

大型CFB锅炉安装防磨梁后防磨效果 及锅炉运行性能影响研究

肖 平

中国华能集团清洁能源技术研究院

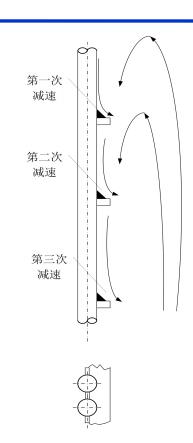
- 一、前言
- 二、安装防磨梁后防磨效果分析
- 三、安装防磨梁后运行参数统计分析

四、结论

一、前言

- ■大型CFB锅炉磨损现状
- ■多阶式防磨梁专利技术原理
- ■防磨梁的应用情况

大型CFB锅炉磨损现状


- CFB锅炉水冷壁磨损问题一直是影响锅炉稳定运行的最突出问题,据统计,水冷壁磨损造成停炉的事故率约是45~50%。传统上,很多电厂CFB锅炉在投运初期采用了喷涂防磨技术,但使用后磨损问题依然突出。
- ■大型CFB锅炉水冷壁磨损实拍照片见下图。

多阶式防磨梁专利技术原理

- 多阶式防磨梁技术原理是通过在水冷壁上布置 多阶防磨梁,主动降低贴壁流的速度,从而达 到降低磨损的目的。
- CFB锅炉炉内颗粒呈环—核状流动。已有的试验研究表明,当锅炉正常运行时,炉内灰颗粒上升到一定高度(Hd)后沿壁面以自由落体速度向下运动,至密相区位置其末端速度约达-8m/s,经过防磨梁多阶降速,最终到达密相区速度可降至-2m/s左右。按此进行理论计算,则受热面管壁的磨损速率可降低至原来的1/64左右。

原理示意图

防磨梁的应用情况

至2011年9月,全国约投运了42台300MW CFB锅炉机组, 其中约有34台锅炉安装了多阶式防磨梁,还有一批50-200MW CFB锅炉也安装了多阶式防磨梁,且相当部分锅炉已经有了 较长的运行时间检验(最长时间接近4.5年)。

烟煤

烟煤

烟煤

烟煤

烟煤

烟煤

烟煤

无烟煤

	HUANE	能清洁能 ENG CLEAN ENERG	ジ Y RESEARCH INSTITUTE
电厂名称	锅炉型号	台 数	燃用煤质
秦皇岛热电厂	DG-1025/17. 4	2	烟煤
北方电力蒙西电厂	SG-1057/17.4-M803	2	烟煤
广东宝丽华电力有限公司	DG1025/17.45-II16	2	无烟煤
云南红河电厂	HG-1025/17. 4-L. HM	2	褐煤
临涣中利发电有限公司	HG-1025/17. 4	2	烟煤+煤泥
云南国电开远电厂	SG-1025/17. 4	2	褐煤
徐矿综合利用发电厂	DG-1025/17. 4	2	烟煤
内蒙古京泰煤矸石电厂	DG-1025/17. 4	2	烟煤
神东电力郭家湾电厂	HG-1025/17.4	2	烟煤
	秦皇岛热电厂 北方电力蒙西电厂 广东宝丽华电力有限公司 云南红河电厂 临涣中利发电有限公司 云南国电开远电厂 徐矿综合利用发电厂 内蒙古京泰煤矸石电厂	电厂名称 锅炉型号 秦皇岛热电厂 DG-1025/17.4 北方电力蒙西电厂 SG-1057/17.4-M803 广东宝丽华电力有限公司 DG1025/17.45-II16 云南红河电厂 HG-1025/17.4-L.HM 临涣中利发电有限公司 HG-1025/17.4 云南国电开远电厂 SG-1025/17.4 徐矿综合利用发电厂 DG-1025/17.4 内蒙古京泰煤矸石电厂 DG-1025/17.4	秦皇岛热电厂DG-1025/17.42北方电力蒙西电厂SG-1057/17.4-M8032广东宝丽华电力有限公司DG1025/17.45-II162云南红河电厂HG-1025/17.4-L.HM2临涣中利发电有限公司HG-1025/17.42云南国电开远电厂SG-1025/17.42徐矿综合利用发电厂DG-1025/17.42内蒙古京泰煤矸石电厂DG-1025/17.42

DG-1025/17.4

DG-1025/17.4

DG-1025/17.4

DG-1066/17.4

SG-1025/17.4

DG-1025/17.4

DG-1057/17.4

DG-1025/17. 45-II16

神东电力米东电厂

内蒙京海电厂

广东坪石电厂

国华宁东发电厂

辽宁调兵山煤矸石法电厂

华电漳平发电有限公司

华电永安发电有限公司

神东电力萨拉齐电厂

10

11

12

13

14

15

16

17

2008.05 (#1)

2008. 10 (#2)

2009. 04

2009.05

2009. 12

2010. 4

2010.7

2010.7

2010. 4

00100

			能源研究院 NERGY RESEARCH INSTITUTE
序号	电厂名称	机组容量/锅炉厂家	安装日期
1	河南省平顶山市瑞平煤有限公司	2×480t/h/东方锅炉厂	2006. 12 (#1) 2007. 02 (#2)
2	山西晋能集团大同热电有限公司	2×480t/h/哈尔滨锅炉厂	2007. 5
3	天津陈塘热电有限公司	1×440t/h/哈尔滨锅炉厂	2007. 7
4	河南中孚电力有限公司二分公司	1×440t/h/上海锅炉厂	2007. 12
5	鄂尔多斯双欣发电有限公司	2×440t/h/济南锅炉厂	2008. 03
6	乌海市君正能源化工有限责任公司	1×470 t/h/东方锅炉厂	2008. 05
7	河南洛阳阳光热电厂	1×440 t/h/东方锅炉厂	2008. 09
8	宁波中石化镇海炼化分公司	1×450 t/hFOSTER WHEELER	2008. 11

2×480 t/h/东方锅炉厂

1×460t/h/东方锅炉厂

1×480t/h/东方锅炉厂

2×690t/h/东方锅炉厂

2×240t/h/济南锅炉厂

2×240t/h/哈尔滨锅炉厂

2×490t/h/东方锅炉厂

2×410t/h/无锡锅炉厂

9 × 9 10+ / 1 / 上海 紀 炉 厂

9

10

11

12

13

14

15

16

华电乌达发电有限公司

华宇铝电有限公司

国华西来峰电厂

中国水电华亭发电厂

滕州低热值热电有限公司

贵州华电毕节热电有限公司

枣庄南郊热电有限公司

神华煤制油有限公司

化化女女女白女阳八三

二、大型CFB锅炉安装防磨梁后防磨效果分析

从原理上讲,多阶式防磨梁技术充分利用了炉内气固两相流的流场特点,降低贴壁流的灰速度和浓度从而主动降低磨损速率。本文统计分析了17个不同电厂共30台机组安装防磨梁后的应用情况,如下表所示。

无影响,先安装的#1炉运

同比安装前运行参数几乎

#1、#2炉磨损轻微,从未 与设计值相比未见明显变 燃烧调整后运行参数更加

与设计值相比,炉膛平均

温度、炉膛出口温度、排

烟温度低于设计值

未见明显影响

行参数优于#2炉

然后#2炉也安装了防磨梁 无变化,环比#2炉也未见

未进行燃烧调整

未进行燃烧调整

未进行燃烧调整

燃烧调整后运行参数更加

合理

合理

防磨效果统计表

•	·· — // L		, –					
电厂名称	机组容量	机组投运时间	安装防磨梁时间	安装前水冷壁磨损情况	安装后受热面磨损情况	安装后对锅炉主要影响	运行调整后锅炉运行情况	
瑞平煤电 135MW		2007.01 (#1)	2006. 12 (#1)	基建期安装	#1、#2炉已投运4.5年,	无影响,优于设计参数	未进行燃烧调整	
	TOOMM	2007.04 (#2)	2007.02 (#2)	坐 炷朔 久 农	水冷壁基本无磨损减薄	プロポクザヴ, <i>ド</i> ル J ・区 FI 参文		
华电乌达 135MW		2007.03 (#1)	2008.05 (#1)	水冷壁磨损严重,炉顶及			炉膛平均温度约增高10℃	
	135MW	2006.11 (#2)	2008. 10 (#2)		有效减轻了侧磨,未再发 生磨损爆管		炉膛出口温度和分离器出 口温度降低,从而排烟温	
内蒙古君正 135	135MW	2006.06 (#1)		炉膛四角及下部管子侧面		由于煤种变化,炉膛平均 温度大幅降低,主、再热		
	MMGCT	2006.06 (#1) 2008.05 (#1		磨损严重,爆管频繁	#2炉随后也安装了防磨梁	· · · · · · · · · · · · · · · · · · ·	主、再热汽温可达设计值	
		2009 05 (#1)	2009 04 (#1)	#1炉基建期安装				

#2炉出现了较为严重的磨

损,爆管1次

基建期安装

基建期安装

基建期安装

水冷壁磨损严重

2010.10 (#2)

2008.09 (#1)

2009.08 (#1)

2009.11 (#2)

2009.09 (#1)

2009.11 (#2)

2009.03 (#4)

2009.07 (#5)

#1、#2炉磨损显著减轻

#1炉磨损得到有效控制,

#1、#2炉水冷壁基本无磨

#1、#2炉磨损轻微,从未

对水冷壁进行检修

对水冷壁进行检修

损

300MW

300MW

300MW

300MW

300MW

2009.07 (#2)

2008.03 (#1)

2009.12 (#1)

2010.02 (#2)

2010.03 (#1)

2010.05 (#2)

2009.07 (#4)

2009.09 (#5)

徐矿煤矸石

广东宝丽华

辽宁调兵山

国华宁东

广东坪石

神东萨拉齐	300MW	2010. 04 (#1)	2009. 12 (#1)	基建期安装	#1炉水冷壁基本无磨损	同比#2炉和设计值,基本 无影响	未进行燃烧调整	
内蒙古京海	300MW	2009. 12 (#1) 2009. 12 (#2)	2009. 09 (#1) 2009. 09 (#2)	基建期安装	#1、#2炉水冷壁基本无磨 损	炉膛出口温度分离器出口 温度及减温水量低于设计 值	燃烧调整后运行参数更加 合理,排烟温度高主要与 空预器受热面偏少和吹灰 效果不佳有关	
神东米东	300MW	2010. 04 (#1) 2010. 05 (#2)	2009. 12 (#1) 2011. 09 (#2)	基建期安装	#1、#2炉水冷壁基本无磨 损	同比#2炉,除炉膛平均温 度约升高5℃外,减温水 量、排烟温度均未见变化	燃烧调整后运行参数更加 合理	
华电苏家屯	200MW	2010. 11 (#1) 2010. 12 (#2)	2011. 03 (#1) 2011. 09 (#2)	#1炉在供暖期间爆管停炉 1次,#2炉爆管停炉1次	投运后防磨效果显著		未进行燃烧调整,因排烟 温度前的烟温测点突然升 高,分析排烟温度高主要 与空预器运行状况有关	
北方蒙西	300MW	2008. 01 (#2)	2011.04 (#2)	#2炉密相区磨损严重	投运后防磨效果显著	各项参数未见变化	未进行燃烧调整	
淮北临涣	300MW	2008. 05 (#1) 2008. 07 (#2)	2008. 04 (#1) 2008. 06 (#2)	基建期安装	#1、#2炉水冷壁基本无磨 损	炉膛出口温度、分离器出 口温度高于设计值	投运初期,排烟温度不高。燃烧调整后各项参数趋 于合理,排烟温度高,主 要与采用脉冲吹灰器吹灰	
秦皇岛热电	300MW		2008. 05 (#5) 2008. 10 (#6)	水冷壁及扩展水冷壁磨损 严重,两台炉累计爆管5 次	投运后防磨效果显著,投 运后即安全运行了283天	炉膛平均温度降低约10℃	由于锅炉带外置床,加大 过热器外置床进灰量降低 床温,势必增加过热器减 温水量,燃烧调整后运行	
国电小龙潭	300MW	2006. 12 (#8) 2007. 02 (#7)	2008. 06 (#8) 2009. 08 (#7)	水冷壁及扩展水冷壁磨损 严重,8号炉爆管3次	投运后防磨效果显著,各 项性能指标显著提高	炉膛平均温度降低约10℃	由于锅炉带外置床,加大 再热器外置床进灰量降低 床温,势必增加再热器减 温水量,燃烧调整后运行	
云南开远	300MW		2009. 09 (#1) 2010. 09 (#2)	#1、#2炉均进行了让管改造,#1水冷壁爆管了3次;#2炉曾在两个月内连续爆管3次,累计5次	投运后防磨效果显著,#1 、#2炉均未再发生爆管事 故	对外置床运行方式进行了 小幅调整后,未见影响	未进行燃烧调整 各项性能指标优良	

- 从表中可以看出,安装多阶式防磨梁的CFB锅炉防磨效果显著,大大延长了水冷壁不爆管周期,提高了锅炉可用率。不仅如此,水冷壁壁厚减薄量非常小,远低于未安装防磨梁前的减薄水平。
- 所有应用该技术的CFB锅炉,包括表中所列的电厂机组,在安装了防磨 梁后,均取得了良好的防磨效果。除了极少量因局部原因偶然爆管外 (如炉膛烟窗附近等气流特别复杂的区域。如安装防磨梁后仍有局部 磨损发生,根据气流情况采取一次针对性的完善措施后,即可解决), 无一发生因水冷壁磨损的爆管事故,电厂对该技术的应用效果普遍予 以了高度评价。

■ 从防磨效果情况角度出发,安装防磨梁是非常理想的选择。 即使部分目前磨损情况并不十分严重的锅炉,由于磨损情况是逐步恶化的,减轻磨损对锅炉的长期寿命无疑是有利的,因此也有安装防磨梁的必要。

三、大型CFB锅炉安装防磨梁后运行参数统计分析研究

- 安装防磨梁改变了炉内物料的循环流动状况,并覆盖了部分受热面, 因此有些电厂担心安装多阶式防磨梁后,锅炉出现了炉膛温度升高、 排烟温度升高、减温水量增大等问题。事实上,把这些问题全部归结 于安装防磨梁的影响也是不科学、不客观的。
- 在运行中,影响炉膛温度、排烟温度和减温水量的因素有很多,如煤 种变化的影响,床压、氧量、一二次风风率、上下二次风比例以及返 料运行状况等运行参数的调整不同而带来的影响。
- 为了全面综合地分析安装防磨梁对锅炉运行性能的影响,对安装防磨梁的大型 CFB锅炉运行参数进行了统计和分析。

运行参数统计表

项目	单位	多阶式防磨梁安装前后运行数据对比(前一列数据为安装前或设计值,后一列为安装后,设计值以"*"为标记)																	
		瑞平	煤电*	华电	乌达	内蒙古	古君正	徐矿州	某矸石	广东	宝丽华	辽宁训	周兵山*	国华	宁东*	广东	坪石*	神东南	≖拉齐*
锅炉型号	/	DG480)/13.7	WG480)/13.7	DG460)/13.7	DG106	5/17.5	DG106	5/17.4	SG106	5/17.5	DG117	7/17.5	DG102	5/17.4	HG106	5/17.5
负荷	MW	150	140.8	149. 9	150. 9	140. 1	146. 4	302. 1	302. 9	299. 7	302.1	300	296. 1	300	280. 9	/	310.8	/	300.7
炉膛平均温度	$^{\circ}$	901	906.8	925. 5	937.8	853. 5	855. 4	892. 2	841	885. 5	879.9	/	808.9	905	897.7	/	904. 7	/	958.8
炉膛出口温度	$^{\circ}$	887	870. 1	910	907. 5	783. 7	823. 3	869. 6	803. 3	847. 8	846.6	/	761	893	856	/	867	/	942. 7
分离器出口温度	$^{\circ}\mathbb{C}$	876	873.3	926. 5	920. 5	/	/	767. 2	809. 4	889	889.3	/	885	843	873.6	/	875. 1	/	936. 4
烟道进口温度	$^{\circ}$	/	777.5	762	769	/	/	738. 6	740. 35	785. 7	788.5	/	/	/	705. 5	/	785. 5	/	843
排烟温度	$^{\circ}$ C	145	139. 5	169	166. 5	159. 3	148	162. 35	157. 8	150. 9	152	145	146. 98	134	131	/	157	/	146. 7
环境温度	$^{\circ}$	20	9	20	20	22	10.5	26	22	23. 7	20.6	20	15	35	18	/	23	/	9
氧量	%	3. 5	3. 95	/	/	0.7	1.9	4. 65	4	3. 2	3	3. 5	3. 51	3.5	3. 2	/	2. 73	/	6. 24
过热器减温水量	t/h	/	2	4. 9	0	0	0	70	0	/	/	/	/	63	38.03	/	56. 3	/	109
再热器减温水量	t/h	/	0	18	16. 4	0	0	0	0	/	/	/	/	0	0	/	0	/	25. 7
主蒸汽温度	$^{\circ}\!$	538	526. 5	535	533	542. 4	533. 5	541.1	532. 5	524	535.7	541	539.6	541	527.8	540	535. 8	/	521.7
主蒸汽压力	MPa	13.7	12.84	13. 4	13. 4	13.51	13. 67	15. 2	16.82	16. 2	16.3	17. 33	15.38	17.5	15.99	17.4	16.76	/	16. 2
再热蒸汽温度	$^{\circ}$	538	505. 5	536	536	535. 5	534. 2	540. 5	529	525. 7	536	541	533. 39	3.74	3. 26	540	537. 9	/	534. 2
再热蒸汽压力	MPa	2. 82	2. 7	2. 82	2. 81	2. 36	2. 49	2. 61	3. 26	/	/	3. 36	3. 16	541	501.2	3. 48	3. 18	/	3. 42
给水温度	$^{\circ}$	234. 6	227. 2	245	246	242. 6	245. 6	263. 3	276. 2	/	/	272	242. 38	276. 4	271.8	282	272. 5	/	273. 7

国电小龙潭

SG1025/17.4

296.5

821.4

732

903. 2

147.1

18

2.05

110.1

23. 1

538. 1

16.75

540.5

3, 53

283.8

297.2

839.9

751.7

919.5

155.3

16

1.4

131.96

10

537.3

16.87

542.5

3, 56

284

华能清洁能源研究院 HUANENG CLEAN ENERGY RESEARCH INSTITUTE

镇海炼化

FW410/13.7

100

939.1

822.5

788.5

135.2

3

4.5

543

10.58

102

899

849

798.7

139

10

3.82

38.15

541.1

10.57

秦皇岛热电

DG1025/17.4

249.4

848.9

825.2

878.6

139.6

3.67

78. 1

0

538.4

16, 61

530

265.7

250.2

860.8

826.4

891.1

129.2

3.46

16.1

0

536.8

16. 2

531

264.9

多阶式防磨梁实施前后运行数据对比(前一列数据为安装前或设计值,后一列为安装后,设计值以"*"为标记)

淮北临涣*

HG1025/17.5

304.8

886.1

927.5

933.3

754.3

168.7

19

3.6

169

44.8

538.5

15, 85

520.5

3.23

279

300

890

890

920

898

136

20

3.5

70.56

0

540

17.4

540

3.53

275

大唐红河

HG1025/17.4

289.1

828.7

802.9

825.3

134.8

22

2.7

68

0

540.8

16.36

539.7

3, 56

247.8

项目

锅炉型号

炉膛平均温度

炉膛出口温度

分离器出口温度

烟道进口温度

排烟温度

环境温度

过热器减温水量

再热器减温水量

主蒸汽温度

主蒸汽压力

再热蒸汽温度

再热蒸汽压力

给水温度

氧量

负荷

单位

MW

 $^{\circ}$ C

 $^{\circ}\mathbb{C}$

 $^{\circ}$ C

 $^{\circ}\mathbb{C}$

°C

°C

%

t/h

t/h

 $^{\circ}$ C

MPa

 $^{\circ}\mathbb{C}$

MPa

 $^{\circ}$

内蒙古京海*

DG1177/17. 4

330

906

906

894

145

20

3.5

59.6

0

540

17.4

540

3.84

282.8

330.1

910

875.5

752

827

170

23

2.7

30.5

0

531.1

17.49

526.6

3.7

279.4

神东米东

DG1065/17.5

293.5

933.7

767

908.5

827.2

147.5

18.5

3.5

67.5

30.5

535.6

15.5

531.2

3.57

279.4

257.2

937.9

897.8

897

795

139.7

10.2

4.55

51.8

13.5

539.4

15.7

536.9

3.2

278.5

华电苏家屯

WG745/13.7

220

876.4

869.5

848.3

680.8

144.1

8

2.25

39.8

25. 2

537.1

12.71

536.7

2.36

252.2

187.5

877

847.6

836.3

670

163.5

27

2.98

39.81

14.8

534. 5

12.72

540

2.03

245.6

北方蒙西

SG1025/17.4

297

894

894

729.1

141.1

-5

3.01

42.5

0

540

16. 24

542. 1

3, 38

268.5

301.5

887. 1

772

881.1

710.7

151.6

18.9

2.99

2

0

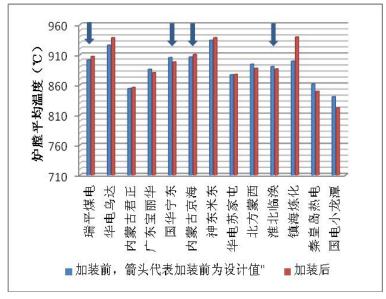
535. 2

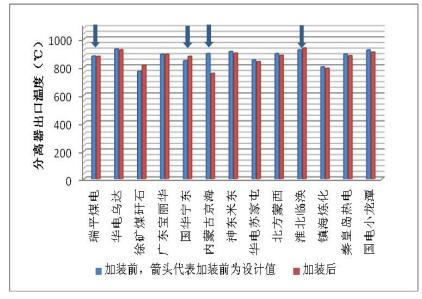
16.9

536.6

3.53

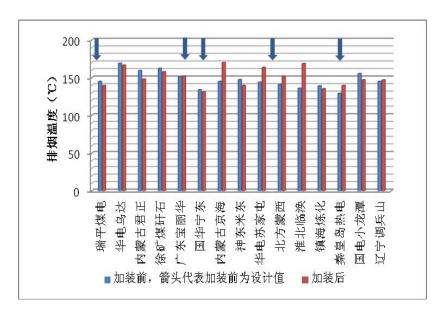
277. 6

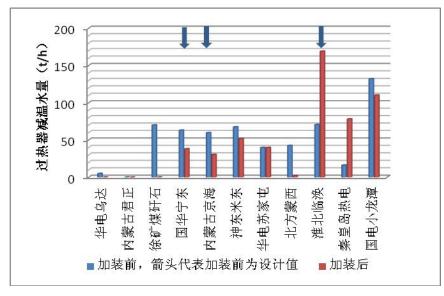

华能清洁能源研究院 HUANENG CLEAN ENERGY RESEARCH INSTITUTE



- 如表所示, 统计分析表包括4台135MW CFB锅炉机组(其中, 瑞平煤电 安装前对比参数为设计值),1台200MW CFB锅炉机组,13台300MW CFB锅炉机组(其中, 辽宁调兵山、国华宁东、广东坪石、神东萨拉 齐、内蒙古京海、淮北临涣等6台锅炉安装前对比参数为设计值)。 从表中数据可以看出, 安装防磨梁后锅炉出力及汽温、汽压等参数能 够达到额定值,对比安装前也没有明显变化。一些电厂的炉膛温度、 排烟温度和减温水量甚至比安装防磨梁前还要低, 当然, 这应当归因 于煤种变化和运行参数变化等的影响。
- 由表还可见,进行安装防磨梁后有针对性的燃烧调整试验对于改善和 优化锅炉各部运行参数,消除或减小防磨梁的影响也是很有必要的。

早期多阶式防磨梁约占水冷壁受热面的4%,技术改进后,防磨梁约占据2.5%左右的水冷壁受热面。表中6个电厂10台锅炉使用了早期防磨梁技术,其它12个电厂22台锅炉使用了技术改进后的防磨梁技术。


- 如表中数据,早期防磨梁有4个电厂炉膛平均温度提高了约15℃,2个电厂(秦皇岛热电、国电小龙潭)炉膛平均温度降低了约15℃,这与进行了外置床回灰调整有关。早期防磨梁6个电厂分离器出口温度基本无变化。技术改进后的防磨梁有3个电厂炉膛平均温度提高约3℃,4个电厂炉膛平均温度降低了约6℃。
- 技术改进后的防磨梁有4个电厂锅炉分离器出口温度提高了约21℃(其中淮北临涣和国华宁东为与设计值进行比较)。有5个电厂锅炉分 离器出口温度降低了约37.7℃(其中内蒙古京海与设计值进行比较降 低了约142℃),不计内蒙古京海,则4个电厂锅炉分离器出口温度降 低了约11.6℃。



- 总体上,图中所统计的13台锅炉中,6台锅炉安装后炉膛平均温度平均提高了约11.3℃,含箭头的代表与设计值进行比较。7台锅炉安装后炉膛平均温度平均降低了约7.6℃。3台锅炉安装后分离器出口温度平均降低了约22.58℃。平均而言,进行燃烧调整后炉膛平均温度升高了不足2℃,分离器出口温度降低了近10℃。
- 事实上,炉膛平均温度、分离器出口温度除了受防磨梁的影响外,还与燃用煤种及燃烧调整方式有关,也即其影响可以通过燃烧调整技术进行补偿消除。因此,辅之以必要的燃烧优化调整技术,安装防磨梁对炉膛平均温度的影响较为有限且可控。

■ 安装防磨梁可能会减少了炉内稀相区的换热份额,普遍担心会进而使得烟气侧,即炉膛平均温度或分离器出口温度升高,尾部受热面进口烟温也会升高,从而导致两种不利影响,一是排烟温度高,二是减温水量增大。但分析表明,上述影响并不显著。

- 如图所示,所统计的15台锅炉中,6台锅炉安装后排烟温度升高,9台锅炉安装后排烟温度降低。其中,3台锅炉排烟温度升高,是与设计相比较(指基建期间安装防磨梁)。事实上即使不安装防磨梁,由于锅炉设计及煤种匹配问题,锅炉排烟温度也已高于设计值。而运行后通过技术改造安装防磨梁的,9台锅炉排烟温度较安装前平均降低了约5℃。
- 当然,不能据此认为安装防磨梁后排烟温度会降低,考察排烟温度的变化,还应综合考虑空预器漏风率、环境温度及燃用煤种的变化,上述因素任何之一都可能使得排烟温度降低。

■ 減温水量的变化情况也类似。如图中所统计的11台锅炉中,2台锅炉过热器减温水量与设计值相比增大(其中1台为与设计值进行比较),9台锅炉过热器减温水量减少。当然,过热器减温水量的变化还与受热面积灰、给水温度等相关,过热器减温水量的增大与减少也应综合考量。

四、结论

■ 多阶式水冷壁防磨梁在水冷壁防磨、提高锅炉可用率方面效果显著。安装防磨梁后炉膛平均温度、排烟温度、过热器减温水量等参数会有一定影响,但影响程度有限。

- 为了进一步消除多阶式防磨梁安装对锅炉运行的影响, 应根据炉型、煤种、锅炉运行现状及实炉磨损状况的不同等, 对防磨梁的布置数量和型式进行不定型合理设计。
- 为更好发挥防磨梁的防磨作用,安装防磨梁后,应进行必要的燃烧优化调整,使锅炉主要运行参数,如风量、一二次风率、内外循环流率、床料厚度等运行在合理的范围内,既可避免如炉膛烟气速度过大等引起的磨损,缓解CFB锅炉炉内固有的磨损,也可消除安装防磨梁对锅炉运行的影响。

谢谢