# 引进型 300MW 汽轮机高压缸改造及效果

# 李殿成,王仲奇

(哈尔滨工业大学,哈尔滨 150001)

摘要:对 300MW 汽轮机高压缸进行了改造。通流部分采用了三维设计技术,在结构上改进了进汽插管、调节级汽封结构和冷却蒸汽流程。西柏坡电厂 1 号机改造后,高压缸实测效率 87.15 %。

关键词:300MW 汽轮机;高压缸;改造;效率

分类号: TK263.1 文献标识码:A 文章编号:1001-5884(2003)03-0145-02

# The Rebuilding of 300MW HP Turbine And Efficiency

LI Dian-cheng, WANG Zhong-qi

(Harbin Institute of Technology, Harbin 150001, china)

**Abstract**: Harbin turbine company has rebuilt its 300MW HP. turbine with 3 dimension method. The inletpipe ,the control stage sealing and IP cooling steam structure were improved. After rebuilt, the tested HP efficiency of XIBAIPO unit 1 is 87.15%, which is best level in the 300MW class turbines.

Key words: 300MW turbine; HP turbine; rebuild; efficiency

# 0 前 言

哈汽生产的 300MW 汽轮机是在 20 世纪 80 年代初引进的西屋公司 300MW、600MW 汽轮机设计制造技术基础上进行优化设计的<sup>[1]</sup>。通流部分优化主要采用可控涡流型,并设计了以 900mm 叶片为末级的新的低压缸模块。通过优化,机组通流部分效率较考核机组有了较大提高。但是,由于受当时技术条件和工艺加工手段的限制,汽轮机尚存在不足之处,在实际运行中高压缸效率偏低<sup>[2-3]</sup>。

# 1 300MW 汽轮机高压缸改进

#### 1.1 通流部分改进

采用了具有后加载特点的新叶型,静、动叶均为扭叶片。 对通流进行了详细的三维有粘分析。多级连算,考虑了级间 的匹配和级与级之间的影响。各级反动度沿径向分布均匀。 各级动、静叶片的几何进汽角能够满足气动设计的要求,动、 静叶片沿径向攻角很小。端壁处二次流损失有所下降。

## 1.2 冷却蒸汽流程的改进

原设计调节级后漏汽先进入高压缸内外夹层,然后一部 分漏汽经过位于高压外缸上部挡汽板前的冷却蒸汽管进入 中压缸冷却转子,一部分漏汽经外缸挡汽板与高压隔板套之 间间隙漏入高排。

根据现场实测,汽缸上部冷却蒸汽管中的蒸汽焓值与高压缸排汽接近,说明实际漏入中压缸的冷却蒸汽至少一半是高压缸排汽。调节级漏汽和 6 根进汽插管漏汽从下缸汇入高压缸排汽。由于从高压排汽来汽焓值较低,比从调节级后

来汽的比容小,同样汽封间隙漏汽量增加12.9%。漏汽量约增加2.35t/h。假定从下缸漏入中压缸的调节级后冷却流量不变,上半考虑比容的影响。由于高排焓值较低,使中压第一级混合后的焓值降低,从混合点到排汽的绝热降减少了3.2kJ/kg,由计算得到机组功率减少了529kW。热耗约增加10kJ/(kW-h)。因此对高中压缸冷却蒸汽流程做如下改进(如图1所示)。

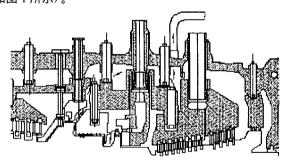



图 1 300MW 汽轮机冷却蒸汽系统改进

取消进入中压进汽侧平衡环的冷却蒸汽管,一部分调节级后漏汽直接进入中压缸起冷却作用。在高中压外缸挡汽板和高压隔板套之间增加一圈0间隙的弹性汽封圈,高中压内外缸夹层内蒸汽通过管道连接至高压排汽管道,并安装阀门调整上下缸温差。

冷却蒸汽系统改造后,在中压进汽平衡环上共有 13 圈 汽封齿起阻汽作用,比原来多了 5 圈汽封齿,在相同蒸汽参数和汽封间隙下,减少漏汽21.6%。

#### 1.3 调节级汽封改进

高压缸调节级动叶叶顶有 1 道镶嵌式单齿径向汽封,叶根有两道汽封。设计径向间隙为2.5mm。改造和新设计的

收稿日期:2003-03-28

作者简介:李殿成(1963-),男,高级工程师,现任哈尔滨汽轮机厂有限责任公司副总工程师,长期从事汽轮机开发研制工作。现在职攻读哈尔滨工业大学工学硕士学位。

300MW 机组在叶顶增加了一道汽封,可减少调节级汽封漏 汽。表1列出了改造前、后对应额定负荷时汽封间隙、齿数 与漏汽量关系。

表 1 调节级汽封间隙齿数与漏汽量关系

|      |          | 原设计(73) | 改造后  |  |
|------|----------|---------|------|--|
|      | 外 径,mm   | 1 100   |      |  |
| 动叶围带 | 汽封间隙 ,mm | 2.5     | 0.75 |  |
|      | 齿 数      | 1       | 2    |  |
|      | 汽封直径 ,mm | 929     |      |  |
| 动叶根部 | 汽封间隙 ,mm | 2.5     | 0.75 |  |
|      | 齿 数      | 2       | 2    |  |
| 总漏汽量 |          | 基准      | 0.24 |  |

#### 1.4 高中压叶顶汽封改进

高中压部分动叶顶部汽封由原来直通式汽封改为密封 效果好的迷宫式汽封,并在汽封圈上增加汽封供汽槽,保证 弹性汽封的汽密性,提高机组效率。

#### 1.5 改进高压进汽插管结构

300MW 高压进汽管原设计为密封环式结构,运行状态 密封环不能形成整圈。有时,密封环装反,起不到密封效果。

在 300MW 改造和新出产机组设计 (73B) 中,由原来带 有两道密封环插管改进为"钟形罩"式结构。这种结构在安 装时,"钟形罩"与其定位套之间有一定的径向间隙,容易装 配。运行时,由于钟形罩与喷嘴室材料的胀差不同,保证在 运行时"钟形罩"能完全密封,避免了进汽插管的漏汽。

# 300MW 汽轮机高压缸改造前后效率比较

#### 2.1 高压缸结构改进对效率的影响

双辽电厂1号机进行了高压缸改造,改造内容主要是结 构改进、没有更换叶片。在不更换汽轮机高压调节级喷嘴情 况下,增加了一道动叶围带汽封,汽封的径向间隙调整为 0.75mm:改进了高压缸的冷却蒸汽系统和高压进汽插管的 结构。双辽电厂1号机大修前、后高压缸效率[4]见表2。大 修后高压缸效率平均提高了3.75个百分点。

双辽 1 号机高压缸效率比较 表 2

| 项 目   | 单位         | 大修前   | 大修后   | 大修前   | 大修后   |
|-------|------------|-------|-------|-------|-------|
| 阀     |            | 5VWO  | 5VWO  | 6VWO  | 6VWO  |
| 负 荷   | 寸 MW       | 293.3 | 300.2 | 318.8 | 322.4 |
| 高压缸效率 | <u>≅</u> % | 79.8  | 83.7  | 80.8  | 84.4  |

## 2.2 高压缸通流改造缸效率比较

西柏坡电厂 1 号机是哈汽生产的完善型 (73 #) 300MW 机组,1995年采用扩大通流方法,解决了出力不足问题,并作 了评价试验。近几年,该机组高压缸效率下降,机组煤耗较 高。2002年,为了解决高压缸效率低问题,对1号机进行了 高压缸改造。改造包括了前面提到的双辽电厂 1 号机的全 部内容,同时,采用新一代300MW通流(73B)对高压各级静 叶、动叶进行了改造更换。并于 2002 年 12 月进行了改造后 的热力试验。表 3 分别列出了该机 1995 年修通流后和本次

改造后的高压缸效率试验结果。

表 3 西柏坡电厂 1 号机大修和改造后高压缸效率试验结果

|           | 1995 年大修后 |       | 2002 年改造后 |       |
|-----------|-----------|-------|-----------|-------|
| 试验时间      | 1995.5    |       | 2002.12   |       |
| 阀 位       | 5VWO      | 6VWO  | 5VWO      | 6VWO  |
| 高压缸效率(管道) | 78.81     | 79.93 | 84.1      | 85.33 |
| 高压缸效率(缸上) | 84.11     | 85.38 | 86.05     | 87.15 |
| 缸效率提高(管道) | 基点        | 基点    | 5.29      | 5.4   |
| 效率提高(缸上)  | 基点        | 基点    | 1.94      | 1.77  |

高排压力和温度分别取汽缸上的测点和高排管道上的 测点,计算了不同的高压缸效率。汽缸上的温度测点位于排 汽区,测量的是流经通流的蒸汽温度。安装于管道上的温度 测点测量的则是汽缸夹层漏汽与流过叶片的主排汽混合后 的温度。不同位置计算出的高压缸效率反映了进汽管和调 节级后漏汽量的多少。

两次试验都是在机组大修后完成的,因此可以认为两次 试验结果的差别就是改造措施产生的效果。比较两次大修 后的高压缸效率,不难得到以下结论:

- (1) 以高排管道上的测点比较,在5阀全开和6阀全开 时高压缸效率分别提高了5.29和5.40个百分点,反映了改造 的总体效果。
- (2) 汽缸上的温度测点测量的是高压缸末级排汽温度, 由此计算的高压缸效率不包括夹层漏汽的影响。因此,两次 结果反映的应该是通流改造的效果。通流改造使高压缸效 率在 5 阀全开和 6 阀全开时分别提高了1.94和1.77个百分 点。
- (3) 在管道上测量的高压缸效率平均提高了 5.35 个百 分点. 紅上测量的通流效率平均提高了1.86个百分点. 由此 可推算出高压缸结构改进使效率提高了 3.49 个百分点。

# 3 结 论

三维设计可以使 300MW 汽轮机高压缸效率提高1.86个 百分点,进汽结构改进和调节级汽封改进减少了漏汽量,使 高压缸效率提高了3.49个百分点。高压缸结构改进加上通 流改造,使高压缸效率提高了5.35个百分点,在6阀全开时 (包含阀门损失)达到了87.15%。西柏坡电厂1号机改造后 的高压缸效率,达到了同类机组的最好水平。300MW 汽轮 机高压缸改造的成功,不仅进一步验证了三维设计对提高效 率的作用,同时也说明结构设计对机组效率的影响。

#### 参考文献

- [1] 朱家驹等. 引进技术 600MW、300MW 汽轮机的国产化和通流 部分优化[J]. 动力工程,1993,13(1)
- [2] 张零一. 提高国产引进型 300MW 汽轮机高压缸效率的探讨 [C]. 第六届汽轮机学术年会论文集,武夷山,2001:286~292
- [3] 朱晓令,宋文希. 国产引进型 300MW 汽轮机组存在的问题及 解决方法[J]. 热力发电,1999,(4):12~15
- [4] 西安热工研究院,双辽电厂1号机大修后试验报告[R], 2002