电站锅炉燃烧调整的若干问题

山 东 大 学 2015 年 8 月

第一部分燃烧调整若干问题

山东大学

2015 年8月

(一) 关于氧量控制

一、最佳氧量权衡: q4、q2、Ifj、NOx 定量: O2每1.0%→ q2, 0.3~0.4%; O2每1.0% \rightarrow Cfh, 0.2~1.0% O2每1.0% → Nfj=8.7*Ijj(六安) 截图1 (NOx) ——低负荷高氧量原理。

二、氧量虚低(高) 莱城,潍坊、青岛、宿州、六安 示例

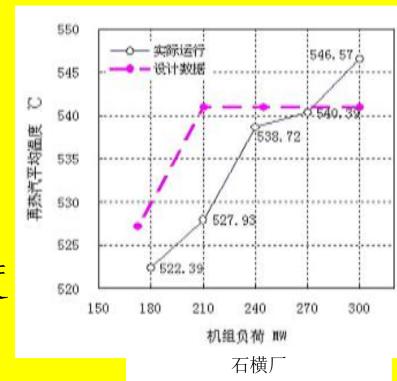
(一) 关于氧量控制

三、氧量离散与自控截图1

四、氧量与汽温 概述 特例—滕州<u>调整</u>

(二) 燃烧与排烟温度

- 一、一次风率、风速
- w1过大,燃烧推迟,tpy↑
- r1 ↑→磨掺冷风↑→ tpy ↑
 印BALCO (中速磨振动,不得不↑ r1)
 tm2=5/3(82-Vdaf)±5 (28%→90±5)


(二) 燃烧与排烟温度

- 二、SOFA和COFA
- SOFA $\uparrow \rightarrow \text{tpy} \uparrow$
- COFA $\uparrow \rightarrow \text{tpy} \downarrow \text{ (EDBALCO)}$

- 三、炉膛负压
- SLT $\uparrow \rightarrow tpy \uparrow$
- ●诊断

(三) 关于汽温问题

- 一、案例
- 石横[](原因)、聊城
- 二、措施
- SOFA风调试
- ——煤质、缺氧、分级深度
- 主汽温度高值影响
- 晚谷低Vad煤;
- 过热器停吹;
- 滑压偏置向负。

(四)飞灰含碳量与煤粉细度检测

- 石横——Cfh普遍高1.5 个点;
- 聊城——Cfh不稳定。

照片(石

横)

照片

(聊城)

----Word1

——资料

(五) 飞灰含碳量与风量分配

一、SOFA风调节原则

- (一) 煤质较好,飞灰含碳量低于2%时,以降低NOX排放浓度为主,SOFA风门开大;飞灰含碳量较高,以降低飞灰为主,SOFA风门关小,降低NOX排放,以获得综合效益。
- (二) SOFA成层投切,可提高动量、降低Cfh和NOx,改善汽温偏差;
- (三)低负荷时氧量充足,宜适当关小主燃烧器二次风小风门;

(五) 飞灰含碳量与二次风分配

- 二、直流燃烧器
- WR (CE)、EI(ALSTON)燃烧器<u>结构</u>
- 周界风调整 (滕州、六安相当旋流)
- 二次风配风: 优化调整

(六) 飞灰含碳量与风量分配

- 三、旋流燃烧器
- TH-NR3燃烧器结构
- 中心风<u>调整</u>(邹县1000MW)
- ●燃尽风风率
- 主燃烧器各二次风门开度
- 燃尽风外 (旋) 开度调整
- 主燃器内二开度调整
- 炉膛充满度 (大连)

(五)关于氨逃逸控制

氨逃逸特性:

- 1、煤质: Sar, (贫煤炉, 预差压都大)
- 2、入口NOx浓度(喷氨量)
- 3、脱硝效率;
- 4、喷氨匹配性(喷氨支管);
- 5、催化剂效率(SCR进口烟温)
 - ——低负荷下适当降低脱硝效率

(五)关于氨逃逸控制

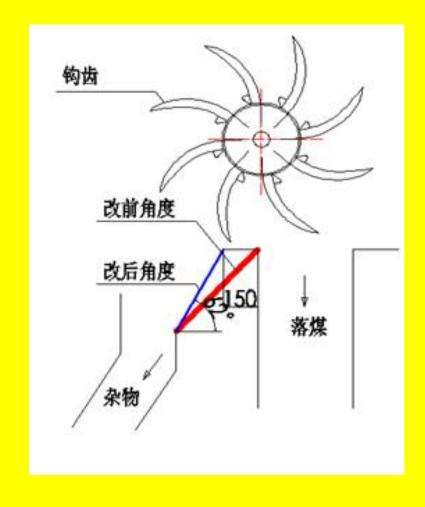
技术措施:

- 1、喷氨支管;
- 2、尽可能燃烧降氮;
- 3、A/B侧烟气偏流;
- 4、低氧量运行;
- 5、避免长时间低负荷运行;
- 6、防止出口氧量虚高。

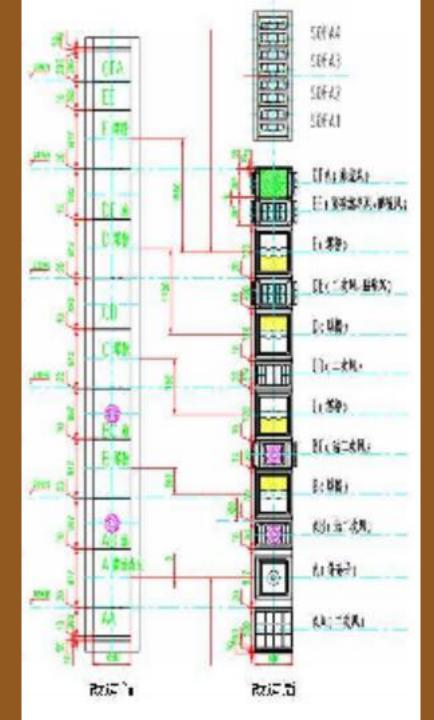
(五)煤粉细度检测

费县

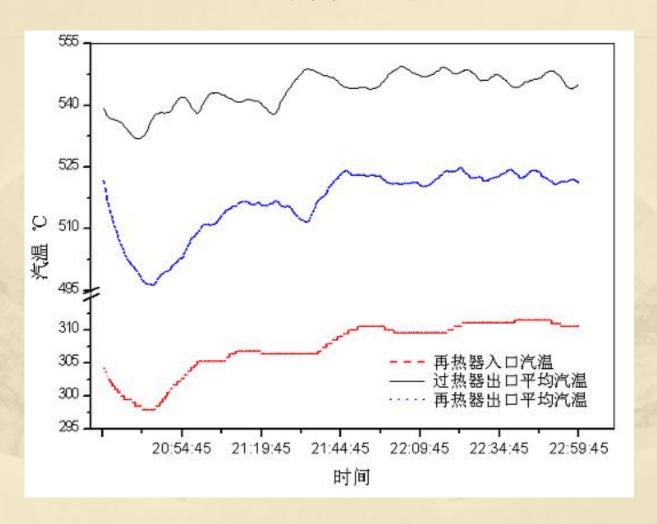
蓬莱


菏泽

(五)煤粉细度检测


返回

六安, 02降低0.6 ($4.6 \rightarrow 4.0$)


- ●Iz ↓ 20A, 174KW, 影响bs约0. 1g/kwh
- ●Cfh ↑ 1.0, 影响yith 0.4, bs约1.1g/kwh,
- ●apy ↓ 0.03, 影响yith 0.25, bs约
- 0.7g/kwh,
- tpy \ 2.5℃, 影响yitb 0.13, bs约
- 0.4g/kwh
- NOx ↓ 30mmg/nm3
- ●结论: Cfh升高1.0为调试临界值

(再汽 _横原二热温石_周

<u>返回</u>

过汽对再汽影响

分级深度对tzr的影响(之一)

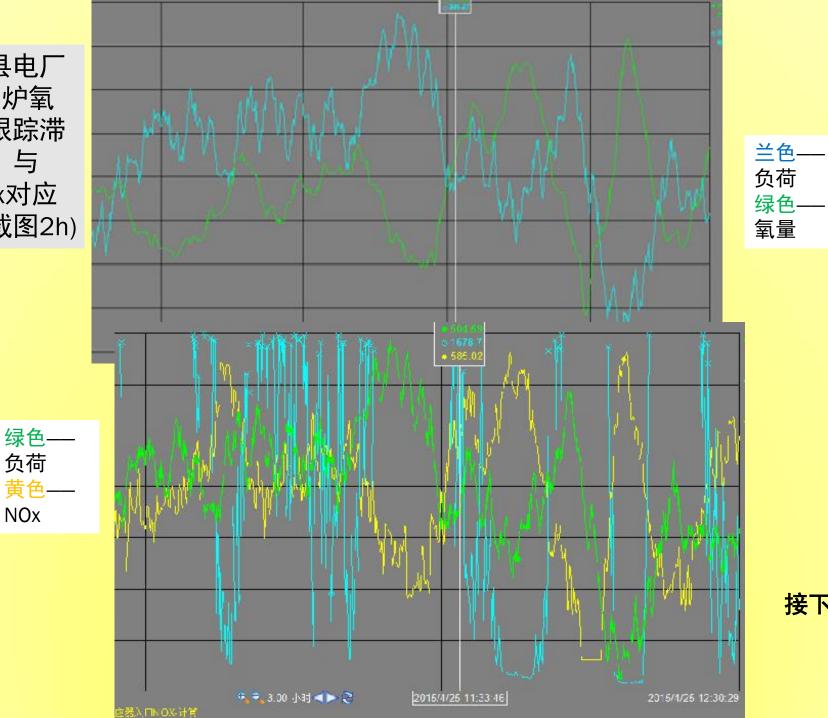
石横4号炉。2014年3月山东电科院

工况	1	2	3
Vdaf, %	38	38	38
负荷 ,MW	270	270	270
O2,%	2.85	2.8	2.9
SOFA开度,%	60	80	100
再热汽温,℃	532.4	537. 9	539. 3
炉膛出口温度℃	1227	1255	1296

接下

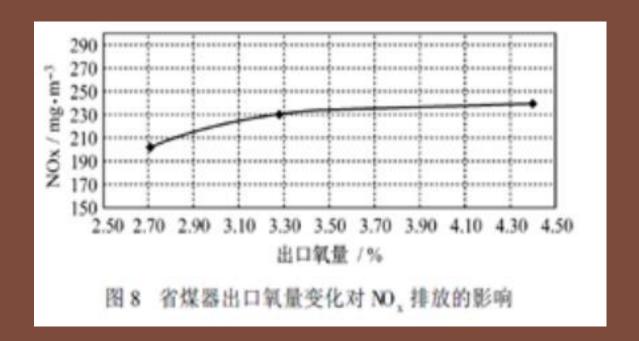
分级深度对tzr的影响(之二)

表1: 聊城 2号W火焰炉SOFA风对再汽温影响 (龙源)


电负荷,MW	SOFA风门开 度,%	再热汽温,℃
457	90/90	521/534
458	49/49	499/505

<u>返回</u>

费县电厂 1号炉氧 量跟踪滞 后,与 NOx对应 (截图2h)


负荷

NOx

接下

<u>返回</u>

镇江,600MW 超临界,EI强化 着火燃烧器, 上锅,阿尔斯 通技术 氧量高,影响 小,氧量低。 影响大

表1 莱城电厂#2炉(2012/03/28) 山东分公司测试

	预热器进口氧量 (表盘值)%	预热器进口氧量 (实测值)%	氧量差值,%
300MW预备	2.73/4.42	3.93/5.19	1.20/0.77
300MW正式	2.75/4.40	3.97/5.17	1.22/0.77

2号炉降低氧量从日常运行值2.5降低到1.16,火焰中心温度提高,cfh降低,炉膛出口烟温降低30度,减温水减20t/h,锅炉效率提高0.8,厂用电降0.34,煤耗降1.71g/kwh

接下 页

表2 潍坊电厂#1炉氧量偏差 (2010/10/10) 西安院测试

	300MW	240MW	200MW
氧量(实测)	3.84/4.01	6.19/6.27	6.57/6.27
氧量 (表盘)	1.79/1.71	3.80/3.73	4.47/4.55
差值	2.05/2.30	2.39/2.54	2.10/1.72

接下页

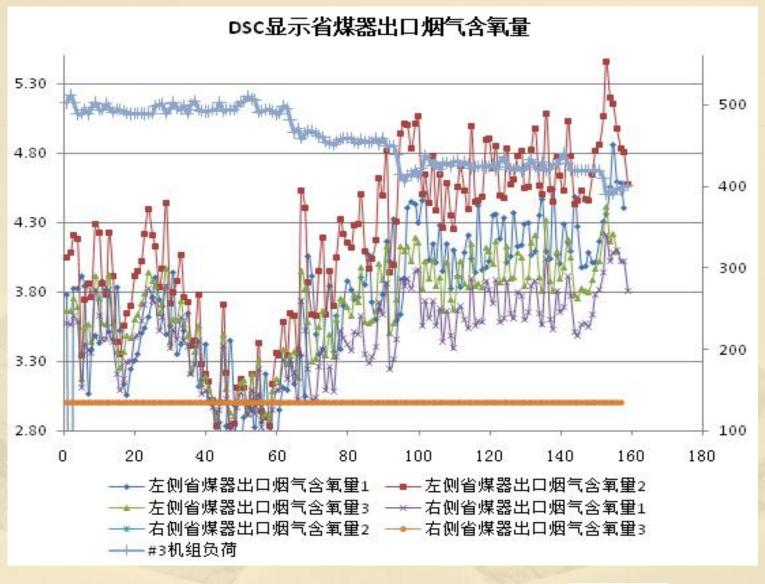
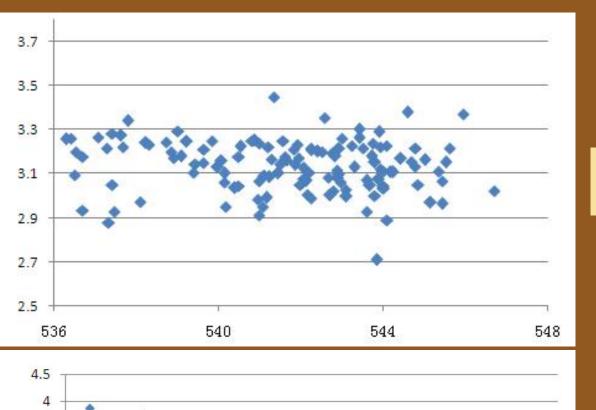
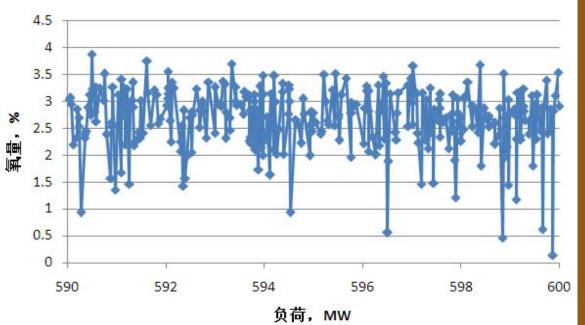
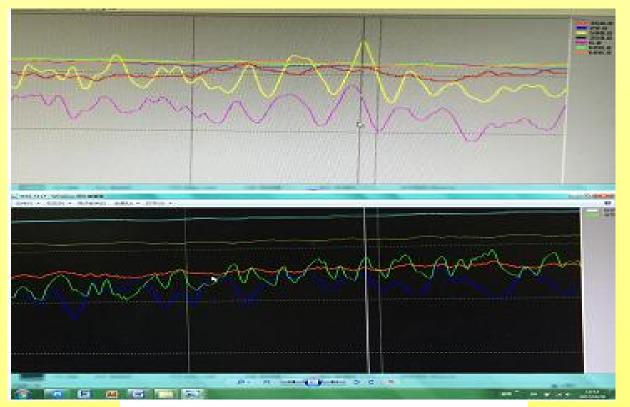

宿州600MW超临界 201405

表3 六安电厂#3炉氧量偏差 (2015/07/22) 上锅厂测试

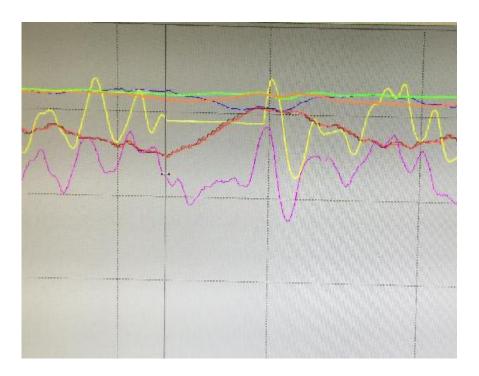

	660MW高氧 <u>量</u>	660MW低氧量
氧量(实测)	3.3/3.0	2.9/2.1
氧量 (表盘)	5.02	4.5
差值	1.9	2.0



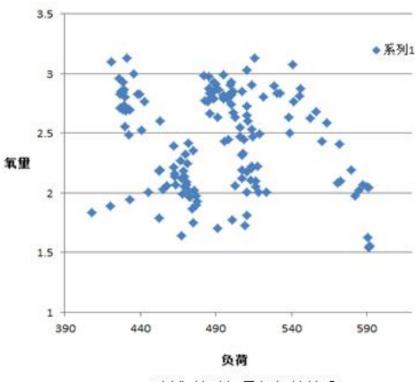
六安电厂660MW超超临界201507 氧量离散



邹县三 期


费县一 期

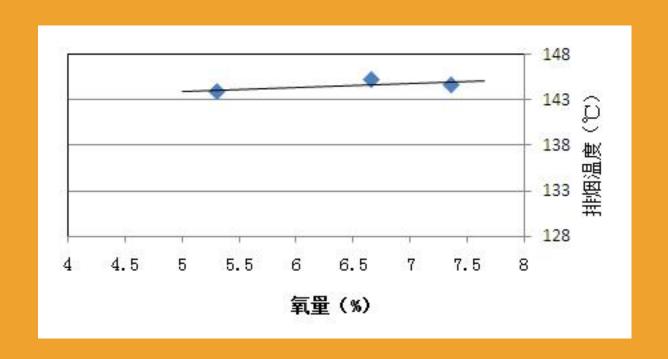
接下



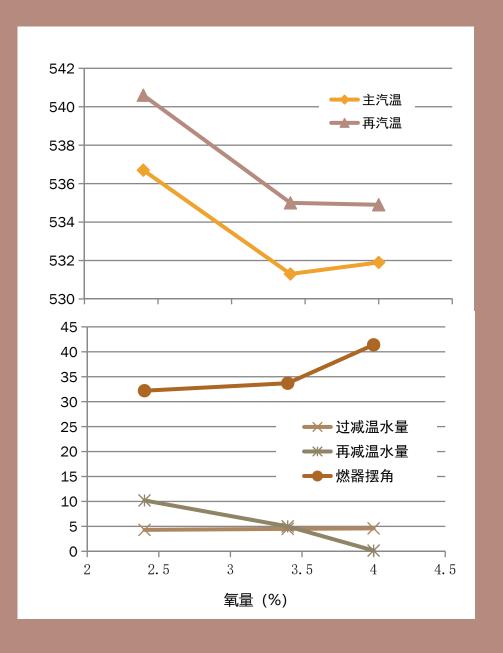
蓬莱公 司

截图 蓬莱 氮氧化物和氧量的波动规律

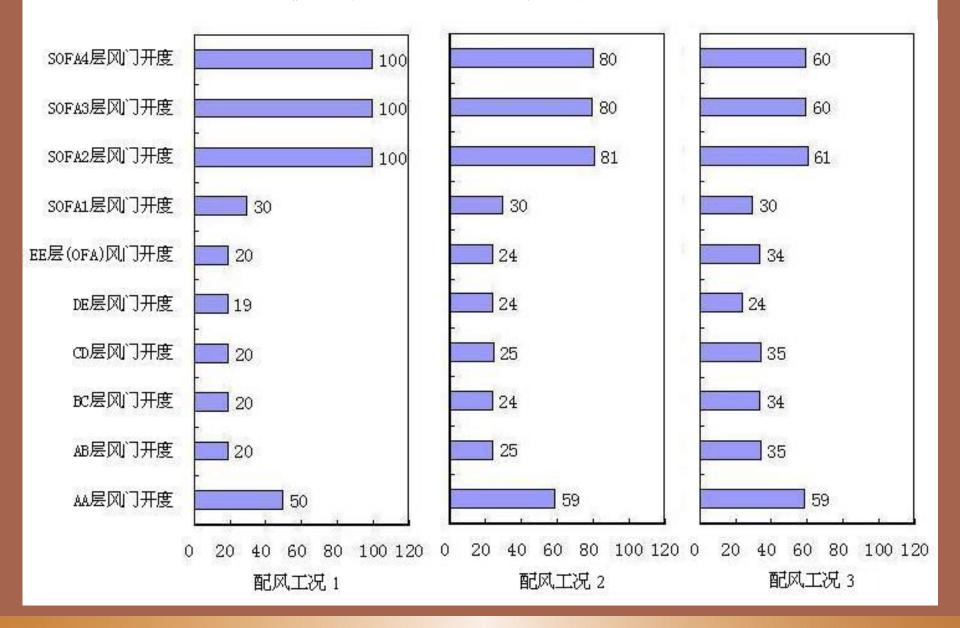
费县氧量-负荷曲线 紫红—负荷;洋红—氧量



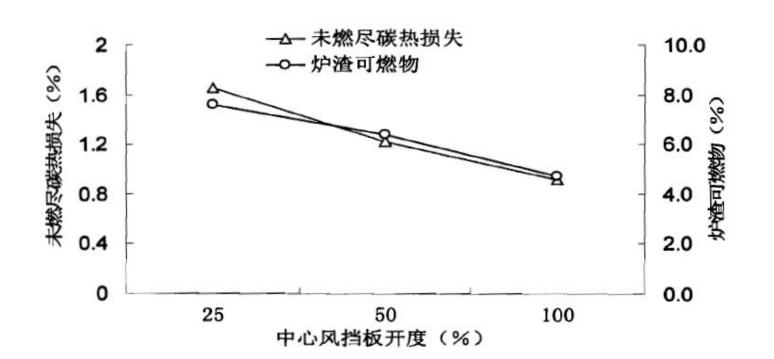
聊城 炉膛氧量与负荷关系



滕州330MW氧量对排烟温度影响



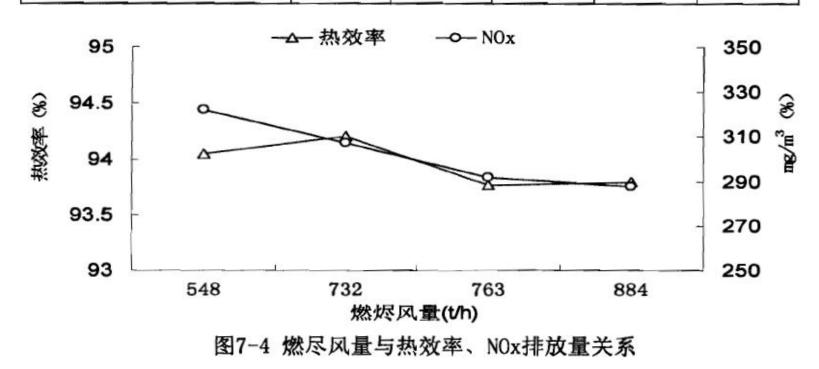
潍坊电厂300MW氧量对排烟温度影响


滕新电300W 氧对温响

石横电厂320MWSOFA风对NOx影响

名 称	270MW①	270MW2	270MW③
配风方式	图5中配风工况1	图5中配风工况2	图5中配风工况3
表盘炉膛出口平均氧量(%)	2.9	2.8	2.85
平均再热汽蒸汽温度 (℃)	539.3	537.9	532.4
NOx排放量(mg/m³ 6%O ₂)	257	263	287

项目	单位	工况 11	工况 12	工况 13
每层中心风挡板开度	%	25	50	100
NOx排放量(O ₂ =6%)	mg/m³	281	286	288
省煤器出口氧量	%	3. 67	3. 12	3.04
炉渣可燃物	%	7. 6	6. 4	4. 7
飞灰可燃物	%	2. 65	2. 5	2. 45
未燃尽碳热损失	%	1. 65	1. 22	0.91
锅炉热效率 (修正后)	%	93. 58	94. 09	94. 5



返回

-	-
77 /	-
w.	U

不同燃尽风量试验数据

数据名称	单位	工况 17	工况 18	工况 14	工况 19
燃尽风量	t/h	548	732	763	884
NOx排放量(O₂=6%)	mg/m³	322	307	292	288
省煤器出口氧量	%	3.45	3.35	3.42	3.66
炉渣可燃物	С	7.4	7.6	4.5	6.5
飞灰可燃物	С	2	2.6	2.5	2.5
锅炉热效率(修正后)	%	94.04	94.2	93.77	93.8

锅炉正常运行时推荐的挡板开度设置

(前墙)

上层	外旋二次风开度	B侧	80	60	50	60	60	40	65	80	A侧
燃烧器	内二次风挡板开度	-	100	100	100	100	100	100	100	100	-
於好る	中心风开度		100	100	100	100	100	100	100	100	
中层	外旋二次风开度	-	80	50	50	60	60	50	65	100	-
燃烧器	内二次风挡板开度	-	100	100	100	100	100	100	100	100	-
於於古古	中心风开度		100	100	100	100	100	100	100	100	
て日	外旋二次风开度	-	80	45	50	60	45	45	60	80	-
下层	内二次风挡板开度	-	100	100	100	100	100	100	100	100	-
燃烧器	中心风开度		100	100	100	100	100	100	100	100	

- 2.由于燃烧器外旋二次风开度由控制气压决定,所以建议间隔一定时间(一周) 对就地开度与表盘指示的进行核实。
- 3.上表中开度的确定,主要是依据是炉膛宽度氧量的均匀分布及对壁温的控制, 并以此来适应制粉系统一次风管出力的偏差,所以建议电厂间隔一定时间(半 年或小修),按上述原则对其开度进行调整。

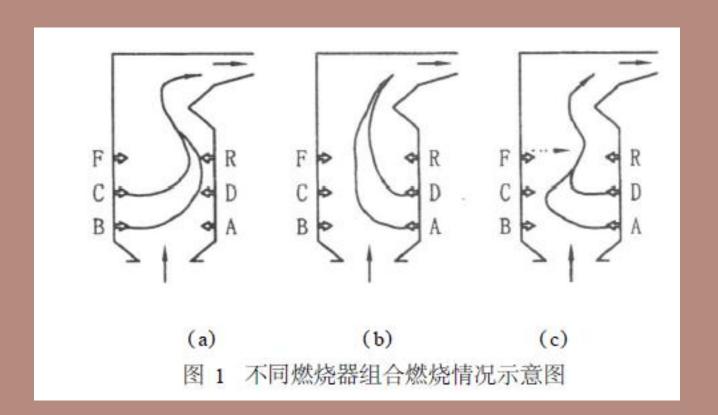
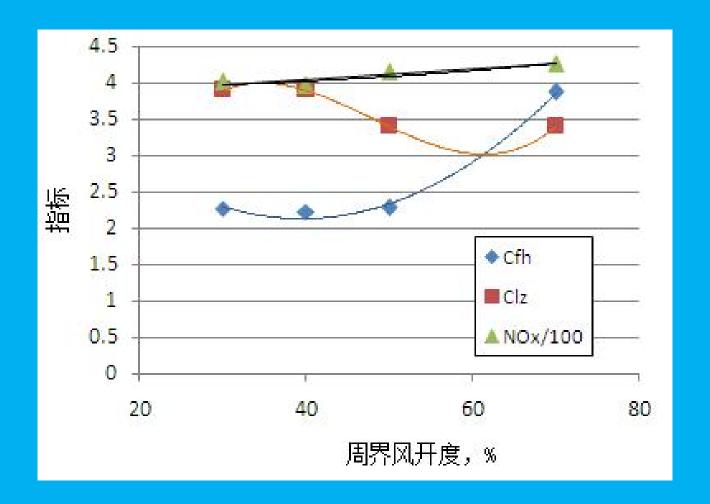
邹电7号。两个途

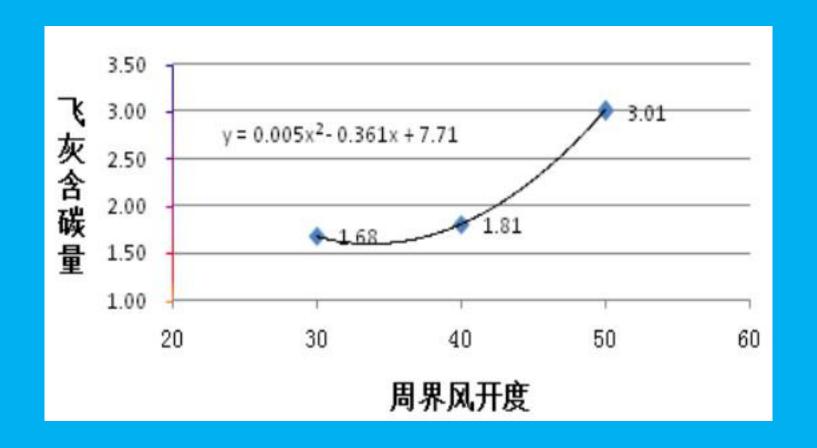
径: 1、一次风缩

孔; 2、二次风适

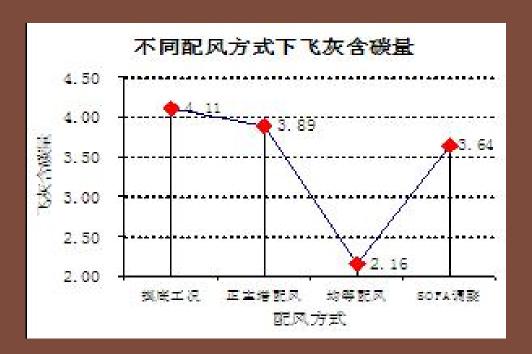
应性偏置

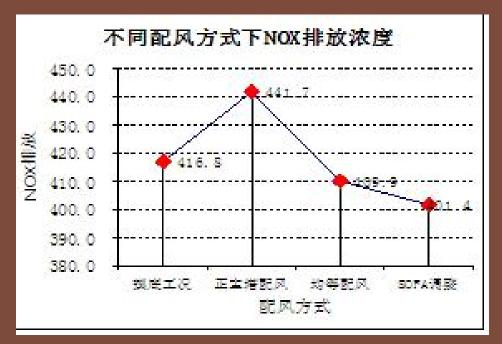
返回


表 4 燃烧控制调整参数

项目	调整前参数	调整后参数
负荷 /MW	270	270
送风量 / (t·h-1)	1 320	1 350
一 二次风母管压力 /kPa	8.6/1.35	8.61/1.35
A/C/D磨煤机出口分离挡板开度 /%	3.0/3.15/3.15	2.75/3.0/3.0
氧量 /%	4.5	4.7
过热器减温水总量 / (t·h·1)	100	40
A/B侧尾部竖井烟温/C	620/515	557/535
A/C/D层二次风挡板开度/%	52/38/42	48/45/36
前 /后墙后风口开度 /%	10/10	25/10
A/C/D磨煤机出力 / (t·h-1)	40/38/40	43 /40 /35
A/B侧排烟温度/C	125/127	123/122
过热汽温/C	543	540
再热汽温 / C	545	541
A/B侧飞灰含碳量 /%	7.87/8.7	4.14/5.36


<u>返回</u>



滕州新源330MW四角布置,周界 风调整201506—300MW工况

滕州新源330MW四角布置,周界 风调整201506—250MW工况

主要优化项: ①周界

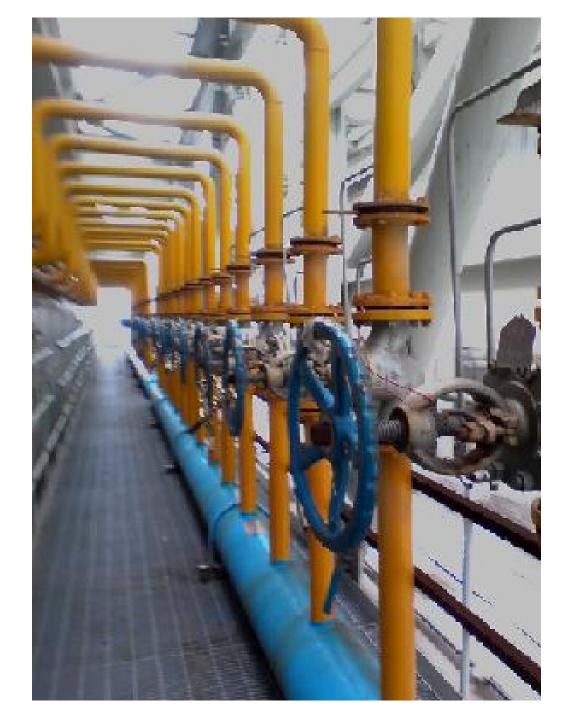
风开度: 70→40,

Cfh: $3.87 \rightarrow 2.28$

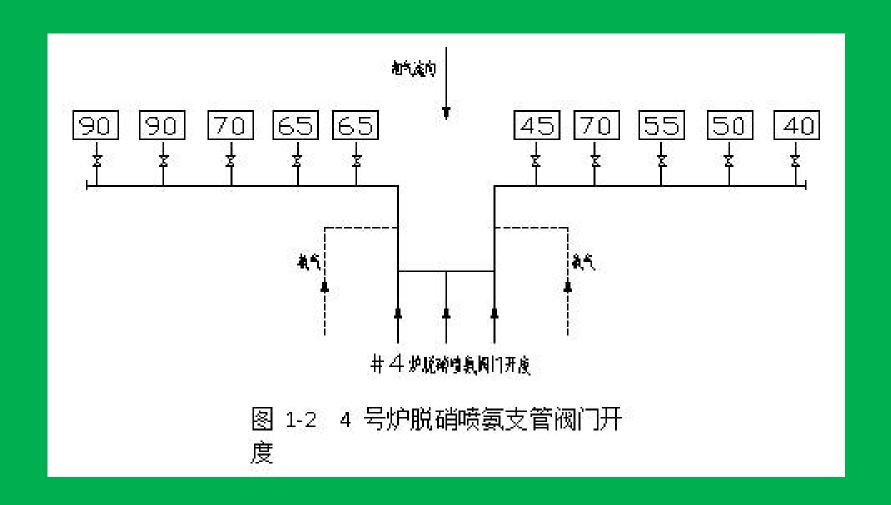
②油二次风: 30

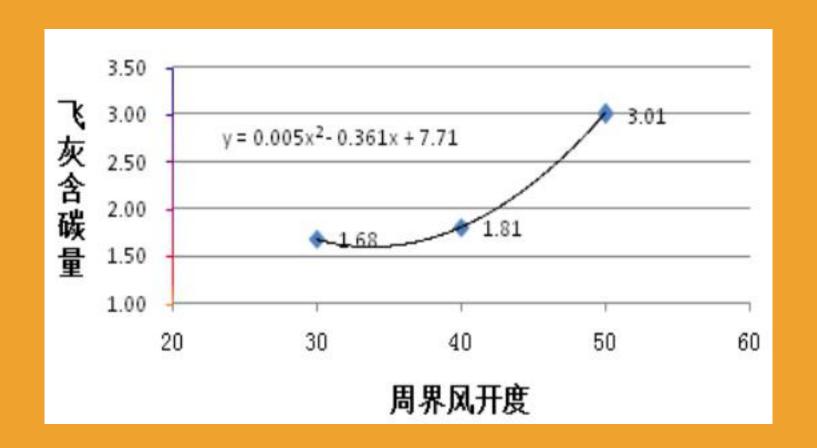
 \rightarrow 40, cfh:

Cfh:3.44→2.16但


NOx升高

③SOFA风: 上三层→


下三层:


Cfh:3.22→2.12

大聊4号炉喷氨格栅分布

滕州新源330MW四角布置,周界 风调整201506—250MW工况