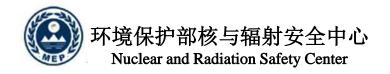


2015年核电站新技术交流研讨会

靖剑平

核与辐射安全研究所反应堆安全分析组组长、高 级工程师,博士。主要从事反应堆热工水力和安全分 析研究等工作。承担CAP1400严重事故校核计算及 审评技术研究,大型先进压水堆及高温气冷堆核电站 等重大专项子课题3项、中科院战略先导专项子课题 1项、其它课题多项,编写科研报告多份,发表学术 论文30余篇。

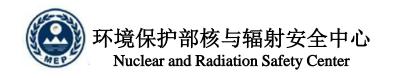

我国三代自主设计核电厂独立审核计算审评。

核安全审评中的独立审核计算

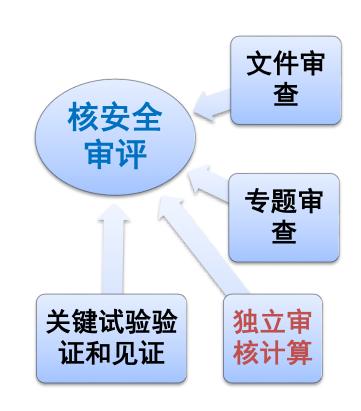
环境保护部核与辐射安全中心

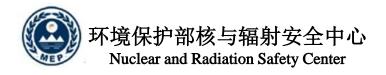
靖剑平

目录



- 一. 背景
- 审核计算工作流程和方法
- 三. 审核计算内容和程序

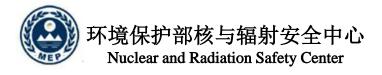

背景


- 日本福岛核事故发生后,国内外对核电厂的安全问题日益 重视,提出了更高的要求
- CAP1400、华龙一号均为我国自主设计的三代核电机组, 缺少可借鉴的国外审评经验和运行经验
- 环境保护部核与辐射安全中心自2010年起扩编至600人, 并重新规划了业务部门的职责,建立了独立审核计算队伍
- 为了提高审评深度,依据核安全法规的要求,国家核安全 局提出了新的审评方法,以审查核电厂满足法规要求的情况

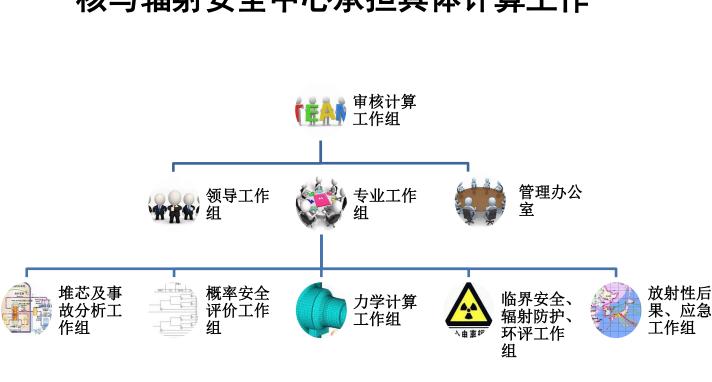
背景

- **文件审评**: 即国家核安全局通常对安全分析报告及其他支持性文件的审查
- **独立审核计算**: 针对各专业选定的内容,利用安全分析程序开展独立的模型建立和审核计算
- 独立试验验证: 试验方案、试验大纲 、试验报告审查; 现场试验见证; 独 立试验验证
- **专题审查**:针对程序适用性、试验方案完备性,以及其它重大技术问题

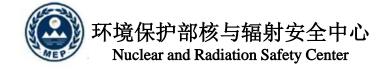
- 计算目的

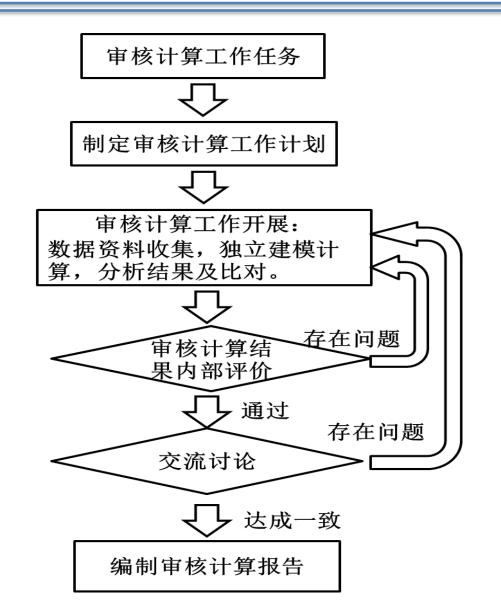

- 确保安全设计满足法规要求
- 验证安全分析计算的正确性

- 计算范围


- 重要的安全设计和事故分析
- 安全审评中关注的具体问题

- 计算过程


- 初步设计阶段
- 最终设计阶段
- 运行阶段

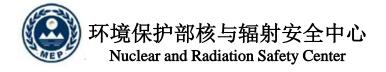


- 核电厂审评方案
- 国家核安全局下派任务工作单
- 核与辐射安全中心承担具体计算工作

审核计算工作方式

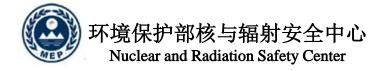
- 背对背独立建模,开 展安全分析
- 进行结果比较
- 针对分析结果形成独立的评价意见

容选取原则

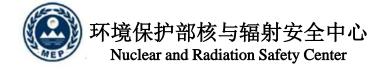

- PSAR阶段:
 - 主要选取安全分析报告中的分析内容,采用相同的分析方法和假设进行计算,对比结果
 - 审核分析方法、分析过程的适合性, 计算结果的正确性
- FSAR阶段:
 - 独立选取相关参数、假设和工况
 - 以概率安全评价为支持,选取 风险重要系统和部件等
 - 审核设计的有效性和安全性

审核计算工作内容

独立审核计算的七个方面内容:


- 反应堆物理
- 设计基准事故分析
- 严重事故分析
- 辐射防护
- 概率安全评价
- 应力与结构抗震分析
- 环境影响评价

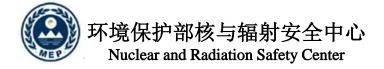
审核计算工作内容


• 已开展独立审核计算的核电厂:

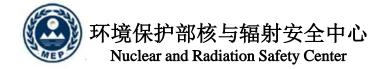
- 国核压水堆示范工程(CAP1400)独立审核计算
 - 编制并提交了《国核压水堆示范工程初步安全分析阶段 审核计算安全评价报告》
- 防城港3、4号机组(华龙一号)独立审核计算
 - 《防城港3/4号机组初步安全分析阶段审核计算安全评价 报告》初稿已完成
- 福清5、6号机组(华龙一号)独立审核计算
 - 正在编制《福清5/6号机组初步安全分析阶段审核计算安 全评价报告》

• 反应堆物理

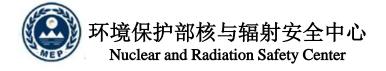
核电厂	计算内容
国核压水堆示范工程	▲ 堆芯核设计 ▲ 乏燃料水池临界安全分析
福清5、6号	▲ 乏燃料水池燃料临界安全分析▲ 弹棒事故分析
防城港3、4号	▲堆芯核设计


• 设计基准事故分析

核电厂	计算内容
国核压水堆示范工程	反应堆冷却剂系统流量下降事故 单根蒸汽发生器传热管破裂事故 汽机停机事故 主给水管道断裂事故
福清5、6号	丧失厂外电源 卡轴事故 反应堆冷却剂强迫流动全部丧失 蒸汽发生器传热管破裂 中小LOCA
防城港3、4号	丧失厂外电源 卡轴事故 中小LOCA


• 严重事故分析

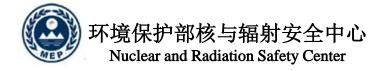
核电厂	计算内容
国核压水堆示范工程	DVI管破裂触发严重事故ADS-4阀门误开启触发严重事故
福清5、6号	• SB0触发的严重事故
防城港3、4号	• SBO触发的严重事故


• 辐射防护

核电厂	计算内容
国核压水堆示范工程	 堆芯源项、气载放射性源项 反应堆压力容器快中子注量率、混凝 土一次屏蔽中子注量率、辅助屏蔽
福清5、6号	一回路裂变产物源项、腐蚀产物源项压力容器快中子注量率、一次屏蔽中子注量率、厂房的屏蔽设计
防城港3、4号	堆芯积存量、反应堆厂房的气载放射性源项压力容器快中子注量率

• 概率安全评价

核电厂	计算内容
国核压水堆示范工程	一条安注管线破裂始发事件分析主给水可用瞬态始发事件分析
福清5、6号	大L0CA始发事件分析丧失厂外电始发事件分析
防城港3、4号	蒸汽发生器传热管破裂始发事件分析丧失主给水始发事件分析通用瞬态内部灾害(基于蒸汽发生器丧失主给水)


• 应力分析

核电厂	计算内容
国核压水堆示范工程	反应堆压力容器下筒体和下封头应力分析堆芯补水箱到冷段管应力分析蒸汽发生器排污管线应力分析
福清5、6号	主管道应力评定稳压器排放系统的力学分析反应堆压力容器顶盖应力分析波动管的疲劳分析主蒸汽管道裂纹稳定性分析
防城港3、4号	压力容器下封头部分应力分析堆芯支撑板应力分析

• 结构抗震

核电厂	计算内容
国核压水堆示范工程	钢安全壳极限内压承载力分析核岛屏蔽厂房结构安全性分析
福清5、6号	安全壳极限承载力分析PCS抗震性能分析基础底板地震响应分析反应堆冷却剂环路结构抗震分析
防城港3、4号	• 模型建立

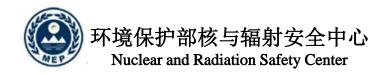
• 环境影响评价

核电厂	计算内容
国核压水堆示范工程	 气态流出物源项 液态流出物源项
福清5、6号	 气态流出物源项 液态流出物源项
防城港3、4号	大气弥散因子液态流出物在受纳水体中的稀释扩散 因子正常运行下排放物和流出物所引起的 居民辐照剂量

审核计算使用的程序

FI ICA

中子物理和临界安全分析程序: PARCS、NEXUS/ANC9程序包、SCALE6.1、MCNP、ORIGEN-S、SCIENCE、Microshied 热工水力分析程序: RELAP5、TRACE、COBRA、VIPRE-W、


严重事故分析程序: MELCOR

安全壳热工水力程序: GASFLOW

结构程序: ANSYS、PIPESTRESS、ABAQUS

放射性后果分析程序: MACCS

概率安全分析程序: RiskSpectrum程序包

谢 谢!