Pb-free & RoHs Product

Features

- 1200~1700MHz Frequency Range
- 30dB Power Gain (Typ.)
- 38dBm Saturation Output Power
- 10dB Input Return Loss
- 3.3~5.5V Supply Voltage
- 12mA Quiescent Current
- Integrated Output Power Detector
- Integrated ESD Protection Unit
- Advanced InGaP/GaAs HBT Technology

16 20 19 18 17 RF OUT NC 1 15 (VCC3) 2 NC 14 **RF OUT** ぼ RF IN 3 13 **RF OUT** 4 12 NC **RF OUT Active Bias** 5 11 NC RF OUT 8 VR1&2 **VCTR**

VCCD VCCB PDET

Functional Block Diagram

Applications

- BDS Satellite Communication and Navigation
- Unmanned Aerial Vehicle System
- 1.4GHz Drone Image Transmission

Product Description

The YP163038-H is a high-power, high-efficiency Power Amplifier optimized for the applications in bands from 1200MHz to 1700MHz (it needs different matching circuit for different frequency range), such as BDS Satellite Communication and 1.4GHz Drone Image Transmission. The Power Amplifier provides a typical power gain of 30dB and saturation power of 38dBm with CW input, typical quiescent bias condition is 5.0V at 12mA. The device is manufactured on an advanced InGaP/GaAs Heterojunction Bipolar Transistor (HBT) process. The YP163038-H is assembled in a 20-pin, 5mm×5mm, QFN package, it is internally integrated with ESD protection unit.

Ordering Information

■ YP163038-H 1.6GHz Power Amplifier Chip

■ YP163038-H-EVB YP163038-H Evaluation Board of 1.4GHz, 1.6GHz

1200-1700MHz 6W GaAs MMIC Power Amplifier

Pin Description

Pin No.	Symbol	Description		
3	RF IN	RF input		
7, 9	VR1&2, VR3	Bias current control voltage		
11, 12, 13, 14, 15	RF OUT (VCC3)	RF output and Supply voltage for stage 3		
16	VCC2	Supply voltage for stage 2		
17	PDET	Power detect		
18	VCCB	Supply voltage for bias		
19	VCCD	Supply voltage for power detector		
20	VCC1	Supply voltage for stage 1e		
1, 2, 4, 5, 6, 10	NC/GND	No connection or ground		
		Power on/off control voltage. Apply >2.5VDC to power down the three		
8	VCTR	power amplifier stages. Apply 0VDC to power up. If function is not		
		desired, pin8 may be connected to GND		
PKG Base	GND	Ground connection		

Absolute Maximum Ratings

Parameter	Symbol	Rating	Unit
Input RF Power	RF IN	+10	dBm
Supply Voltage	VCC1,VCC2,VCC3,	-0.5 to +6.0	V
Supply Voltage	VCCB,VCCD	-0.5 10 +0.0	
Reference Voltage	VR1&2, VR3	-0.5 to +3.0	V
Operating Ambient	т	40 to 140E	°C
Temperature	T _{OP}	-40 to +105	
Storage Temperature	T _{ST}	-40 to +150	°C

Caution! ESD Sensitive Device.

ESD Rating: Class1C

Value: Passes≥1000V min.
Test: Human Body Model (HBM)
Standard: JEDEC Standard JESD22-A114

ESD Rating: Class IV

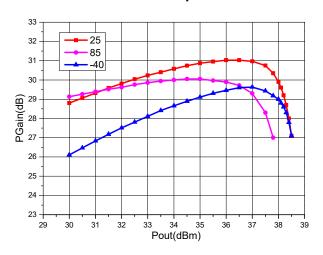
Value: Passes ≥1000V min.

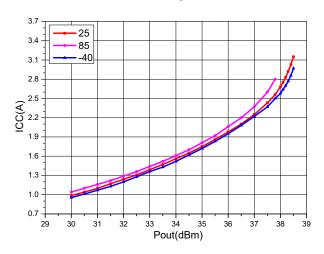
Test: Charged Device Model (CDM)

Standard: JEDEC Standard JESD22-C101

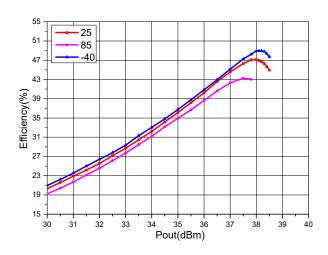
MSL Rating: Level 3 at +260 °C convection reflow Standard: JEDEC Standard J-STD-020

Electrical Specifications

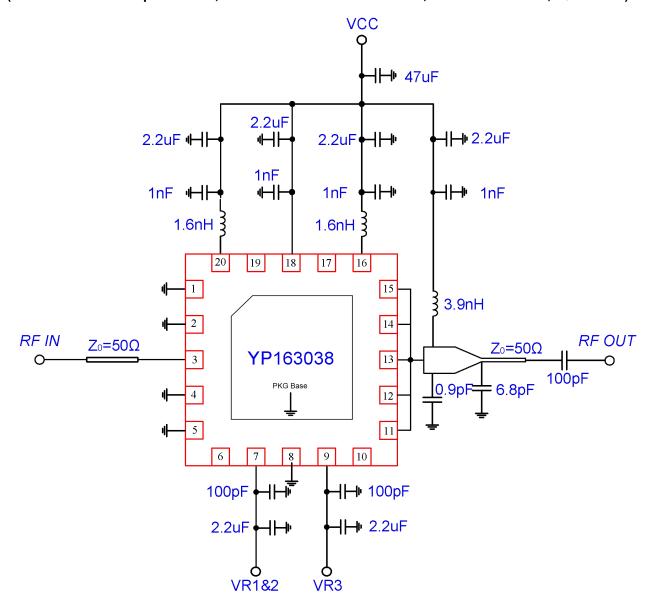

Parameter	Specification		Unit	Condition		
Farailletei	Min.	Тур.	Max.	Offic	Condition	
Compliance and					VCC1=VCC2=VCC3=VCCB=5.0V,	
Nominal Conditions					ICQ=12mA, T _{OP} =+25°C	
Frequency range		1615		MHz		
Saturation output power		38.3		dBm	Pulse Mode: Period=1s, Width=300ms	
Power gain		30.0		dB	@Pout=38.3dBm	
Input return loss		10.0		dB		
Reference Voltage		2.4		V		
Quiescent current, ICQ		12		mA	VR1&2=VR3=2.4V	
Operating current, ICC		2920		mA	@Pout=38.3dBm	

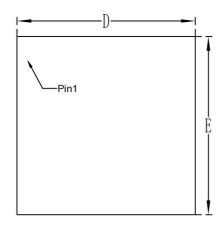

Typical Performance

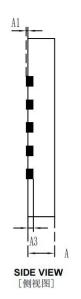
(Test Condition: Freq=1615MHz, VCC1=VCC2=VCC3=VCCB=5V, VR1&2=VR3=2.4V, T_{OP}=+25°C)

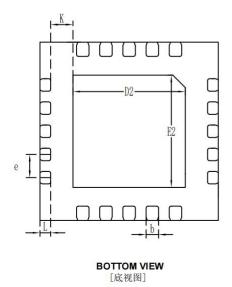

PGain vs. Output Power

ICC vs. Output Power

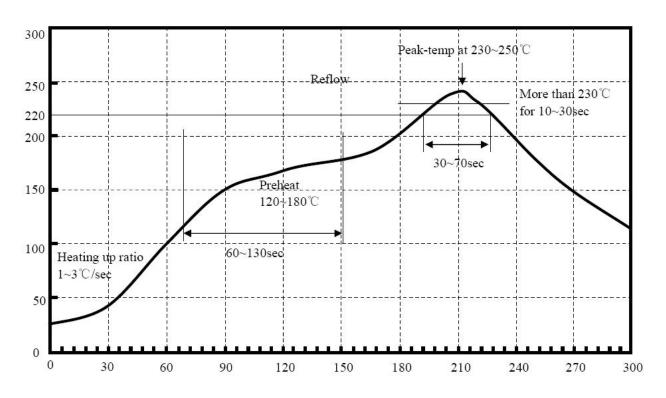

Efficiency vs. Output Power


Evaluation Board Schematic


(Test Condition: Freq=1615MHz, VCC1=VCC2=VCC3=VCCB=5V, VR1&2=VR3=2.4V, T_{OP}=+25°C)



Packaging Diagram


编号	尺寸 (mm)					
洲丁	Min	TYP	Max			
A	0.650	0.750	0.850			
A1	0.000	0.020	0.050			
A3	Ī	0.203	I			
b	0.300	0.350	0.400			
D	4.900	5.000	5. 100			
Е	4.900	5.000	5. 100			
е	I	0.650	I			
D2		3. 150	1			
E2	1	3. 150	1			
L	I	0.300	Į			
K	0.200	0.625	1			
R	0.090	0.125	1			

Note 1

Vias(Φ0.3mm THRU * 25) are required under the backside paddle of this device for proper RF/DC grounding and thermal dissipation. ALL vias are PTH to ground.

Recommended Solder Temperature

Recommended Temperature

Sn95.5Ag4.0Cu0.5

Note 2

If these amplifiers are to be subjected to solder reflow or high temperature processes, they must be baked for 48 hours at 125°C prior to board mount. Failure to comply may result in crack and/or delamination of critical interfaces within the package.