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Figure S1. Optimized structures of defect-free SnO2, SnO2-OVasi, and SnO2-OVin; gray
and red balls represent Sn and O atoms, respectively.
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Figure S2. XRD patterns for SnO> synthesized under different stirring temperature.



and SO6 (c).

Figure S3. SEM images of SO0 (a), SO3 (b),



Figure S4. TEM and HRTEM images of SO0 (a-c), SO3 (d-f), and SO6 (g-i).
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Figure S5. EPR spectra of SO6.
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Figure S6. The electrical resistance of SO0 (a), SO3 (b), and SO6 (c) sensors under air
atmosphere with 37% relative humidity (RH).
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Figure S7. The illustrations of electrons transfer during O2 adsorption and desorption and
the mechanism at an orbital level.
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Figure S8. O 1s and Sn 3d XPS spectra generated for SO0 (a), SO3 (b), and SO6 (c).
The corresponding deconvoluted O 1s XPS spectra of three SnO2 samples are presented

in Figure S7a-c. They reveal the existence of three bands at 533.6, 532.3 and 530.7 eV
which can be assigned to O atoms from adsorbed hydroxyl species, O atoms surrounding

O-vacancy sites and O?~ of the metal—oxygen bonds in the SnOz lattice %, respectively. The

relative ratio of the O vacancy (highlighted in red) and lattice O in the SO0 sample is 37:61,
which is higher than that of the SO3 sample (22:78) and that of the SO3 sample (11:89),
indicating that the formation of an oxygen vacancy on SO0 more favorable at lower

potentials. Furthermore, two peaks assigned to Sn 3ds2 and Sn 3ds2 in SO0 show a red

shift compared with those in in SO3 and SOG6. This lower chemical state of Sn is induced

by the oxygen vacancies resulting in a decrease in the number of coordination O atoms ?,
which is consistent with the obvious peaks at 485.1 eV (Sn**) in SOO.

11



10°
~a— SO0@C¢H,sN
7 E
10 e
<] CeHuN in
@ 108
Q
c
.‘z"w5
3
© 10*
10°
0 200 400 600
Time (s)
d
108
—a— SO0@C,H,NO
a _
% 107{ C:HiNO in
o
c
8
2
0
& 10°
Air in
0 200 400 600 800 1000 1200
Time (s)
9 e
92— SO0@C,H,N
107
G £
s C3HN in
2 10°
S
8
5
@10
4
104
0 200 400 600 800 1000
Time (s)

b Cc
10°®
—o— S00@C,H,;N 10° —o— S00@C,H;N,
Qo a
=101 C4HyN in g i
C,HgN, in
8 8 107 2HgN2 1
5 s
.g 1084 k]
3 3 108
2 10
10°
10°
0 100 200 300 400 500 600 700 0 200 400 600 800 1000
Time (s) Time (s)
e f
108
~o— SO0@C,HNO —o— SO,0@CH,NO
10°
c C,HsNO in ) CH;NO in
o, ©
g 10 e
3 @
] @
] B 107
o (4 10 Air in
105 ﬁ
0 200 400 600 800 1000 1200 0 300 600 900 1200 1500
Time (s) Time (s)
h
10°
o~ SO0@NH,

Resistance (Q)
3

i
o
>

3 Airin

0 1000 2000
Time (s)

3000

Figure S9. Responses of SO0 sensor towards 100 ppm of triethylamine (a), diethylamine
(b), ethanediamine (c), dimethylformamide (d), methylformamide (e), formamide (f),
trimethylamine (g), and ammonia (h) at room temperature and 37-41% RH.
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Figure S10. Responses of SO3 sensor towards 100 ppm of triethylamine (a), diethylamine
(b), ethanediamine (c), dimethylformamide (d), methylformamide (e), formamide (f),
trimethylamine (g), and ammonia (h) at room temperature and 38-39% RH.
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Figure S11. Responses of SO6 sensor towards 100 ppm of triethylamine (a), diethylamine
(b), ethanediamine (c), dimethylformamide (d), methylformamide (e), formamide (f), and
trimethylamine (g) at room temperature and 35-39%gH.
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Figure S12. Gas responses of SO3 sensor towards 100 ppm of each amine gas:
triethylamine (a), diethylamine (b), ethanediamine (c), dimethylformamide (d),
methylformamide (e), and formamide (f) mixing with 10 ppm of methanal, acetone and
ethanol, respectively (at room temperature and 39-41% RH).
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Figure S13. Gas responses of SO6 sensor towards 100 ppm of each amine gas:
triethylamine (a), diethylamine (b), ethanediamine (c), dimethylformamide (d),
methylformamide (e), and formamide (f) mixing with 10 ppm of methanal, acetone and
ethanol, respectively (at room temperature and 39-41% RH).
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17



a TE+r

=3

C 3.2E+6
S00@22% RH SO0@37% RH S00@46% RH
g G 26E+7 )
g E E 2.8E+6
. SE+6
E 6E+7 < 5
2 2 2
4 X 2.4E+7 4
2.4E+6
SE+7
0 50 100 150 200 250 0 100 200 300 0 50 100 150 200
Time (s) Time (s) Time (s)
d 4.0E+5 € 1245 f osoee
S00@55% RH SO0@67% RH —o— S00@78% RH
g g g
9.0E+4 o ]
@ 3.6E+5 8 8 6.0E+3
c c
] ] =
@ o 2
® 32645 @ 6.0E+4 & 40543 | -I
0 50 100 150 200 0 50 100 150 200 250 0 100 200 300
Time (s) Time (s) Time (s)
g 22800
21600 4 SOC0@100 ppm CgHysN

20 30 40 50 60 70 80
Relative Humidity (%)

Figure S15. The baseline resistance of SO0 sensor at room temperature and under 22%
RH (a), 37% RH (b), 46% RH (c), 55% RH (d), 67% RH (e), and 78% RH (f); (g) Gas
responses of SO0 sensor towards 100 ppm triethylamine gas at room temperature and under
corresponding relative humidity.

18



~=0==S00 B (O, 0%)
S03
800 y (lattice oxygen)
3
&
2
(72}
c
2
=
o, (molecular oxygen)
0 100 200 300 400 500 600 700 800 900
Temperature (°C)
o-Quantity a-Peak Active Gas Flow Rate
(mmol/g) (mmol/min)
SO0 1.100e? 2.120e*
SO3 9.037¢ 2.120e*
SO6 6.279¢3 1.403e*

Figure S16. O>-TPD spectra of SO0, SO3 and SO6.



[
o

[}
® 2
E 3.6E-13 4 Gases desorbed from SO6 § 6.00E-12 - Gases desorbed from S03
&
Q346134 ° uw
g s £ 400E121 (@
s2e13 % - ~
) & v
G30e-13d | O 2.00E-12 &
o b -
- A
= z ~ A I -
ra 1-0E-13 ] N x o2 el g
N £ 1.20E-13] IR
E 8.0E-14 - <= @ |
[ -3 [<] @ |w@ = <
© 6.0E-14- ol = > B00E-14+ s
£ Bl jhl e e 2 2w g a 3 %
@ 4-0E-14+ NN NN C 4.00E-141 o W oW
< © & © W W © - @ .
g 2.0E-14 4 s @ o o o |Lmitof E L LD |- LI < o | Limitof
E oee0 L] 200~ B0 B M0 B | Detection . 0-00+00 im0 T e ] Detection
’ N PRI TML OO0
T MO OO RO R SRt R S o Y
L S o R c_,? [FHIFR IR S P o bl
(ﬁ‘ dg,'\ °.$‘; GN Cxﬁ e (L [
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molecules.
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Figure S21. (a-c) In situ Raman spectra of methylformamide-, formamide-, and ethanol-

sensing reactions on SOO.

No Raman features about targeted gases can be observed from these three sensing

processes.
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Figure S22. (a) In situ Raman spectra of triethylamine sensing reaction on SO3; (b)
Evolution of Aig and S; modes and Sn>)*-O vibration during this reaction.

It is observed in the above figure that two peaks at 2892 cm™ and 2876 cm™ are attributed
to —CHz—, one single peak at 2937 cm™ attributed to —CHs and one single peak at 1457 cm
lis attributed to —CN— 3, which indicates the obvious adsorption of triethylamine molecules
on SO3 surface. The Raman features about oxygen species are same as that in

triethylamine-sensing processes on SQOO.
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Figure S23. (a) In situ Raman spectra of diethylamine sensing reaction on SO3; (b)
Evolution of Aig and S modes and Sn**-Q vibration during this reaction.

It is observed in the above figure that two peaks at 2887 cm™ and 2871 cm are attributed
to —CHz—, one single peak at 2937 cm-1 attributed to —CHs and one single peak at 1465
cm is attributed to —CN— 4 , which indicates the obvious adsorption of diethylamine
molecules on SO3 surface. The Raman features about oxygen species are same as that in

triethylamine-sensing processes on SOO.

26



L
77

-
\
*

Sni4x*-0 S, -CH,- 1.0
Maintain Atg CN- -NH
— 0, 10, fir _-?0.9-
-1 . ! @
3|2 T 8 038-
L - I=
2 b o 07
‘0 Rise ! ¥ iii a
c ! b i = 0.6 1
A et g
= |81 n et £ 05
et gt e R Al flOW
s I " o4 upnof\:'mmu
Down ”-..|..._J+."_A*g—.. 03 S,
200 400 600 1500 3000 0 10 20 30 40 50
Raman Shift (cm™) Reaction Time (min)

Figure S24. (a) In situ Raman spectra of ethanediamine sensing reaction on SO3; (b)
Evolution of Aig and S modes and Sn**-Q vibration during this reaction.

It is observed in the above figure that two peaks at 2857 cm™ and 2917 cm™ are attributed
to —CH,—, one single peak at 2925 cm™ attributed to —NH and one single peak at 1466 cm
! is attributed to —CN— ° , which indicates the obvious adsorption of ethanediamine
molecules on SO3 surface. The Raman features about oxygen species are same as that in

triethylamine-sensing processes on SOO.
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Figure S25. In situ Raman spectra of dimethylformamide (a), methylformamide (b),
formamide (c), and ethanol (d) sensing reactions on SO3.

It is observed in Figure S22a that one single peak at 2852 cm™ are attributed to Uc-n, one

single peak at 2931 cm attributed to —CHz and one single peak at 1437 cm™ is attributed

to —CN— ® , which indicates the obvious adsorption of dimethylformamide molecules on

S03 surface. The Raman features about oxygen species from these four sensing processes

are same as that in triethylamine-sensing processes on SOO.
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Figure S26. (a) Schematic diagram illustrating non-specific reaction on SO6 for amine
gases (triethylamine chosen as a representative amine gas and ethanol chosen as a
representative interfering gas); (b) In situ Raman spectra of triethylamine sensing reaction
on SO6; (c) Evolution of Aig and S; modes and Sn“**-O vibration during this reaction;
(d) In situ Raman spectra of ethanol sensing reaction on SO6.

It is observed in Figure S23b that two peaks at 2892 cm™ and 2876 cm™ are attributed to

—CH,—, one single peak at 2965 cm™ attributed to —CHs and one single peak at 1461 cm™

is attributed to —CN— 3 which indicates the obvious adsorption of triethylamine molecules

on SO6 surface. No Raman features about oxygen species can be observed from these two

sensing processes.
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Figure S27. In situ Raman spectra of diethylamine (a) and ethanediamine (b) sensing
reactions on SO6.

No Raman features about targeted gases and oxygen species can be observed from these

two sensing processes.
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Figure S28. In situ Raman spectra of dimethylformamide (a), methylformamide (b) and
formamide (c) sensing reactions on SO6.

No Raman features about targeted gases and oxygen species can be observed from these
two sensing processes.
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Figure S29. CAD-MS results (a) of diethylamine sensing processes on SO0 during a
vacuum condition and the peaks (b) of the m/z attributed to the desorbed gaseous
compounds at the initial stage of these processes.

CAD-MS results from the diethylamine-sensing process on SO0 sensor under vacuum
conditions reveal peaks of m/z attributed to diethylamine fragments (m/z = 58, 42, 30 and
17) and molecules (m/z = 73) (confirmed by database from National Institute of Standards
and Technology , NIST,
https://webbook.nist.gov/cgi/cbook.cgi?ID=C109897 &Units=S1&Mask=200#Mass-

Spec). Meanwhile, mass spectra display information about H.O, CO2, NO and NO:

molecules.
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Figure S30. CAD-MS results (a) of ethylenediamine sensing processes on SOO0 during a
vacuum condition and the peaks (b) of the m/z attributed to the desorbed gaseous
compounds at the initial stage of these processes.

CAD-MS results from the ethylenediamine-sensing process on SO0 sensor under vacuum
conditions reveal peaks of m/z attributed to ethylenediamine fragments (m/z = 42 and 30)
and molecules (m/z = 60) (confirmed by database from National Institute of Standards and
Technology , NIST,
https://webbook.nist.gov/cgi/cbook.cgi?ID=C107153&Units=S1&Mask=200#Mass-
Spec).

Meanwhile, mass spectra display information about H>O, CO,, NO and NO2 molecules.
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Figure S31. CAD-MS results (a) of dimethylformamide sensing processes on SO0 during
a vacuum condition and the peaks (b) of the m/z attributed to the desorbed gaseous
compounds at the initial stage of these processes.

CAD-MS results from the dimethylformamide-sensing process on SOO0 sensor under
vacuum conditions reveal peaks of m/z attributed to dimethylformamide fragments (m/z =
58, 30 and 28) and molecules (m/z = 73) (confirmed by database from National Institute
of Standards and Technology, NIST,
https://webbook.nist.gov/cgi/cbook.cgi?ID=C68122&Units=SI&Mask=200#Mass-Spec).

Meanwhile, mass spectra display information about H>O, CO,, NO and NO2 molecules.
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Figure S32. CAD-MS results (a) of diethylamine sensing processes on SO3 during a
vacuum condition and the peaks (b) of the m/z attributed to the desorbed gaseous
compounds at the initial stage of these processes.

CAD-MS results from the diethylamine-sensing process on SO3 sensor under vacuum
conditions reveal peaks of m/z attributed to diethylamine fragments (m/z = 58, 42, 30 and
17) and molecules (m/z = 73) (confirmed by database from National Institute of Standards
and Technology , NIST,
https://webbook.nist.gov/cgi/cbook.cgi?ID=C109897 &Units=S1&Mask=200#Mass-

Spec). Meanwhile, mass spectra display information about H.O, CO2, NO and NO:

molecules.
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Figure S33. CAD-MS results (a) of ethylenediamine sensing processes on SO3 during a
vacuum condition and the peaks (b) of the m/z attributed to the desorbed gaseous
compounds at the initial stage of these processes.

CAD-MS results from the ethylenediamine-sensing process on SO3 sensor under vacuum
conditions reveal peaks of m/z attributed to ethylenediamine fragments (m/z = 42 and 30)
and molecules (m/z = 60) (confirmed by database from National Institute of Standards and
Technology, NIST,
https://webbook.nist.gov/cgi/cbook.cgi?ID=C107153&Units=S1&Mask=200#Mass-

Spec). Meanwhile, mass spectra display information about H.O, CO2, NO and NO:

molecules.

36


https://webbook.nist.gov/cgi/cbook.cgi?ID=C107153&Units=SI&Mask=200#Mass-Spec
https://webbook.nist.gov/cgi/cbook.cgi?ID=C107153&Units=SI&Mask=200#Mass-Spec

20 40 60 80 100
m/z
b ® 3.00E-11
CeHqsN & — Initial
18
=
g X
S 2.00E-114
=
s o
NO [ 30
=}
S 1.00E-11- 1 /
(72}
Qo
< & @
58 86
& 0.00E+00 / L—A -, e
H,0 0 20 40 60 80 100

m/z

Figure S34. CAD-MS results (a) of triethylamine sensing processes on SO6 during a
vacuum condition and the peaks (b) of the m/z attributed to the desorbed gaseous
compounds at the initial stage of these processes.

CAD-MS results from the triethylamine-sensing process on SO6 sensor under vacuum
conditions reveal peaks of m/z attributed to triethylamine fragments (m/z = 86, 58, 30 and
17) (confirmed by database from National Institute of Standards and Technology, NIST,
https://webbook.nist.gov/cgi/cbook.cgi?ID=C121448&Mask=200#Mass-Spec).

Meanwhile, mass spectra display information about H>O, CO. and NO2 molecules.
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Figure S35. Evolution of SO0 sensor resistance as injection the flow of diethylamine (a),
ethanediamine (b) and dimethylformamide (c) gases into vacuum conditions.
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Figure S36. Evolution of SO3 sensor resistance as injection the flow of diethylamine (a)
and ethanediamine (b) gases into vacuum conditions.

39



108 1

10°+

Resistance (Q)

10+

100 ppm CgzHzN
Room Temperature
RH: N/A

Vacuum: 1Pa
Room Temperature
RH: N/A

1.1E+4 €—

300 600 900 1200 1500 1800
Time (s)

Figure S37. Evolution of SO6 sensor resistance as injection the flow of triethylamine gas
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Figure S38. Photo of the device of GS-MT mini-Multi-functional Probe Station (a) and
teat chamber (b).
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Figure S39. Photo of intelligent gas distribution system.
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Figure S41. Photo of the customized chamber for electrical resistance measurements under
vacuum conditions.
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Table S1. Properties of various materials used for triethylamine gas.

Gas
CsHisN Working response Selectivity
Group
Material Conc. Temp. (Ra/Rg, (Response
(reference)
(ppm) (°O) Rg/Ra, ratio)
Ia/Tg)
Geyu Lu
. NiO/NiFe 04
(ACS Sens. 2022, 7, ) 50 300 9 1.6
fiber-in-tube
995-1007)
Peng Sun/Geyu Lu )
In203-N10
(ACS Sens. 2021, 6, ) 100 200 33.9 34
composites
3451-3461)
Dongjiang Yang/Jun
Zhang hollow SnO,
100 50 270 N/A
(ACS Sens. 2017, 2, microfiber
897-902)
Jun Zhang Single atom Pt-
(Mater. Horiz., SnO; ultrathin 10 260 136.2 10.9
2020,7, 1519-1527) films
Jun Zhang
(ACS Appl. Mater. porous SnO»
10 RT 150.5 79.2
Interfaces 2020, 12, thin films
20704—20713)
Sandeep Sharma
MoSe>/Mo0O3
(ACS Sens. 2023, 8, . 10 20 3 2.78
Composites
3146-3157)
B. T. Jonker
Monolayer
(Nano Lett. 2013, 100 RT 14.8 1.1
MoS:
13, 668—673)
Liuyang Pt-
Zhang/Jiaguo Yu functionalized
100 200 242 60.5
(Sens. Actuators, B ZnO
2021, 331, 129425) microspheres
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nitrogen-doped

Han Jin/Ling Zang
carbon shell-
(ACS Sens. 2020, 5, 100 260 13.6 4.5
coated a-Fe>O3
571-579) )
nano-olive
Shantang Liu
hierarchical
(Cryst. Growth Des.
SnO» 100 70 35.01 11.0
2020, 20,
nanostructures
2742-2752)
Liping Zhu
(Sens. Actuators, B Co0304 films 100 200 230 2.3
2022, 368, 132147)
Peng Son
g g ZnO/MOO3
(Sens. Actuators, B 50 180 280 62.2
heterostructures
2023, 379, 133239)
Guodong Wang
PdO-ZnO-In203
(Sens. Actuators, B 50 250 386 51.5
nanofibers
2021, 343, 130126)
Sukhwinder
Singh/Hyoun Woo Multiwalled
Kim Carbon 10 RT 10 2.5
(ACS Sens. 2020, 5, Nanotubes
571-579)
Shun Mao Pt-
(ACS Sens. 2022, 7, Functionalized 10 RT 6 3
1874—1882) Ti3CoTx
Lihua Huo
(Sens. Actuators, B a-MoOs 100 250 416 2.2
2015, 208, 406-414)
Zhi Yang
hierarchical
(Sens. Actuators, B 10 205 11.6 5
WO;
2020, 306, 127536)
20000 to
SnO; with
This Work 100 RT 19938.92 interfering
OVBri
gases;
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123.1 to

amine gases
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Table S2. Properties of various materials used for diethylamine gas.

CsHuN Gas response Selectivity
Group Working
Material Conc. (Ra/Rg, (Response
(reference) Temp. (°C)
(ppm) Rg/Ra, 1a/Tg) ratio)
Qiuhong Li V,0s.decorated a-
(RSC Fe>O3 composite 100 350 8.9 7.4
Adv.,2016,6,6511) nanorods
Pd Doping in 8.5to
Guobao Xu /Wei Chen Ni-P205/M00O3 interfering
(Anal. Chem. 2022, 94, Hollow 10 175 42.5 gases;
15359-15366) Polyhedral 3.4 to amine
Heterostructures gases
39.16 to
Guobao Xu /Wei Chen interfering
1D CuO Nano-
(Anal. Chem. 2023, 95, 15 RT 23 gases;
Ellipsoids
17568—17576) 2.79 to amine
gases
Guobao Xu /Wei Chen )
Nig 4Fe2.604
(Anal. Chem. 2023, 95, ) 5 175 23 N/A
Nanorice
1747-1754)
123 to
interfering
This Work SnO; with OVg:i 100 RT 123.41 gases;

1.3 to amine

gases
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Table S3. Properties of various materials used for ethanediamine gas.

OVag,i strcture

Gas
C,H;sN; response Selectivity
Group Working
Material Conc. (Ra/Rg, (Response
(reference) Temp. (°C)
(ppm) Rg/Ra, ratio)
Ia/Tg)
1.57 to
Abliz Yimit Tetrakis (4- interfering
(Sensors, 2017, 17, Nitrophenyl) 100 RT 975 gases;
2717) Porphyrin 7.06 to amine
gases
161 to
interfering
SnO; with
This Work 100 RT 161.91 gases;

1.3 to amine

gases

49



S| References

(1) Kilig, C.; Zunger, A. Origins of Coexistence of Conductivity and Transparency in
SnO,. Phys. Rev. Lett. 2002, 88, 095501.

(2) Xu, K.; Tian, S.; Zhu, J.; Yang, Y.; Shi, J.; Yu, T.; Yuan, C. High Selectivity of Sulfur-
Doped Sno2 in No2 Detection at Lower Operating Temperatures. Nanoscale 2018, 10,
20761-20771.

(3) Chang, H.-C.; Jiang, J.-C.; Tsai, W.-C.; Chen, G.-C.; Chang, C.-Y.; Lin, S. H. The
Effect of Pressure on Charge-Enhanced C—H-O Interactions in Aqueous Triethylamine
Hydrochloride Probed by High Pressure Raman Spectroscopy. Chem. Phys. Lett. 2006,
432, 100-105.

(4) Gamer, G.; Wolff, H. Raman and Infrared Spectra of Gaseous Secondary Aliphatic
Amines [(CHs2NH, (CH3)2ND, (C2Hs)2NH and C2HsNHCH3]. Spectrochim. Acta, Part A
1973, 29, 129-137.

(5) Céceres, M.; Lobato, A.; Mendoza, N. J.; Bonales, L. J.; Baonza, V. G. Local,
Solvation Pressures and Conformational Changes in Ethylenediamine Aqueous Solutions
Probed Using Raman Spectroscopy. Phys. Chem. Chem. Phys. 2016, 18, 26192-26198.

(6) Xuan, X.; Zhang, H.; Wang, J.; Wang, H. Raman Spectroscopic and DFT Studies on
Solutions of NaBF4 in N,N-Dimethylformamide. J. Raman Spectrosc. 2003, 34, 465-470.

50



