



## A case study for seal quality and container closure integrity testing across the life cycle of sterile products

*PDA Europe  
Parenteral Packaging  
Barcelona/Spain, 14-15 March 2017*

*James Mellman, PhD  
Novartis AG*

### **1. USP <1207>**

- i. Review of revised contents
- ii. Product quality risks
- iii. Defining CCIT and seal quality requirements

### **2. Renovating the internal standard**

- i. Building a strategy
- ii. Identifying internal requirements
- iii. Creating the plan
- iv. Life cycle approach

### **3. Applying the strategy**

- i. Seal quality attributes
- ii. Test method strategy

### **4. Summary**

# Review of revised contents

## *A major change to initiate a gap assessment*

### USP <1207> - Package Integrity Evaluation – Sterile Products

#### Content examples

| Former USP <1207>                                                                                   | Revised USP <1207>                                                                                                                                                                             |
|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 pages                                                                                             | ~40 pages comprising 4 chapters                                                                                                                                                                |
| Product life cycle approach                                                                         | Product life cycle approach with <b>in-depth review</b> of the subject                                                                                                                         |
| Physical CCIT to be correlated to microbial CCIT in development                                     | <b>Correlate test sensitivity to product risk</b> , i.e. microbial contamination, gas ingress, or multi-use                                                                                    |
| Preference to use physical methods with sensitivity comparable to or greater than microbial methods | <b>Deterministic methods are preferred</b> over probabilistic leak test technologies when establishing inherent integrity, sample quantity is limited, or risk of leak of concern is too great |
| Seal quality tests may be valuable                                                                  | <b>Seal quality tests complement evaluation</b> of package integrity                                                                                                                           |
| Dual function container closure systems are considered                                              | Supports <b>rationales for the method sensitivity across the product life cycle</b>                                                                                                            |
|                                                                                                     | Reviews <b>test method selection, instrument qualification, method development, and method validation</b>                                                                                      |
|                                                                                                     | References <b>peer-reviewed scientific publications</b> on CCIT and seal quality test methods                                                                                                  |

# Product quality risks *Posed by leaks of concern*

| Leaks of Concern                                                                                           | Product Quality Risks Posed by Leaks                                                                                                   |
|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Capable of allowing entry of microorganisms                                                                | Failure of <b>product sterility</b>                                                                                                    |
| Capable of allowing escape of the product dosage form or allowing entry of external liquid or solid matter | Failure of <b>relevant</b> product physicochemical <b>quality attributes</b>                                                           |
| Capable of allowing change in gas headspace content                                                        | Failure of <b>relevant</b> product physicochemical <b>quality attributes</b> and/or <b>hindrance of product</b> access by the end-user |

**The container closure integrity must ensure absence of all package leaks that risk product quality.**

**Inherent package integrity** – the leakage rate of a well-assembled CCS using defect-free components. Should be measured using a method to qualify the CCS against the potential risk, e.g. microbial ingress.

→ Acceptance criteria depend on product requirements (science and risk-based)

**Maximum allowable leak limit** – greatest leakage rate tolerable for a given product

→ Acceptance criteria depend on product requirements (science and risk-

**Seal quality tests** - used to characterize and monitor the quality and consistency of a package seal or closure system parameter, which can influence the ability to maintain integrity. Are not leak tests.

→ Acceptance criteria depends on the critical quality attribute, e.g. force, dimension, etc.

- Describe the issue
  - Educate about the revised USP <1207>
  - Discuss with stakeholders to increase awareness
  - Engage all necessary functions
  - Create a global network to do a full gap assessment
- Assess the status quo
  - Report on the current ways of working
  - Identify the risks to mitigate
  - Align on best practices

- Collaborate across the global network
  - Re-invigorate and standardize the end-to-end approach
  - Develop a deeper knowledge of the CCS across the product lifecycle
  - Harmonize a strategy across divisions, departments, and line units
- Meet HA expectations
  - Revised USP <1207> shows a move towards using deterministic methods
  - Understand the drivers from probabilistic to deterministic CCIT
- Optimize the way of working
  - Apply the right method at the right time with the right amount of samples (the right efficiency)
  - Define methods that remain current and for what purpose
  - Define methods that require development

- Define the strategy
  - Determine the scope, e.g. life cycle approach, products in development vs. currently marketed, global and local needs
  - Develop a position paper for the strategy
  - Collect broad feedback for more points of view
  - Seek sponsorship from senior management, e.g. Quality Plan
  - Create sub-teams to define tasks & timelines
  - Secure global and local resources

### Stability programs

- Standard approach across life cycle phase
- Strategic on CCS format

### Development

- Planning
- Requirement setting
  - ✓ Maximum allowable leak limit
- Qualify closure system
  - ✓ Inherent package integrity
  - ✓ Seal quality
- Technical studies
- Tech transfer docs

### Validated processes

- Closuring
- Packaging
- Shelf life
- Shipping

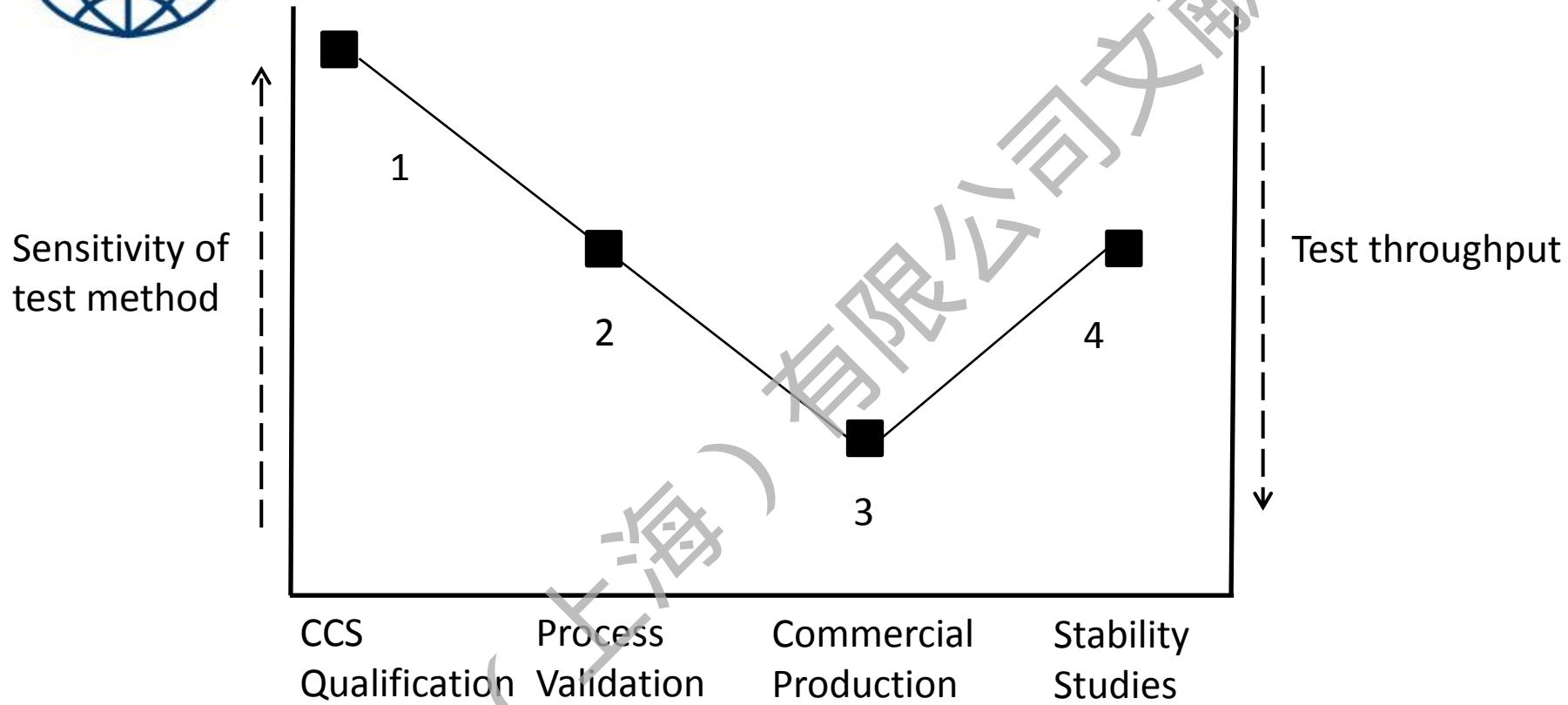
### Quality Controls

- Supplier mgmt
  - ✓ Specs
  - ✓ Quality agreement
  - ✓ Audits
- Incoming goods inspection
- IPCs
- Cameras
- Seal quality
- CCIT
- Change control
- Monitoring

### CCS formats for sterile products (examples)

Vials, pre-filled syringes, cartridges, bottles, bags, tubes, ampoules, etc.

Out of scope:


Blister trays for medical devices (governed via ISO 11607) and others mentioned in revision

### Seal quality methods

| Closure           | Seal Quality Attribute (examples)                                                         |
|-------------------|-------------------------------------------------------------------------------------------|
| Septum or stopper | residual seal force, compression, crimp dimension, headspace gas                          |
| Plunger           | rib dimension, piston placement, movement during shipping or manufacturing, headspace gas |
| Needle cap        | pull-off force, dimensional fit against needle                                            |
| Bottle cap        | critical feature dimensions, closure application and removal torque                       |
| Bag               | burst strength, peel force, airborne ultrasound                                           |

# A test method strategy

## *Over the product life cycle*



### Examples of test methods to fulfill requirements

- 1 – Leak flow method, e.g. tracer gas or headspace monitoring. Correlation of pCCI to mCCIT and seal quality.
- 2, 4 – HVLD, mass extraction, vacuum decay, blue dye ingress, etc. Relevant seal quality test.
- 3 – 100% online, e.g. HVLD, vacuum decay or offline CCIT and/or seal quality test.

- USP <1207> is a major update and a gap assessment is recommended between it and the current way of working
- A case study was presented for the following:
  - Building a strategy for closing gaps and mitigating risks
  - Rationalizing CCIT and seal quality methods as part of the quality assurance with a scientific- and risk-based approach
  - Applying various test methods across the product life cycle for specific CCS formats



## Acknowledgements

Thanks to the following individuals:

- ❖ Matthias Schaar
- ❖ Erik Respini
- ❖ Lisa Blackwell
- ❖ Robert Hormes
- ❖ Daniel Latham
- ❖ Manfred Maeder

- ❖ Juergen Kossinna
- ❖ Verena Dullnig
- ❖ Peter van Autryve
- ❖ Frank Debuysser
- ❖ Christoph Stark
- ❖ Mark Schweitzer