
YVC032P034R-C4

Hyperabrupt Junction Tuning Varactor

Features

- High capacitance ratio: $C_{0V} / C_{5V} = 3.4$ (typ.)
- Designed for high-volume, low-cost battery applications
- Available lead (Pb)-free and RoHS-compliant MSL-1 @ 260°C per JEDEC J-STD-020
- Available in tape and reel packaging
- Industry Standard DFN1x0.6-2L Package

Functional Block Diagram

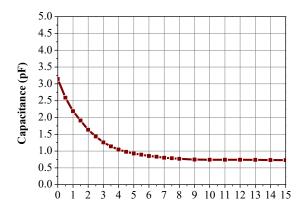
Product Description

The YVC032P034R device is GaAs hyperabrupt junction varactor diodes specifically designed for VCOs applications, The specified high capacitance ratio and low R_s of YVC032P034R make it attractive for low phase noise VCOs in wireless systems up to and beyond 3.5GHz. Applications include low-noise and wideband UHF and VHF VCO for GSM, PCS, CDMA and analog phones.

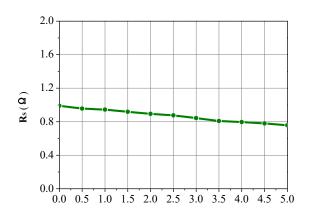
Absolute Maximum Ratings

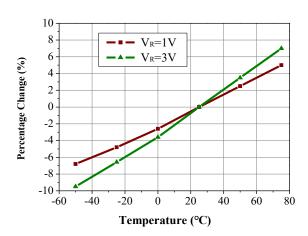
Characteristic	Rating	Unit
Forward current (I _F)	20	mA
Power dissipation (P _D)	250	mW
Storage temperature (T _{ST})	-55 to +150	°C
Operating temperature (Top)	-55 to +125	°C
ESD human body model	Class1A	

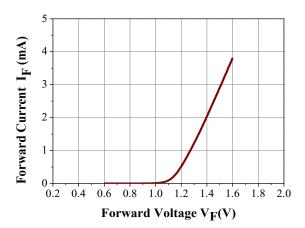
Caution!


Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability.

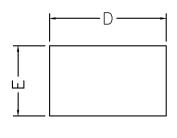
Electrical Specifications@25 $\mathcal C$

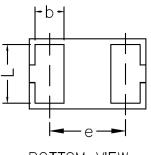

Parameter	Condition	Specification			Unit
		Min.	Тур.	Max.	Offic
Reverse Current (I _R)	V _R = 15 V			20	nA
Capacitance (C _T)	C_T @ 0.5 V, V_R = 0.5 V, F = 1 MHz		2.59		pF
Capacitance (C _T)	C_T @ 5 V, V_R = 5 V, F = 1 MHz		0.93		pF
Capacitance Ratio (CTR)	C _T (0.5 V)/C _T (5 V)		2.78		
Series Resistance (Rs)	V _R = 1 V, F = 100 MHz			0.94	Ω
Breakdown Voltage (V _{BR})	I _R = 10 μA	20			V


Typical Performance Data

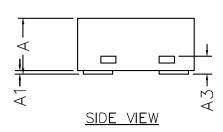

Capacitance vs. Reverse Voltage

Series Resistance vs. Reverse Voltage @ 100 MHz


Relative Capacitance Change vs. Temperature


Forward I-V characteristic curve

Package Diagram


(Units: millimeters)

TOP VIEW

BOTTOM VIEW

COMMON DIMENSIONS(MM)					
PKG.	X1: EXTREME THIN				
REF.	MIN.	NOM.	MAX		
Α	>0.4	_	0.50		
A1	0.00	_	0.05		
А3	0.125REF.				
D	0.95	1.00	1.05		
E	0.55	0.60	0.65		
b	0.20	0.25	0.30		
L	0.45	0.50	0.55		
	_	_	_		
	_	_	_		
е	0.65 BSC				

Part Number Naming Conventions:

(e.g.) Y VC 032 P 034 R - C4

- ① Company: INNOTION
- ② Product ID: (**VC**=Variable Capacitance Diode)
- ③ Capacitance (C_T)@V_R=0V is expressed by three-digit alphanumeric (e.g. **032**=3.2pF, **228**=22.8pF)
- ④ Capacitance Unit: pF
- \bigcirc Capacitance ratio: C_{0V} / C_{5V} is expressed by three-digit alphanumeric (e.g. **034** is C_{0V} / C_{5V} =3.4)
- 6 Ratio
- ⑦ Internal part number