

Gallium Nitride 28V, 15W, RF Power Transistor

Description

Innotion's YP601241T is a 15-watt, unmatched gallium nitride (GaN) high electron mobility transistor (HEMT) designed specifically with high efficiency, high gain and wide bandwidth capabilities with frequency up to 6000MHz.

The transistor is supplied in a plastic SOT-89 package.

Package: SOT89-3 Mark: YP601241T

Typical Performance (T_c=25℃) of Demonstration Amplifier

Bias: VDD=28V, VGS=-2.6V, IDQ=106mA

	Psat(dBm)	Eff(%)	Gain(dB)@Pin=0dBm
DC-3GHz	42.5	69	15
3-5GHz	42.3	65	13.5
5-6GHz	42.0	60	12

Features

- High Efficiency and Linear Gain Operation
- Negative Gate Voltage and Bias Sequencing Required
- Excellent Thermal Stability and Excellent Ruggedness
- Metal Based Package Sealed with Ceramic-Epoxy Lid
- Gold Metallization System: Chip-Wire Bond-Package

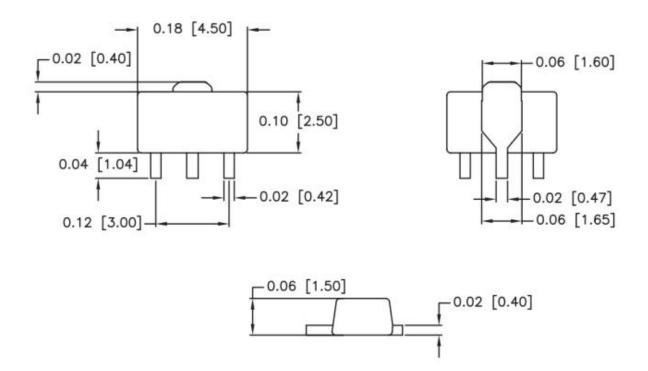
Table3. Maximum Ratings

Rating	Symbol	Value	Unit
Drain-Source Voltage	$V_{ extsf{DSS}}$	+83	Vdc
Gate-Source Voltage	V _{GS}	-10 to 0	Vdc
Operating Voltage	V _{DD}	+32	Vdc
Storage Temperature Range	T _{stg}	-55 to +150	°C
Case Operating Temperature	T _C	+150	°C
Operating Junction Temperature	TJ	+225	°C

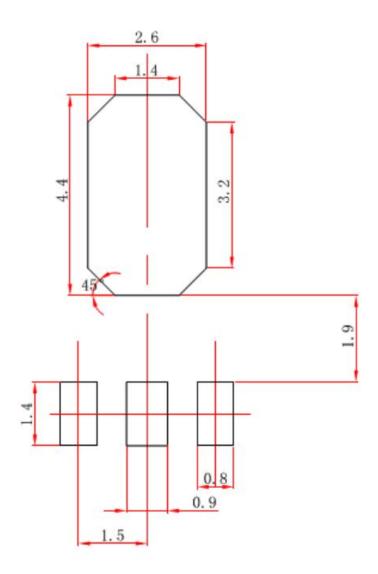
Gallium Nitride 28V, 15W, RF Power Transistor

Table4. Electrical Characteristics

Characteristics	Symbol	Min.	Тур.	Max.	Unit	Conditions
DC Characteristics						
Gate Threshold Voltage	V _{GS(th)}		-3.0		V	V _{DS} =28V, I _D =3.5mA
Gate Quiescent Voltage	$V_{GS(Q)}$		-2.6		V	V _{DS} =28V, I _{DS} =106mA
Drain-Source Breakdown Voltage	V_{BR}		65		V	V _{GS} =-10V,I _{DS} =3.5mA


Table5. DC BIAS SEQUENCING

DC BIAS SEQUENCING				
Turn On GaN Device	Turn Off GaN Device			
1. RF Power Off	1. Turn off RF Power			
2. Set VGS=-5V(Negative Voltage to Pinch	2. Turn off VDD Voltage			
Off)	3. After VDD is Discharged, Set			
3. Turn on VDD Voltage	VGS=-5V			
4. Slowly Increase VGS Until Bias Current	4. Turn off VGS Voltage			
IDQ is Set				
5. Turn on RF Power				


Packaging Diagram

(SOT-89, Units: millimeters)

PCB Land Pattern

