

第一届煤电超低排放和节能改造技术交流研讨会

李水清

清华大学热能工程系教授、博士生导师,曾入选教育部新世纪优秀人才支持计划入选者、清华大学221基础人才研究计划。曾在利兹大学、爱荷华大学、普林斯顿大学和耶鲁大学先后从事访问合作研究。主要研究方向包括燃煤清洁燃烧、非均相燃烧机理、颗粒动力学和细颗粒控制技术等,先后主持完成和在研的国家自然科学基金项目5项,主持航天五院科研项目5项,曾参加科技部973和863项目课题4项。共同完成剑桥大学出版社学术专著《Adhe-sive Particle Flow》一部,发表SCI收录论文60余篇,获授权发明或实用新型专利10项。

化石燃料燃烧源头控制PM2.5的基础与技术

燃煤发电设施源头控制PM2.5 的关键技术研究

报告人: 李水清 教授 博导

清华大学

lishuiqing@tsinghua.edu.cn

内容提要

一、排放

1. 背景: 燃煤设施PM2.5生成机制和排放特征

2. 湿式电除尘器实验室机理研究

3. 燃煤电厂WESP脱除PM2.5现场测试与分析

4. 低低温电除尘器温度对粉尘荷电及脱除性能研究

5. 低低温电除尘器的现场测试与采样分析

6.主要结论

二、控制

研究背景

橙色预警: 2015年11月30日,北京市升级发布今年首个雾霾橙色预警,全市PM2.5浓度12个小时内增长近10倍

环保部及专家分析表示,初步的来源解析表明,就整个华北区域而言,原煤燃烧和 工业排放是此次重污染过程最主要的来源。

但就北京而言,此次重污染过程主要以本地排放贡献为主,其中机动车排放贡献占 比较大。

燃煤电厂仍是大气颗粒物重要来源之一,排放控制日益严格

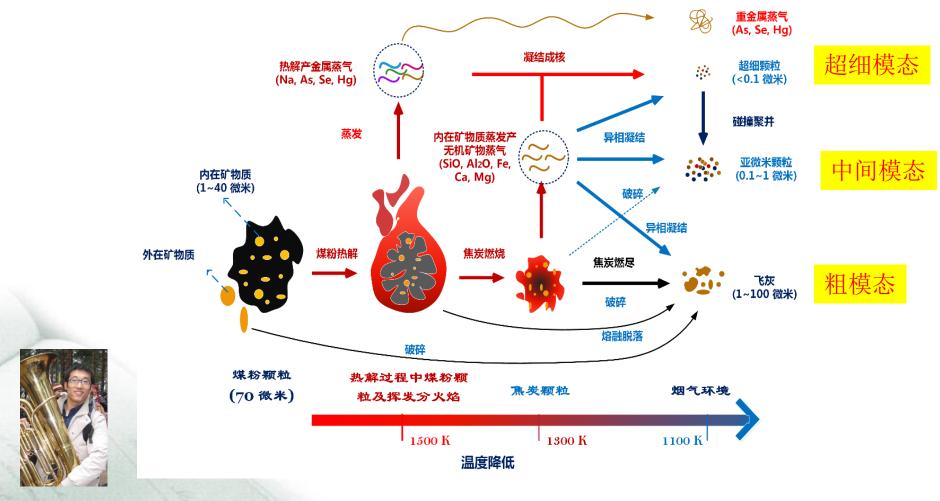
火电厂大气污染物排放标准

1996: 200 mg/m³

2003: 50 mg/m³

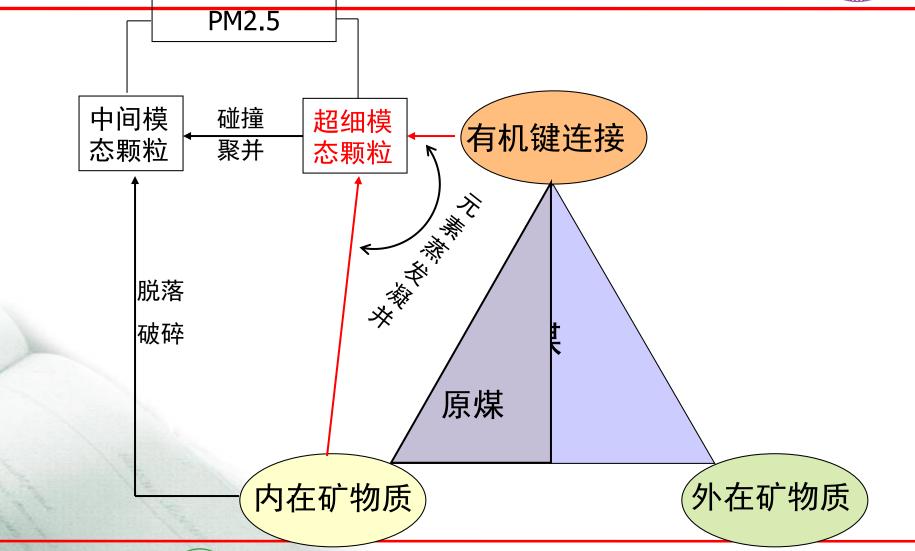
2011: 30(20) mg/m³

2014: 10 mg/m³


一. 燃煤设施PM_{2.5}生成机制和排放特征

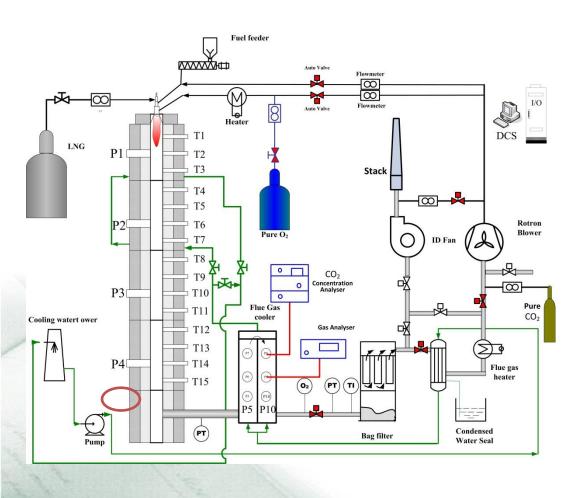
对象: 并不熟悉?!

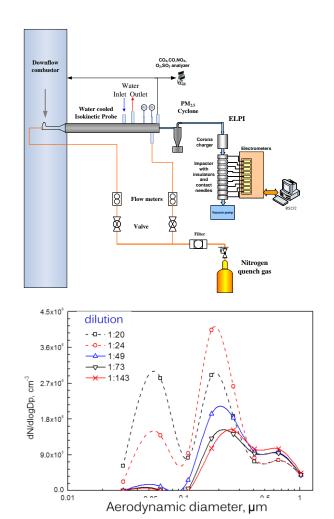
1.1 燃煤飞灰颗粒物的生成途径


李庚达博士论文 2014

卓建坤清华大学博士学位论文, 2008

1.2 燃煤的矿物组成对PM2.5的贡献





1.3 清华大学973研究

TSING TO THE TOTAL TO THE TOTAL

清华大学 25kW自维持一维下行煤粉燃烧炉

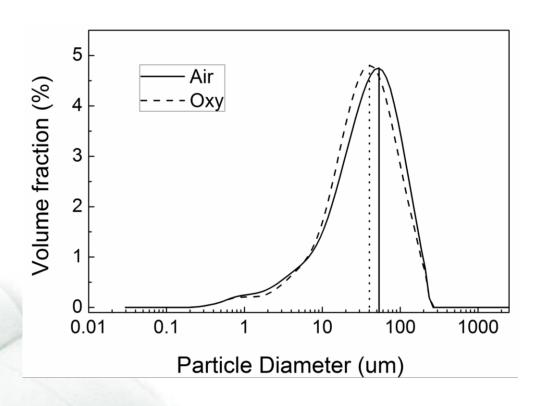
燃料特性

典型高阶烟煤

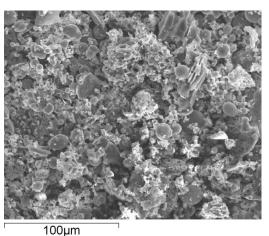
低阶褐煤

高碱金属含量亚烟煤

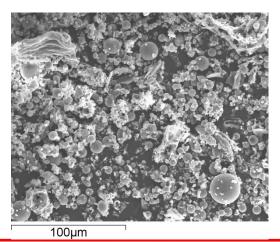
工业分析(干燥基)


	固定碳FCd	挥发分V _d	灰分A _d	高位发热量Q _{gr,d}
	/ wt %	/ wt %	/ wt %	/ MJ/kg
高熔点神华烟煤	55.52	24.11	20.37	25.26
呼伦贝尔褐煤	49.1	38.8	12.1	25.6
新疆准东煤	63.54	30.58	5.88	28.83

灰成分分析

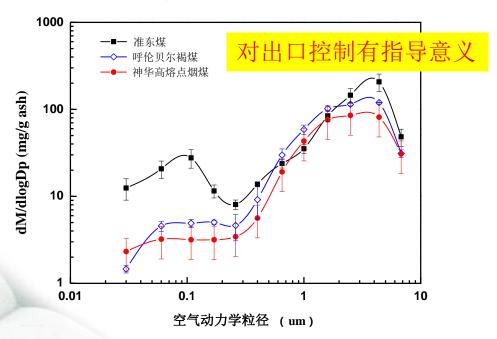

	高熔点神 华烟煤	呼伦贝尔 褐煤	新疆 准东煤	П
SiO_2	56.83	54.09	28.53	
Al_2O_3	26.17	11.19	3.27	
Fe_2O_3	6.98	13.83	4.01	
CaO	2.68	10.93	32.78	
MgO	0.7	2.08	2.88	
${ m TiO_2}$	1.2	0.74	0.3	
SO_3	2.1	2.94	21.47	
P_2O_5	0.48	0.06	NDa	
K_2O	1.02	0.47	0.57	
Na ₂ O	0.2	0.91	6.19	

1.4 粗粒径飞灰颗粒的粒径分布

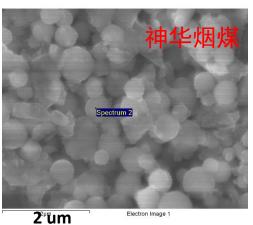


Air: 常规燃烧模式 Oxy: 富氧燃烧模式

BET-SSA: $15.5143 \text{ m}^2/\text{g}$ (a) Air mode



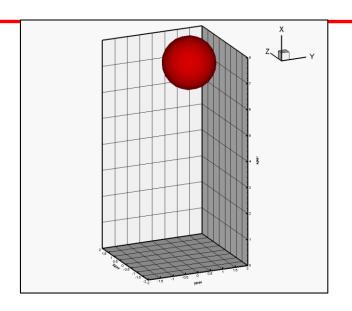
1.5 不同煤阶煤粉燃烧细颗粒物排放特性研究

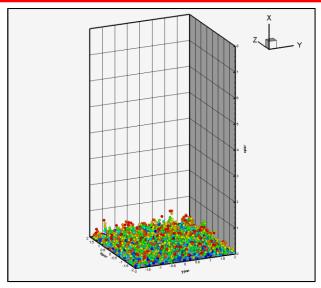


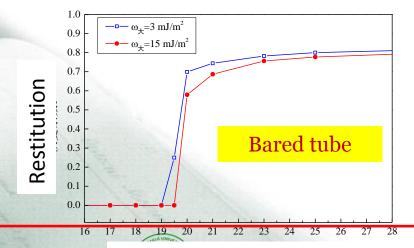
单位质量煤灰生成细颗粒物浓度粒径分布

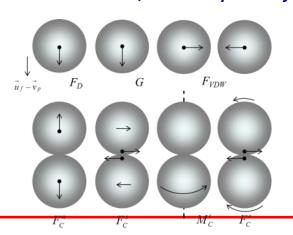
单位: mg/g ash	$PM_{0.2}$	PM_1	PM _{2.5}	PM_{10}
新疆准东煤	16.6	25.5	49.1	134.4
呼伦贝尔褐煤	3.5	11.9	43.7	99.6
神华高熔点烟煤	2.7	8.1	31.7	73.2

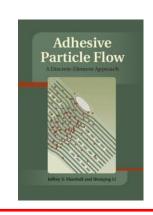
亚微米颗粒650 nm~1 μm


准东煤

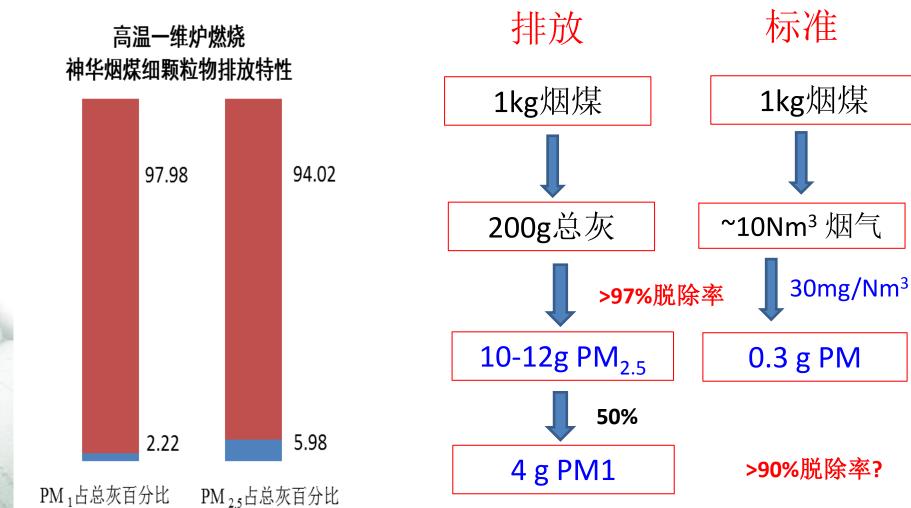

亚微米颗粒400~650nm


颗粒动力学



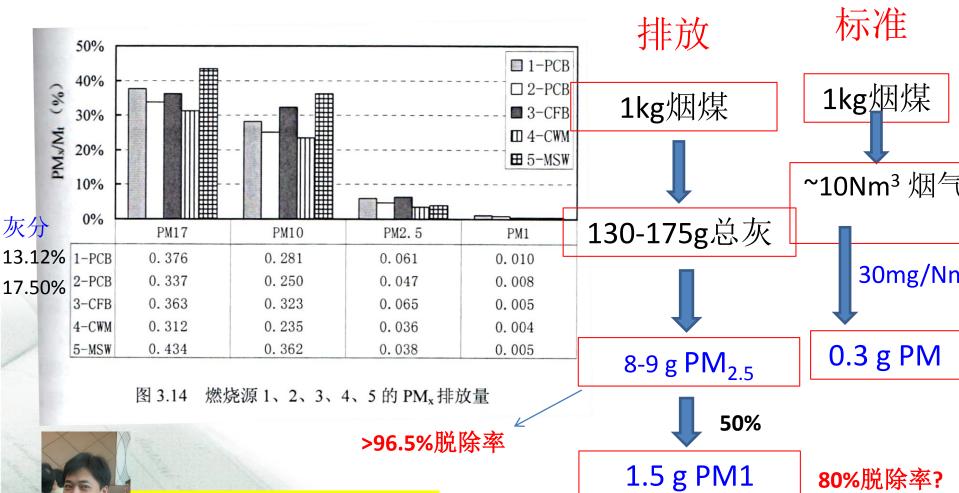


Marshall & Li, Adhesive particle flow, CUP, 2014



Particle diameter, µm

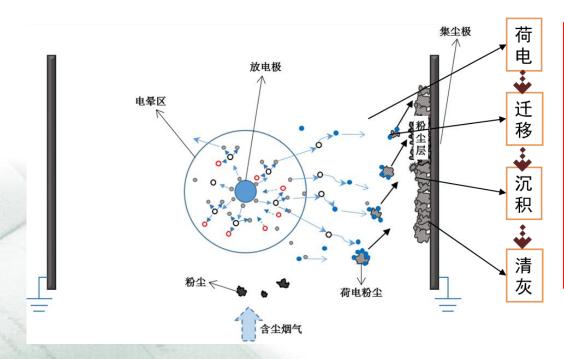
on Engineering Research Group Engineering, Tsinghua University, Beijing, 100084

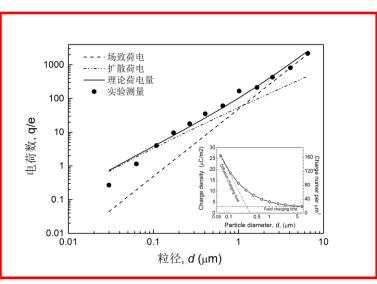

1.6 燃煤细颗粒物生成量的估算

2016-3-9

岳勇清华大学博士学位论文, 2007

Particle And Combustion Engineering Research Group Department of Thermal Engineering, Tsinghua University, Beijing, 100084


二. 燃煤电厂PM_{2.5}控制技术路线和协同脱除


电除尘器基础: 热工 vs. 电工

电除尘器: 燃煤电厂主要烟气粉尘处理设备,在国内外得到广泛使用可控制出口排放浓度50mg/Nm³-100mg/Nm³

国内某电厂

高频?脉冲?复式? 是否必要

技术路线一: 低低温+FGD除雾塔协同脱除

低低温电除尘器:通过在电除尘器前布置换热器使烟气温度从130 \mathbb{C} 降至90 \mathbb{C} 左右后再进行除尘,避免飞灰在130 \mathbb{C} 左右的高比电阻问题

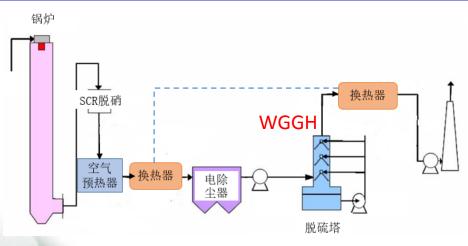


图1 低低温电除尘器电厂布置图

- > 粉尘比电阻降低
- > 烟气体积流量减小
- > 击穿电压提高
- ▶ 协同脱除SO₃ (硫酸蒸汽)

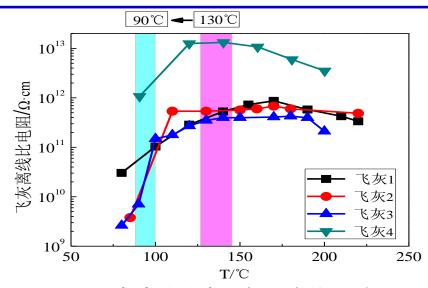
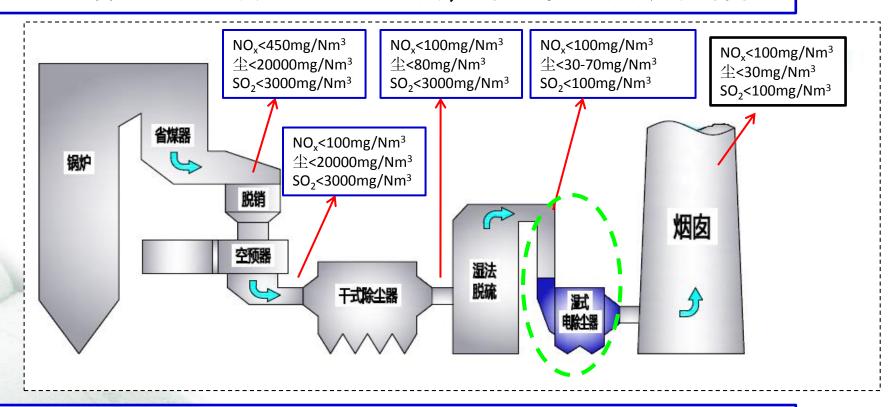


图2飞灰离线比电阻与温度的关系


- > 二次扬尘
- 灰流动性较差:溜灰角
- > 煤种适应性有待研究

技术路线二:湿式静电除尘器深度脱除+共同去除

湿式电除尘器: 与火电机组配套, 布置在湿法脱硫塔后

实现PM25、SO3酸雾、汞等重金属的共同去除

内容提要

一、排放

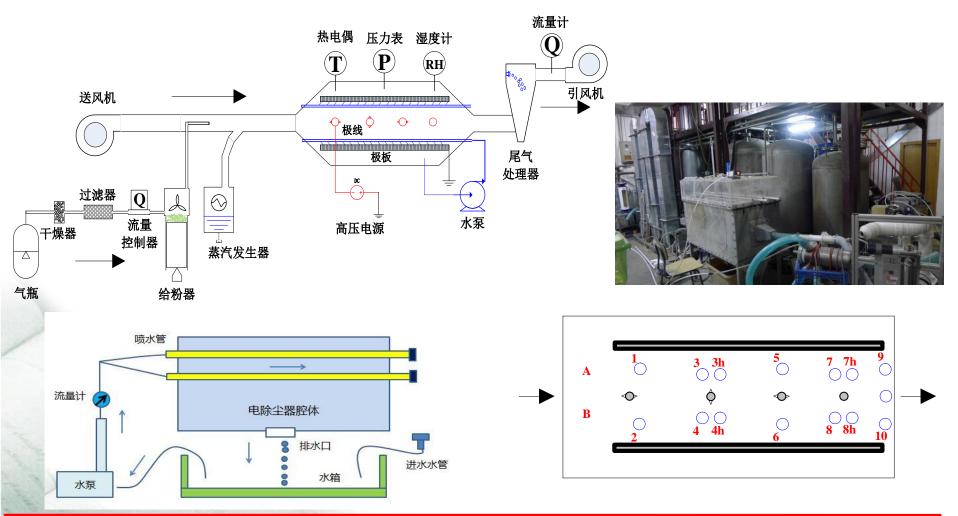
1. 背景: 燃煤设施PM2.5生成机制和排放特征

2. 湿式电除尘器实验室机理研究

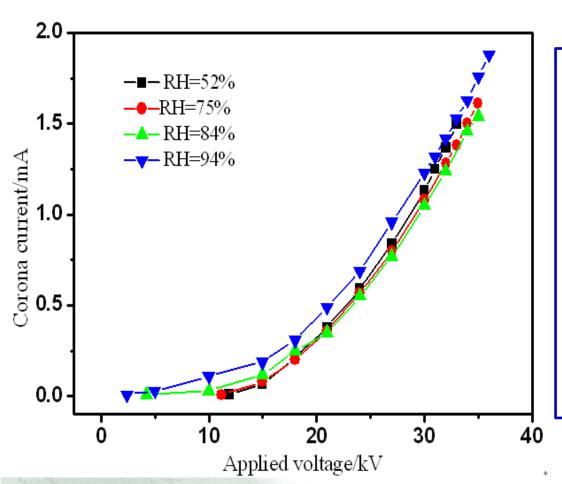
二、控制

3. 燃煤电厂WESP脱除PM2.5现场测试与分析

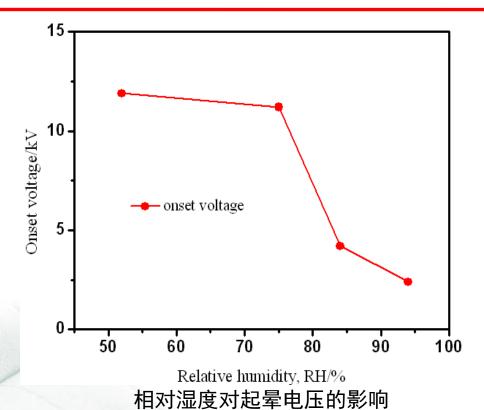
4. 低低温电除尘器温度对粉尘荷电及脱除性能研究

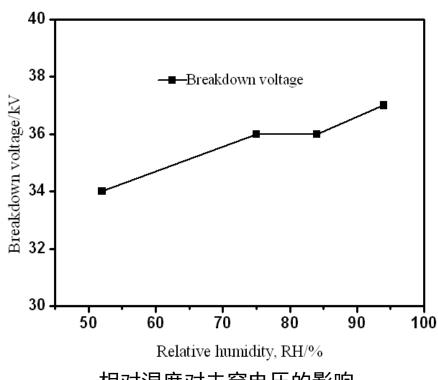

5. 低低温电除尘器的现场测试与采样分析

6.主要结论


2.1 实验室规模电除尘器实验系统图

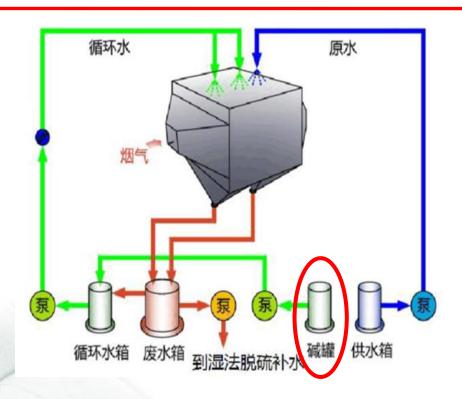
2.2 放电特性的典型研究结果

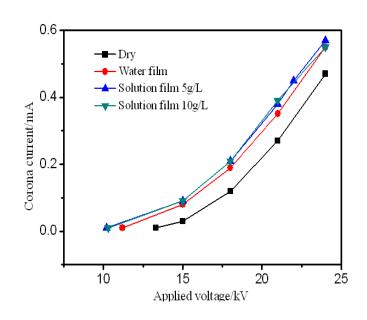

▶湿度对放电特性的影响 与工作电压有关


- >工作电压较小时, 随着 烟气湿度增大, 电晕放 电电流增大
- >工作电压较大时, 随着 烟气相对湿度增大, 电 晕电流减小(RH=94%的 情况除外)

相对湿度对I-V特性的影响

放电特性的典型研究结果

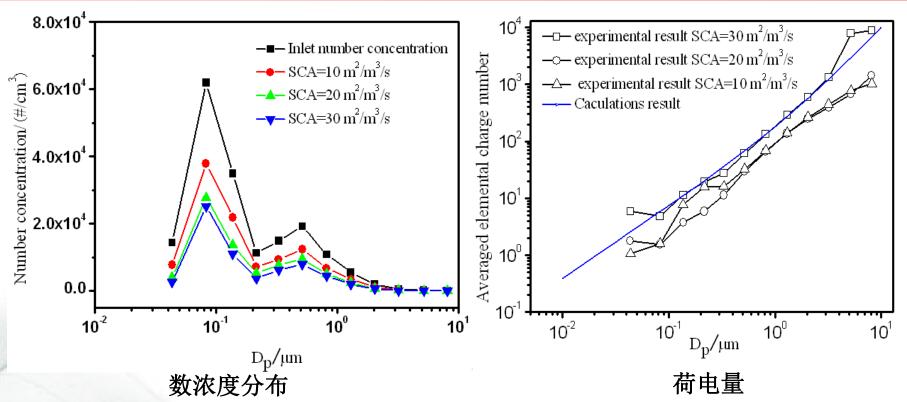



相对湿度对击穿电压的影响

- ▶湿度增大,起晕电压减小
- ▶湿度增大,击穿电压增大
- ▶湿度增大,WESP工作电压窗口增大,利于稳定操作运行

2.3 极板液膜种类对WESP放电影响

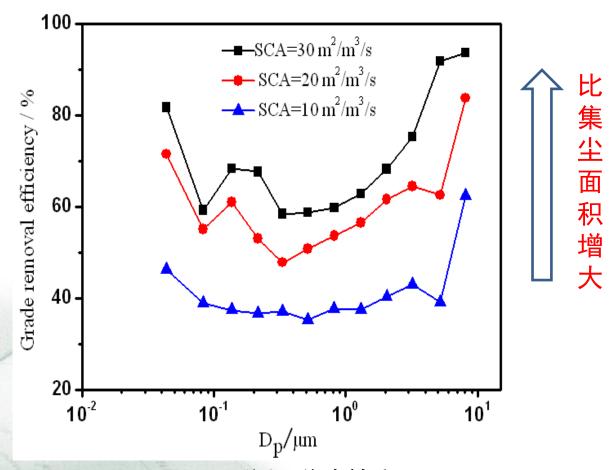
液膜对I-V特性的影响


- ▶WESP前端电场极板,循环喷淋
- ▶WESP后端电场极板,补给水喷淋
- ▶灰水酸性增强,PH可低至2,中和处理

放电电流:

电解质液膜>水膜>干式

2.4 荷电与脱除效率的研究结果



- ▶比集尘面积增大,停留时间增加,平均荷电量增大
- ▶颗粒粒径增大,平均荷电量显著增加
- ▶比集尘面积SCA为30 m²/m³/s时,荷电量接近理论饱和

2.4 超低浓度下: 比集尘面积与脱除效率的关联

▶比集尘面积 增大, 脱除效 率明显增大

>实验条件下 板式WESP适 宜的 SCA=30 $m^2/(m^3/s)$

WESP分级脱除效率

内容提要

一、排放

1. 应用背景及研究内容

2. 湿式电除尘器实验室机理研究

二、控制

3. 燃煤电厂WESP脱除PM2.5现场测试与分析

4. 低低温电除尘器温度对粉尘荷电及脱除性能研究

5. 低低温电除尘器的现场测试与采样分析

6.主要结论

3.1 WESP测试对象设计参数

机组主要技术参数4

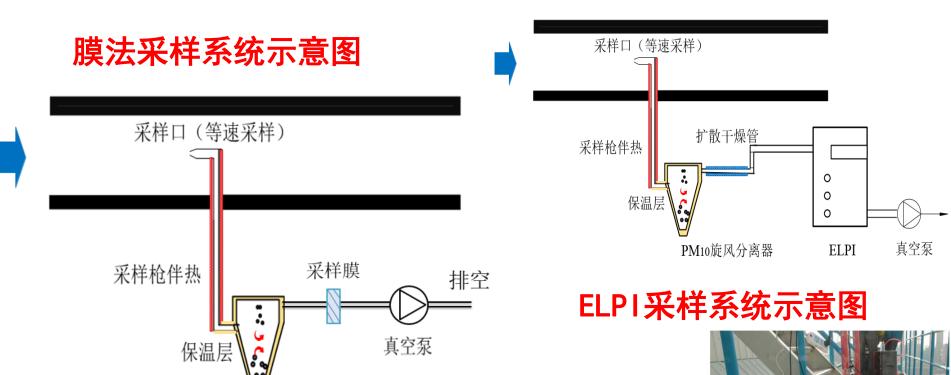
					_
机组↩	机组负荷₽	最大燃煤量↩	干式除尘₽	湿式除尘₽	₽
ZBHD-6₽	330MW₽	153.1 t/h₽	静电除尘器↩	板式 WESP↓	42
TCHN-2₽	600 MW <i>↔</i>	415 t/h₽	低低温电除尘器。	管式 WESP∘	₽

ZBHD-6 机组配套 WESP 主要设计参数↓

参数。	设计值₽		
结构形式₽	平板式₽	7	
规格↩	双室 4 电场(共 8 电场)。		
入口干烟气量。	1641100 Nm³/h¢]	
入口烟尘。	70 mg/Nm³₊	1	
出口烟尘₽	<10 mg/Nm ³	1	
PM _{2.5} 脱除率₽	≥ 80%₽]	
SO₃去除率。	≥ 80%₽	4	
漏风率。	≤ 2%₽	1	
本体阻力₽	≤ 250Pa₽		
年可用小时数。 6200 小时。		1	

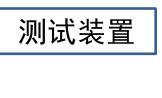
板式WESP设计参数

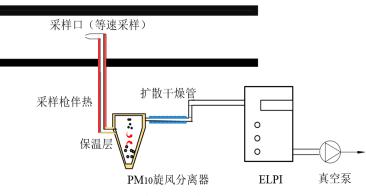
TCHN-2 机细配套 WESP 主要设计参数。


WESF 王安以片罗奴*		
设计值₽		
正六边形蜂窝状管式。		
2992274 Nm³/h (实际烟气量)。		
70 mg/Nm3₽		
≤ 5mg/Nm3 ₽		
<10 mg/Nm ³		
≥ 80%₽		
≥ 85%₽		
≥ 80%₽		
≤ 1%₀		
≤ 400Pa₽		
≤ 3 m/s₽		

管式WESP设计参数

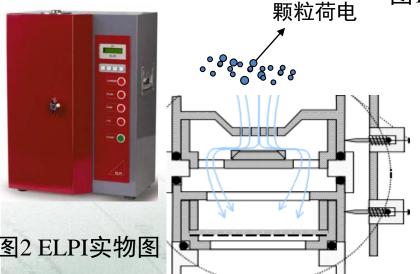
3.2 采样系统及方法


- ▶WESP复杂的烟气条件,尚未见到统一的采样测试标准
- ▶根据EPA 201 (2014发布), 自行设计了一套采样测试系统



PM₁₀/PM₂₅切割器

采样装置及仪器



主要测试仪器

图1 测试采样装置

荷电低压撞击器(ELPI)各级数浓度与该级电流值的关系为:

$$N = I / PneQ \qquad (\vec{1})$$

测试过程中,先得到颗粒分级数浓度,再将 ELPI的荷电器关闭,所得电流值即可按照式 折算为每一级颗粒的平均荷电量:

$$q = \frac{I}{NQe}$$
 (式 2)

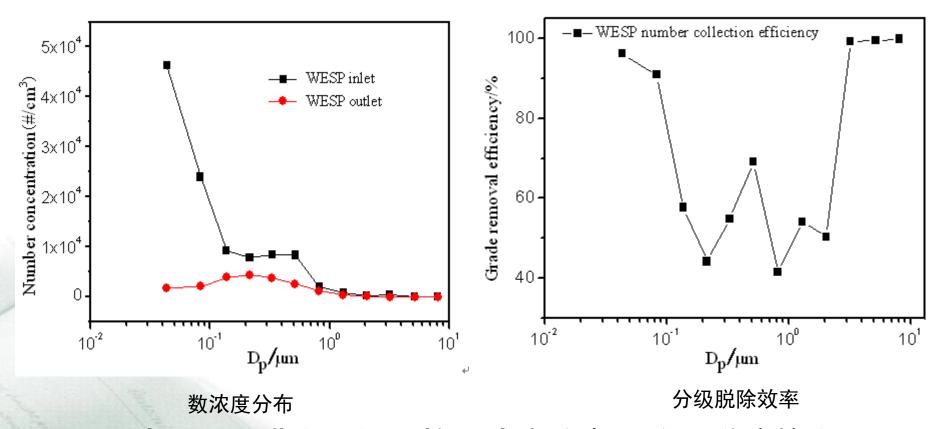


图3测试原理图

3.3 燃煤电站板式WESP现场测试结果

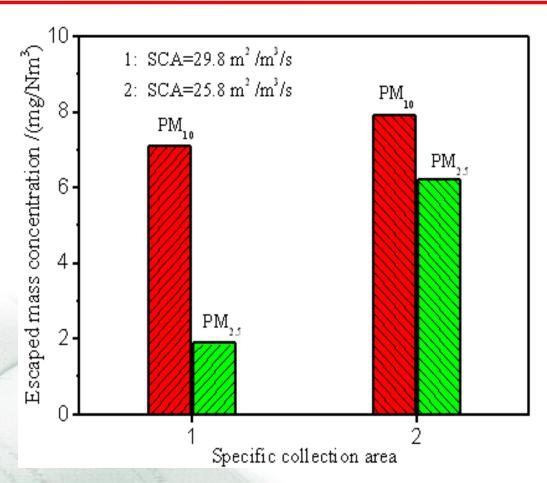
锅炉负荷95%,对应的比集尘面积25.8 m²/(m³/s)

板式WESP进出口细颗粒数浓度分布及分级脱除效率

30

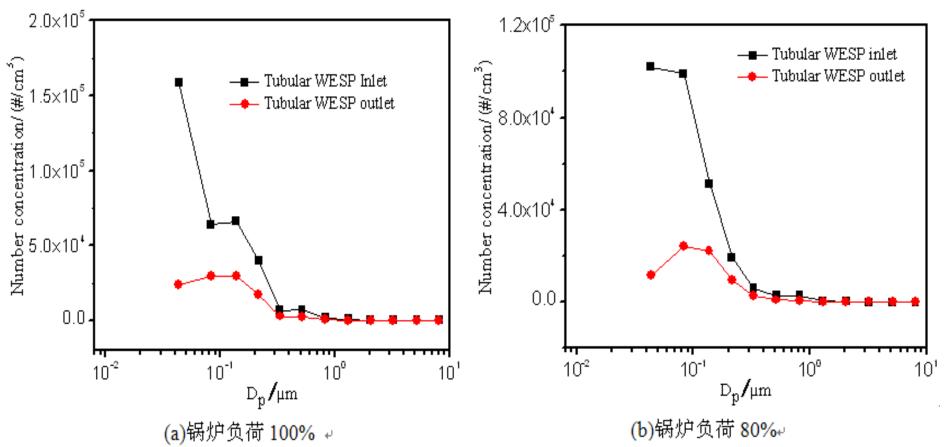
3.4 燃煤电站板式WESP现场测试结果

锅炉负荷75%,对应的比集尘面积29.8 m²/(m³/s)


- ▶板式WESP进口细颗粒物数浓度在104~105#/cm3数量级
- ▶板式WESP出口细颗粒物数浓度在10³~10⁴#/cm³数量级
- ▶板式WESP适宜的SCA约为30m²/m³/s

31

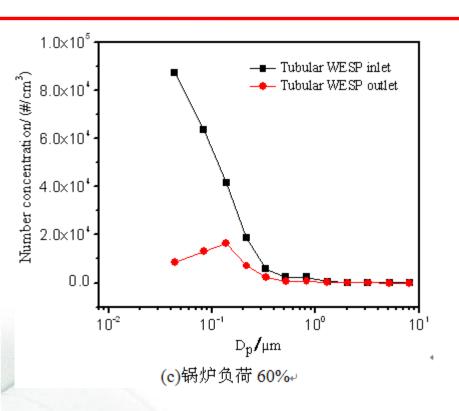
3.5 燃煤电站板式WESP出口逃逸特性

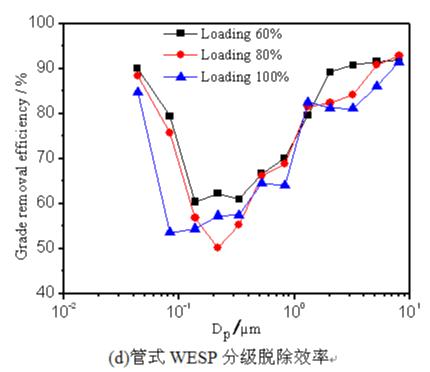


- ➤比集尘面积增大, WESP 出口排放 PM₁₀、PM_{2.5}质量 浓度减小
- ➤板式WESP出口 粉尘排放浓度均 在10mg/Nm³以下

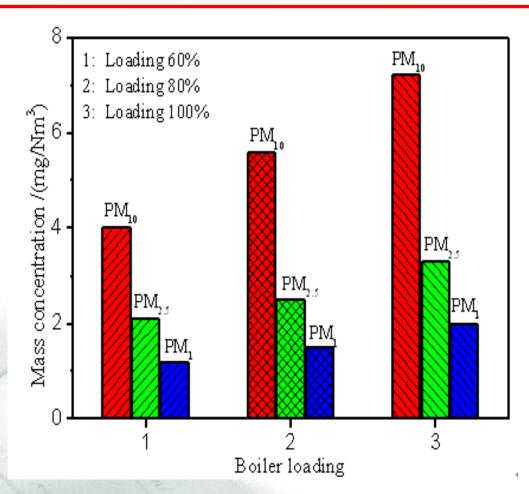
板式WESP出口逃逸PM₁₀、PM_{2.5}质量浓度

燃煤电站管式WESP现场测试结果



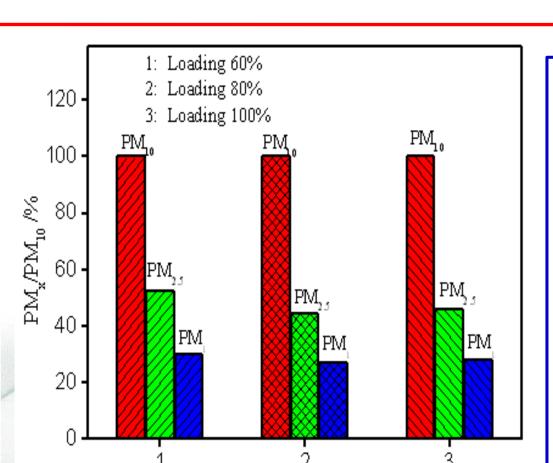

管式WESP进出口细颗粒数浓度分布及分级脱除效率

燃煤电站管式WESP现场测试结果



- ▶管式WESP进口细颗粒数浓度在104~105#/cm3数量级,以超细颗粒为主
- ▶板式WESP出口细颗粒数浓度在103~104#/cm3数量级,呈单峰分布
- ▶锅炉负荷降低,管式WESP对细颗粒分级脱除效率呈增大趋势

燃煤电站管式WESP出口排放特性



- ▶锅炉负荷增加,管式WESP 出口排放PM₁₀、PM_{2.5}、 PM₁质量浓度增大
- ➤管式WESP出口排放PM₁₀ 质量浓度在4.0-7.2mg/Nm³
- ▶管式WESP出口排放PM_{2.5} 质量浓度在2.1-3.3mg/Nm³
- ➤管式WESP出口排放PM₁ 质量浓度在1.2-2.0mg/Nm³

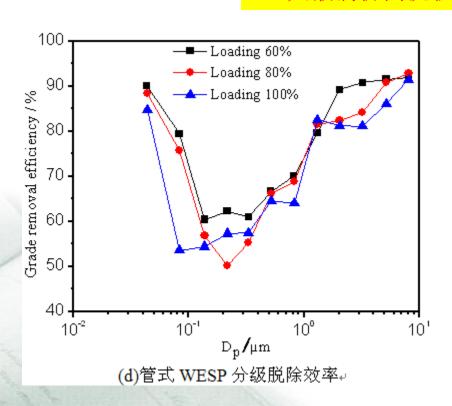
管式WESP出口逃逸PM₁₀、PM_{2.5}、PM₁质量浓度

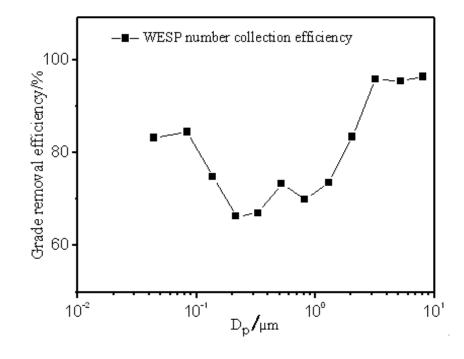
管式WESP出口PM25/PM10,PM1/PM10特性

- ▶管式WESP出口PM₁占PM₁₀ 质量份额为26.8%~30.0%
- ➤WESP出口PM_{2.5}对PM₁₀质量 贡献率为44.6%~52.5%
- ▶WESP出口PM₁占PM₂₅质量份 额超过50.0%
- ➤WESP出口排放PM₁₀中粒径 在2.5~10µm颗粒的质量份额超 过50.0%
- >实现燃煤电站的超净排放, 关键提高WESP对PM₁及粒径 在2.5~10µm颗粒的脱除效率

管式WESP出口逃逸PM_{2.5}、PM₁占PM₁₀的质量份额

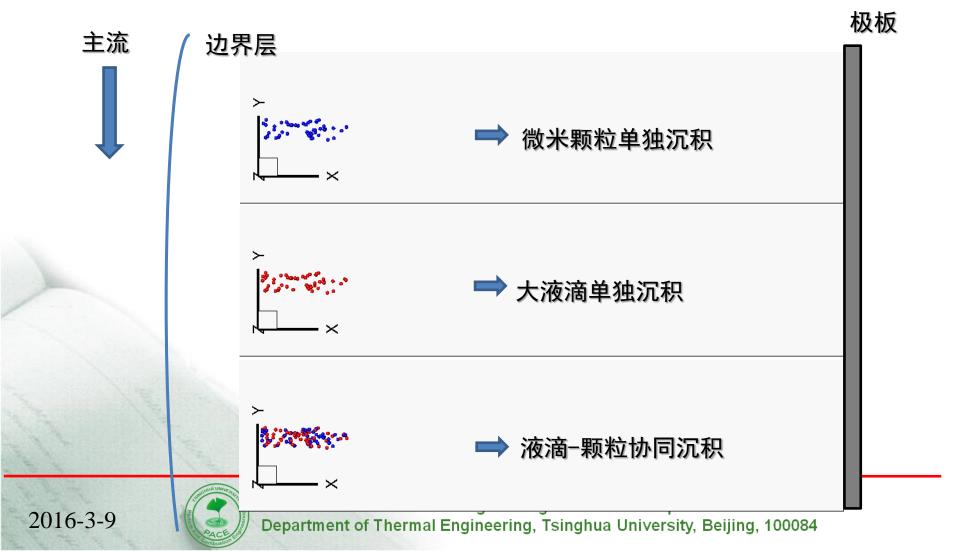
Boiler loading




板式/管式WESP: 逃逸分析

提高穿透窗口的逃逸颗粒捕集效率

- 1. 颗粒团聚技术和相变凝结长大
- 2. 大液滴协同沉积


液相对除尘效果的影响

-液滴-颗粒间流场相互作用

将扰动场叠加后得到协同沉降过程:

(非接触作用)

小结

- ▶电除尘器中细颗粒迁移速度大约在1~10cm/s量级,粒 径在0.1~1μm颗粒的迁移速度处于低谷2.17~3.24cm/s
- ▶燃煤电站WESP虽然存在不稳定性,但在保证良好的设计参数下,采用前干+后湿结合的电除尘方式,粉尘排放浓度基本可控制在10mg/Nm³以下,合理设计可达5mg/Nm³,满足超低排放环保标准
- ▶WESP技术进一步提高: 0.1-1um逃逸窗口的细颗粒物, 仅靠电源改进是不够的,如何组织这类的团聚-相变长大 以及协同沉积更为关键

内容提要

一、排放

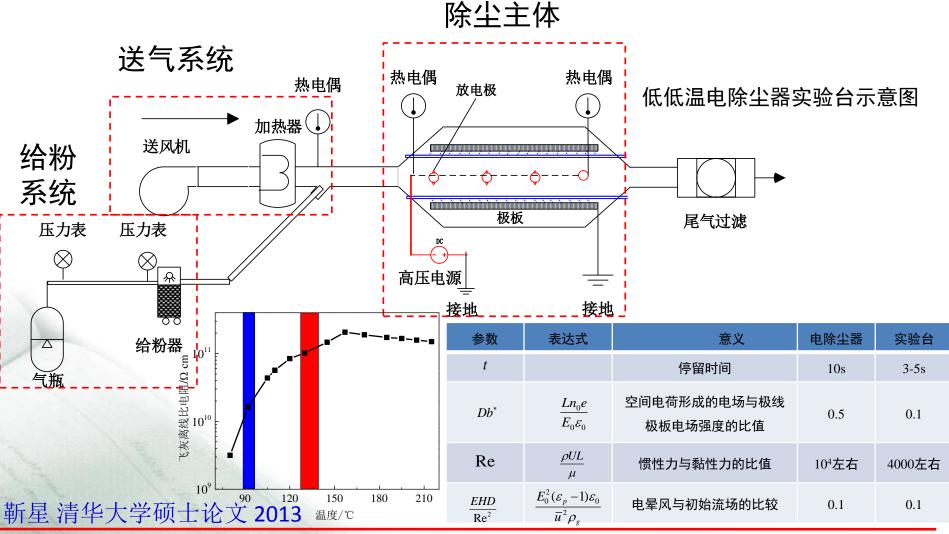
1. 应用背景及研究内容

2. 湿式电除尘器实验室机理研究

二、控制

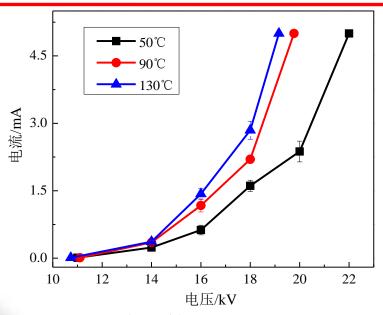
3. 燃煤电厂WESP脱除PM2.5现场测试与分析

4. 低低温电除尘器温度对粉尘荷电及脱除性能研究


5. 低低温电除尘器的现场测试与采样分析

6.主要结论

4.1 温度对粉尘荷电及脱除性能研究

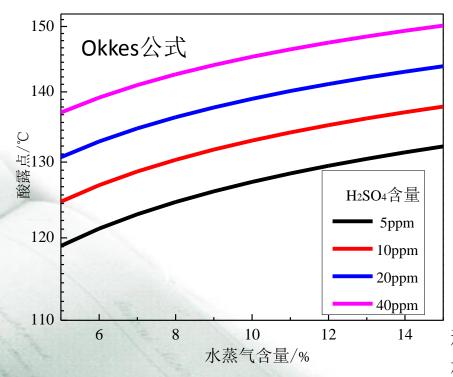


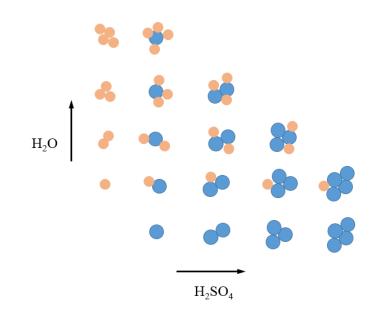
4.2 温度对粉尘荷电及脱除性能研究

温度与放电特性的关系

- 烟气温度升高,电晕电流增大而击穿电压减小:电晕极周围空间电荷密度减小
- 易达到火花放电,对电除尘器的运行不利,这也是电除尘器低低温技术改造的一个性能优势

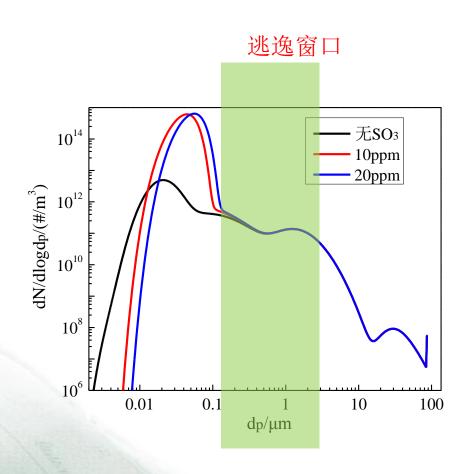
实验工况


研究内容	实验温度	放电电压	除尘风速	测量值
温度与颗粒	90℃	16kV	0.31m/s	
分级脱除效		18kV	0.31m/s	入口、出口 粉尘数浓度
率的关系	130℃	20kV	0.31m/s	
风速与颗粒	90℃	18kV	0.31m/s \cdot 0.35m/s	测点1、2粉
荷电量的关系	130℃	18kV	0.35m/s \cdot 0.40m/s	尘荷电量
温度与颗粒	00°C	16kV	0.31m/s	
荷电量的关	90°C	18kV	0.31m/s	测点1、2粉 尘荷电量
系	130℃	20kV	0.31m/s	



低低温电除尘器的SO3和细颗粒团聚

空气预热器中,烟气在酸露点以上,SO3会与烟气中汽相水分(vapor phase moisture)结 合形成硫酸蒸汽。当烟气温度低于205℃时,几乎所有SO3都以硫酸蒸汽的形式存在。 当烟气温度降到酸露点以下时,水蒸气和硫酸蒸汽会凝结,形成硫酸液滴 (张绪辉 清华大学硕士论文)。



穆勒曲线、Halstead曲线、Okkes公式等都 根据烟气中H₂SO₄蒸汽含量给出了酸露点

SO3和细颗粒团聚

$$\frac{dn_{k}}{dt} = \frac{1}{2} \sum_{i+j=k} \beta(v_{i}, v_{j}) n_{i} n_{j} - n_{k} \sum_{i=1}^{\infty} \beta(v_{i}, v_{k}) n_{i} n_{k}$$

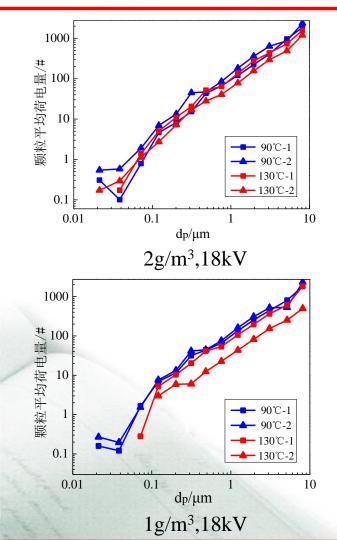
电除尘器中,首先考虑布朗团聚、湍流剪切团聚和湍流惯性团聚等团聚机制。

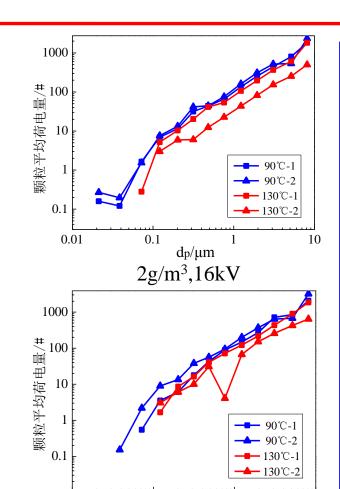

团聚作用:

并非提高穿透床口的 颗粒粒径 而是表面改姓,提高 了比电阻

4.3 不同电压下除尘效率:

逃逸窗口左移并变窄




- > 两温度下脱除效率的最低值均出现在0.1-1μm之间
- > 5130 ℃相比,90 ℃工况下的最低脱除效率对应的粒径向左移动并变窄, 130 ℃下在0.7μm左右出现脱除效率的最低点,而90 ℃则对应在0.3μm左右
- ▶ 20kV下运行稳定性较好,而16kV下各粒径段对应的分级效率波动较大, 这可能是由于电压对空间电荷分布的影响导致的

4.4 温度对荷电量的影响

- 与130℃相比, 90℃下颗粒 的平均荷电 量明显增加
- 随着颗粒停 留时间的增 加,降温对 颗粒的荷电 量影响更为 显著

2016-3-9

0.01

 $d_p/\mu m$

 $1g/m^3$,16kV

0.1

小结

放电特性

烟气温度的降低,电晕电流减少而击穿电压增大,有利于运行

分级效率

▶ 各电压下,90℃和130℃下粉尘脱除的分级效率最低值均出现在0.1-1μm之间,但与130℃相比,90℃工况下的最低脱除效率对应的粒径向左移动并变窄

荷电量

▶ 荷电量在不同运行温度下的差别是沿程变化的,随着 颗粒在电场内停留时间的增加,运行温度对荷电量的 影响越大

内容提要

一、排放

1. 应用背景及研究内容

2. 湿式电除尘器实验室机理研究

二、控制

3. 燃煤电厂WESP脱除PM2.5现场测试与分析

4. 低低温电除尘器温度对粉尘荷电及脱除性能研究

5. 低低温电除尘器的现场测试与采样分析

6.主要结论

5.1 低低温电除尘器的现场测试与采样分析

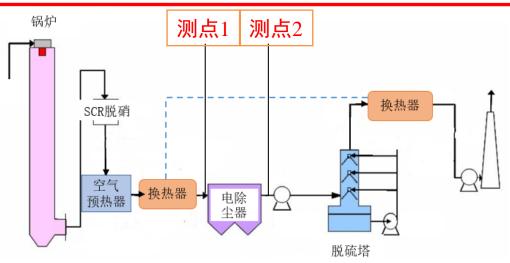


图1 电厂布置及测点位置表1 测试工况

工况	煤种型号	机组负荷	换热器投运状况	烟温/℃
1	1	100%	正常投运	94
2	2	100%	正常投运	93
3	2	100%	未投运	130
4	2	100%	完全投运	84
5	2	50%	正常投运	90

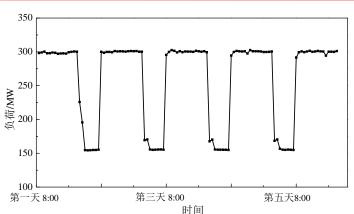
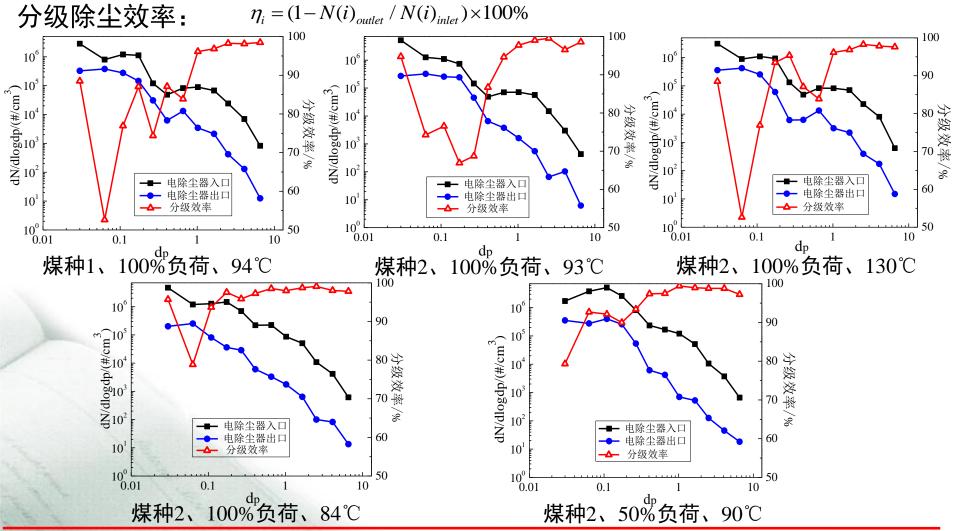
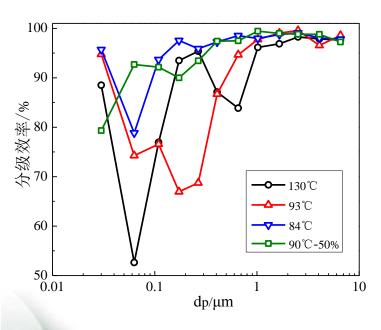


表2 煤种分析


图2 电厂锅炉负荷

参数/煤种	煤种①	煤种②
全水分(%)	5.2	7.3
收到基灰分(%)	33.6	30.3
空干基挥发分(%)	18.2	13.8
干燥基固定碳(%)	45.1	52.5
收到基低位发热量(MJ/kg)	19.25	19.25
收到基硫分(%)	1.6	1.3

进出口数浓度测试



除尘效率比较

43.2
PM2.5
PM10
PM10

PM2.5
PM10

图1 工况2-4下数浓度分级脱除效率

图2 各工况下PM₁₀、PM₂₅的穿透率

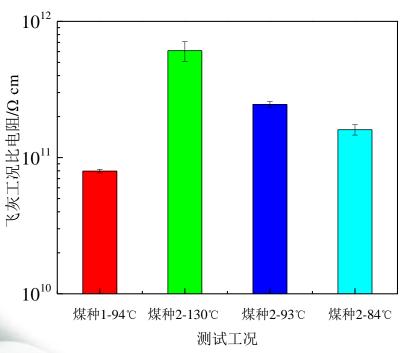
烟温130℃ → 93℃ → 84℃

分级脱除效率整体逐渐增大

运行负荷降至50%

分级脱除效率明显增大

$$\eta = 1 - \exp(-\frac{A}{Q}\omega_{\rm e})$$


分析数浓度结果,得到PM25和PM10的穿透率

降温后, $PM_{2.5}$ 和 PM_{10} 的穿透率明显降低,对细颗粒脱除性能显著提升

飞灰工况比电阻及荷电量

煤种1-94℃ 煤种2-130℃ 煤种2-93℃ 煤种2-84℃
 测试工况
 图1 不同工况下电除尘器入口飞灰比电阻
 烟温在130℃、93℃、84℃时对应比电阻分

烟温在130℃、93℃、84℃时对应比电阻分别 为 6.09×10¹¹ 、 2.46×10¹¹ 、 1.60×10¹¹Ω•cm,降温对粉尘比电阻特性有明显改善。

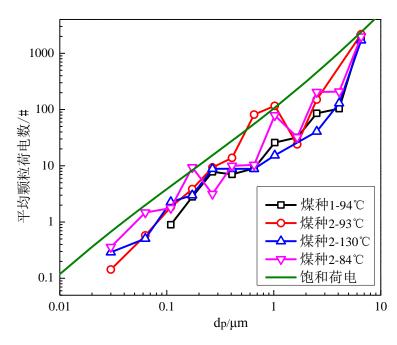


图2 工况1-4 颗粒的平均荷电量

- 颗粒粒径<0.1μm,平均颗粒荷电量小于1,即 部分颗粒未能荷电而逃逸
- 各粒径范围内的颗粒基本难以达到饱和荷电烟温降低后,颗粒平均荷电率明显提升

采样粒径分析与元素分析-重要!

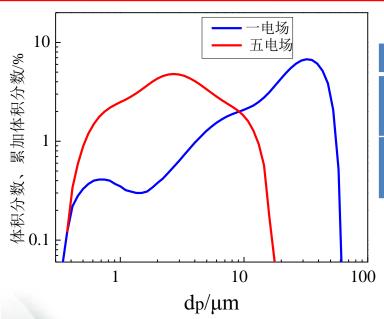


图 燃用煤种1时灰样

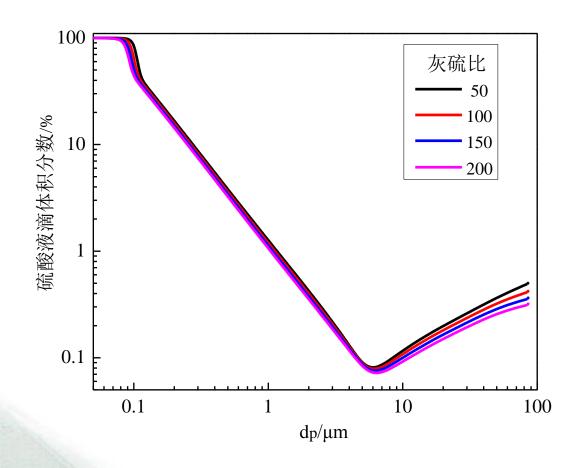
S元素在颗粒中的含量逐渐增加, 尤其是在第四电场灰样中,<mark>这可</mark> 能与SO₃演化产物在不同粒径颗粒 上的沉积有关。

体积分数对应的颗粒粒径

工况	取灰位置	dp(10%)/μm	dp(50%)/μm	dp(90%)/μm
煤种1,94℃	一电场	3.966	22.316	42.214
	五电场	0.842	2.641	7.872
煤种2,93℃	二电场	1.675	3.901	7.671
	五电场	0.803	2.817	5.202

工况1(煤种①-94℃)不同位置灰样元素分析

元素/取灰 位置	换热器前%	换热器后%	1电场%	5电场%
S	0.0769	0.1048	0.1164	1.263


工况2(煤种②-93℃)不同位置灰样元素分析

元素/取灰 位置	换热器前%	换热器后%	2电场%	5电场%
S	0.0859	0.1087	0.1714	1.698

SO₃液滴在不同细颗粒上沉积

小结

脱除效率

▶ 烟温降低后得到改善,效率有明显提升,特别是当烟温降 到84℃时。烟气降温后,PM₁₀和PM_{2.5}的穿透率明显减小。 其排放可达10mg/Nm³以下,协同方式下乃至可达5 mg/Nm³, 但是要是锅炉运行工况和煤质特性而言。

飞灰比电阻

► 烟气温度为130℃、93℃和84℃时,电除尘器入口在工况比电阻分别为6.09×10¹¹、2.46×10¹¹、1.60×10¹¹Ω·cm,改善作用明显。

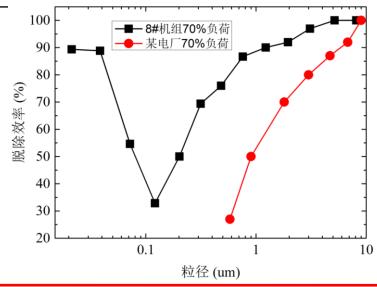
控制条件

低温高湿的条件下,SO3液滴和颗粒物的团聚是决定性因素,灰硫比的调控

内容提要

- 1. 应用背景及研究内容
- 2. 湿式电除尘器实验室机理研究
- 3. 燃煤电厂WESP脱除PM2.5现场测试与分析
- 4. 低低温电除尘器温度对粉尘荷电及脱除性能研究
- 5. 低低温电除尘器的现场测试与采样分析
- 6.主要结论

低低温之后FGD对细颗粒的脱除



		入口 (mg/Nm³)	出口 (mg/Nm³)	脱除效 率(%)
膜法	PM ₁₀	16.68	4.62	72.3
	PM _{2.5}	6.12	3.58	41.5
ELPI法	PM_{10}	17.49	4.38	75.0
	PM _{2.5}	6.39	3.60	43.7

- ➤ 膜法与ELPI法测试 结果吻合良好。
- ▶ 分级脱除效率也与 以往测试相近。

WFGD 前后飞灰颗粒物质量浓度与脱除效率 Mass concentrations of fly ash particles and removal efficiency

日期	锅炉 负荷/%	入口浓度/ (mg/m³)	出口浓度/ (mg/m³)	脱除效 率/%
23	100	86.11	21.30	75.3
28	100	84.70	22.34	73.6
29	70	18.33	6.78	63.0

2016-3-9

6. 主要结论

- hoWESP已测排放可稳定在3-10mg/Nm³之间,WESP出口PM_{2.5}中,PM₁的质量贡献率超过50.0%;实现燃煤电站超净排放,关键要进一步提高WESP对PM₁及粒径在2.5~10 μ m颗粒的脱除效率
- ▶低低温电除尘现场测试结果表明:与常规电除尘器相比,低低温电除尘器对细颗粒的脱除性能显著提升,排放约在4-15mg/Nm³。而且降温对粉尘比电阻及荷电性能有明显改善;但是其更多改善的是穿透窗口内右侧较大粒径部分,对超细部分的捕捉和改善仍不确定。
- ▶比之于荷电方式提高,穿透窗口细颗粒的团聚最为重要!!
- >颗粒物的控制越来越成熟, 技术有保障

6. 主要结论: 燃气轮机, 更长远

燃煤电厂超低排放:

看似是环保要求,其实是不同国家能源 结构(气、油、煤)的市场博弈

- 走向工业锅炉/窑炉, 乃至控制散煤
- 2. 电厂排放烟尘本身砝码越来越小
- 大气二次颗粒物
- 气候和二氧化碳CO。

燃气轮机的NOx排放

	ppm, O ₂ =15%	mg/Nm ³ , O ₂ =15%	mg/Nm ³ , O ₂ =6% (東厂)
北美	2	4.3	10.8
日本	2	4.3	10.8
欧盟	15	32.4	80.9
中国	25	53.9	134.9
长三角	15	32.4	80.9
世界银行	25	53.9	134.9

燃煤

NOx: 50 mg/Nm³ SO2: 35 mg/Nm³

