,随着燃尽风开度的增加,排烟温度略 有下降,但实验中发现锅炉排烟温度变化不明显。

#### 2.5炉膛结焦

锅炉炉膛结焦,将使水冷壁灰污系数增加,传热系数减小,导致锅炉水冷壁吸热量减小,炉膛出口烟温升高。为了保持锅炉蒸发量不变,燃料量必然增加,导致锅炉烟气量增加,以上两者共同作用,使排烟温度升高。

#### 2.6锅炉燃料特性变化

实际煤种全水分较设计煤种全水分小一倍多,使得制粉所需要热一次风量减少较多,一次风在空预器内换热量减少,导致排烟温度升高。设计燃料特性见下表3。实际燃料特性见下表4。

## 表3 锅炉设计燃料特性

| 名 称      | 符号       | 单位                   | 设计煤种   | 校核煤种   |
|----------|----------|----------------------|--------|--------|
| 煤质分析     |          |                      |        |        |
| 收到基全水分   | Mt       | %                    | 19.50  | 20. 30 |
| 收到基硫分    | S ar     | %                    | 0.47   | 0.77   |
| 空气干燥基水分  | Mad      | %                    | 10. 34 | 9.99   |
| 干燥无灰基挥发分 | Vdaf     | %                    | 30. 56 | 32. 98 |
| 收到基灰分    | A ar     | %                    | 10. 31 | 12.66  |
| 收到基碳分    | Car      | %                    | 56. 15 | 53. 11 |
| 收到基氢分    | Har      | %                    | 2.69   | 2.75   |
| 收到基氧分    | O ar     | %                    | 10. 29 | 9.96   |
| 收到基氮分    | Nar      | %                    | 0.59   | 0.45   |
| 收到基低位发热量 | Qnet, ar | MJ/kg                | 21.71  | 20. 23 |
| 可磨性系数    | HGI      | /                    | 79     | 80     |
| 灰变形温度    | DT(t1)   | $^{\circ}\mathrm{C}$ | 1220   | 1150   |
| 灰软化温度    | ST(t2)   | $^{\circ}\mathrm{C}$ | 1270   | 1190   |
| 灰半球温度    | HT       | °C                   | 1280   | 1200   |
| 灰熔化温度    | FT(t3)   | °C                   | 1290   | 1250   |

## 表4 锅炉实际燃料特性

| 名 称      | 符号       | 单位    | 实际煤种   |
|----------|----------|-------|--------|
| 煤质分析     |          |       |        |
| 收到基全水分   | Mt       | %     | 9.8    |
| 收到基硫分    | Sar      | %     | 1. 25  |
| 空气干燥基水分  | Mad      | %     | 3. 1   |
| 干燥无灰基挥发分 | Vdaf     | %     | 33. 79 |
| 收到基灰分    | A ar     | %     | 30. 58 |
| 收到基碳分    | Car      | %     | 42.72  |
| 收到基氢分    | Har      | %     | 2.78   |
| 收到基氧分    | O ar     | %     | 9.95   |
| 收到基氮分    | Nar      | %     | 0.41   |
| 收到基低位发热量 | Qnet, ar | MJ/kg | 18. 02 |
| 可磨性系数    | HGI      | /     | 82     |
| 灰变形温度    | DT(t1)   | °C    | 1330   |
| 灰软化温度    | ST (t2)  | °C    | 1350   |
| 灰半球温度    | HT       | °C    | 1390   |
| 灰熔化温度    | FT(t3)   | °C    | 1420   |

## 3.1降低火焰中心

再热蒸汽温度优先选用燃烧器摆角进行调节。在再 热蒸汽温度满足要求的条件下,尽量将燃烧器摆角下倾, 降低火焰中心高度,进而降低排烟温度。

#### 3.2改造干式渣斗,减少炉底漏风

将原设计四个小干渣斗改造为两个大渣斗,满足正常排渣需要,减少由于排渣不畅人为清焦、清渣造成炉底漏风量大。尽量将干渣机底部和端部的进风口关小,减少干渣机漏风量。在氧量不变的条件下,炉底漏风量的减小将导致通过空预器的有组织送风量增加,空预器换热量增大,排烟温度降低。改造前渣斗(图1)改造后渣斗(图2)。

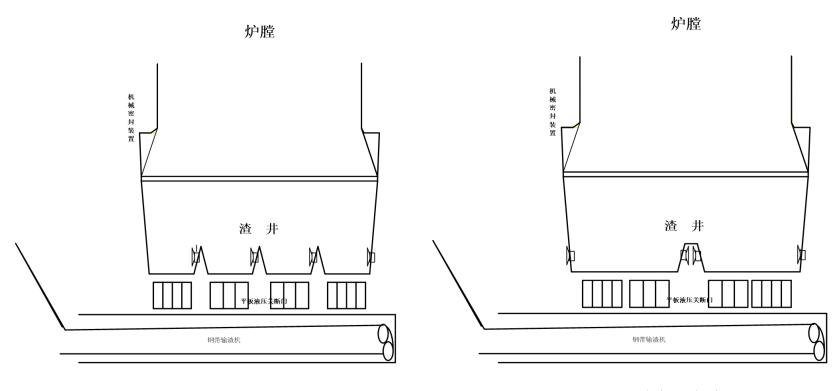



图1 改造前

图2 改造后

3.3 调整空预器转向,改变空预器一、二次风换热方式

因设计煤种全水分较高,而实际燃用燃煤全水分较低, 导致所需一次热风温度、热风量较设计值减少较多,使得正 常运行时一次风在空预器内与烟气换热量减少,导致排烟温 度升高。因为二次风量大于一次风量,二次风温与烟温温差 大,烟气先通过二次风侧的换热效果好于前者,提高了空预 器的换热效率,降低了排烟温度。利用空预器检修的机会对 空预器的径向、轴向、环向密封进行了更换,对空气预热器 壳体进行整体消漏处理,保证改造后的密封效果,漏风量的 减小使得通过空预器的有组织送风量增加,空预器换热量增 大,排烟温度降低。改造前空预器转向(图3):烟气侧→ 一次风侧→二次风侧→烟气侧。改造后转向(图4):烟气 侧→二次风侧→一次风侧→烟气侧

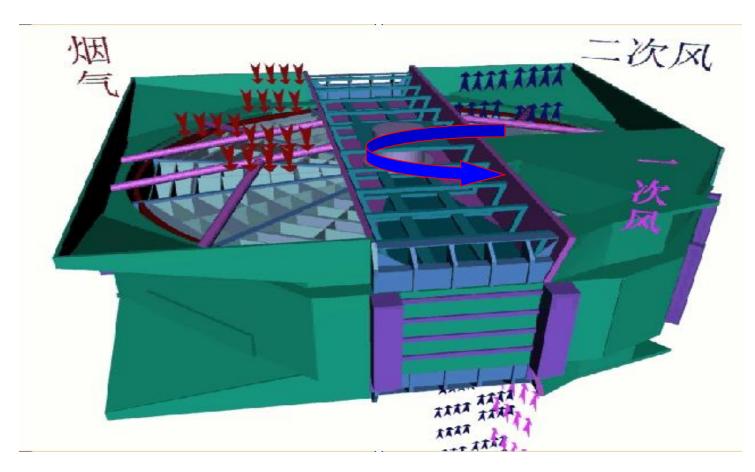



图3 空预器改造前

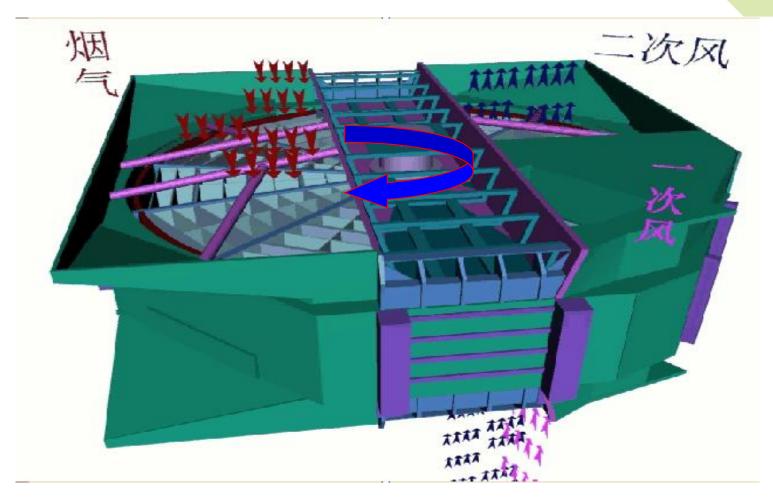



图4 空预器改造后

## 四、治理效果

- ◎治理前后排烟温度及一二次风温度对比见表5。治理前,预热器一次风进风温度为25.2℃,出风温度为335.1℃; 二次风进风温度20.5℃,出风温度为326.2℃,排烟温度为144.3℃。
- ●采取上述治理措施后,预热器一次风进风温度为26.5℃,出风温度为320.2℃;二次风进风温度21.3℃,出风温度为332.4℃;A侧排烟温度为126.4℃,B侧排烟温度为128.6℃,平均排烟温度为127.5℃。
- ●可见,治理后一次风温度下降了14.9℃,二次风温度上升6.2℃,排烟温度下降了16℃,锅炉效率提高了0.94%,供电煤耗下降了3.29g/kwh。提高了机组运行经济性。

# 四、治理效果

#### 表5 改造治理前后排烟温度对比

| 项目                 | 单位 | 治理前    | 治理后    |
|--------------------|----|--------|--------|
| 机组负荷               | MW | 332. 5 | 333. 2 |
| 燃烧器摆角              | %  | 50     | 50     |
| A侧排烟温度平均值          | °C | 142. 9 | 126. 4 |
| B侧排烟温度平均值          | °C | 145.8  | 128. 6 |
| 平均排烟温度             | °C | 144. 3 | 127. 5 |
| 预热器一次风进风次风<br>进风温度 | °C | 25. 2  | 26. 5  |
| 预热器二次风进风次风<br>进风温度 | °C | 20. 5  | 21. 3  |
| 预热器一次风出风次风<br>出口温度 | °C | 335. 1 | 320. 2 |
| 预热器二次风出风次风<br>出口温度 | °C | 326. 2 | 332. 4 |

# 谢谢指导!