KEXING SPECIAL CERAMICS

JIANGXI KEXING SPECIAL CERAMICS Co., LTD Pingxiang Ceramic Industrial Base Xiabu, Xiangdong District, Pingxiang, Jiangxi, P.R. China T: 86 (799) 337-8886 F: 86 (799) 337-8887

info@kxceramics.com | www.kxceramics.com

Kexing Special Ceramics Co., Ltd. All rights reserved.

TABLE OF CONTENTS

Mission Statement

Company Profile

Ceramic Honeycomb Monolith Heat Storage & Exchange, Catalyst Carrier, Gaseous Emissions Control	1
Ceramic Honeycomb Catalyst Carrier Chemical Gas & Liquid Treatment	14
Ceramic Saddle & Supper Saddles	18
Heat Storage Balls	22
Baffle Bricks	24
Honeycomb Ceramic Filter Plates	26
Special Statement	28

MISSION STATEMENT

Science, technology and its subsequent economy develop at a rapid pace. At the same time energy shortages along with environmental pollution continue to exist. A knowledge-based economy demands a company with the agility to flourish when opportunities and challenges co-exist. Our team was founded by academic scholars committed to protecting the environment and having a direct impact on saving and producing cleaner energy.

We are at the forefront of research development and integration in our relevant disciplines. Our products are designed and built with these principles in mind. We customize all products and materials to individual customer needs and specifications.

COMPANY PROFILE

Jiangxi Kexing Special Ceramic Co., Ltd is an industrial ceramic manufacturer and advanced ceramic research company, which is located in Jiangxi Pingxiang Industrial Ceramic Park – the capital of ceramic in China. Founded by Liling Kexing Industry Co., Jiangxi Kexing Special Ceramic is specializing in manufacturing ceramic media and distributing its products over the world. In 2012, Jiangxi Kexing Special Ceramic opened its North America Branch Office in Toronto Canada – Kexing Special Ceramics Co., Ltd. due to the high demand from our clients in U.S., Canada, and South America.

Industrial ceramic media includes: Ceramic Honeycomb Heat Recovery Media, Chemical Packing, Catalyst Carrier, Filter Plate as well as Alumina Ball, Baffle Brick, Saddles, Super Saddles. We provide customized solutions for honeycomb ceramic media under 900 CPS and our products are widely applied in the industries of chemical, electric power, metallurgy, petroleum, electronics, electrical appliances, machinery, environmental, residential, etc.

Establishing long-term relationships with Central South University (CSU), Luoyang Institute of Refractories Research (LIRR), Hunan University (HNU) and Jingdezhen Ceramic Institute (JCI), Jiangxi Kexing Special Ceramic have achieved many patents by its research team. With the team of ceramic professionals and senior consultants, Kexing Special Ceramic has made significant breakthroughs of high temperature material and high cell density honeycomb ceramics and it will keep pushing the edges.

150x150x300x(40x40) Cellular Honeycomb Ceramics

CERAMIC HONEYCOMB MONOLITH

Heat Storage & Exchange, Catalyst Carrier, Gaseous Emissions Control, Chemical Packing

Application: RTO & RCO, Metal Casting, Scrubber, Packing Tower

For years, we have been fulfilling the honeycomb ceramic needs of European, American and Chinese customers. These products specifically apply to regenerative thermal oxidizer (RTO), regenerative catalytic oxidizer (RCO), and metal melting furnace. This includes heat exchange and heat storage of industrial furnaces and the collection and purification of gas and dust. The packing tower and catalyst carrier aids in both absorption and conversion.

We customize all products and materials to individual customer needs and specifications.

Material Item		Alumina Porcelain	Dense Cordierite	Cordierite	Mullite	Stoneware
Density	g/cm³	2.68	2.42	2.16	2.31	2.47
Density	lb/ft ³	167.3	151.1	134.9	144.2	154.2
Bulk	kg/m³	965	871	778	832	889
Density	lb/ft ³	60.2	54.4	48.6	51.9	55.5
Thermal Expansion	10 ⁻⁶ /K	6.2	3.5	3.4	6.2	4.8
Coefficient	10 ⁻⁶ /°F	3.4	1.94	1.89	3.4	2.7
Specific Heat	J/kg∙K	992	942	1016	998	897
Capacity	Btu/lb∙°F	0.237	0.221	0.243	0.238	0.214
Thermal	W/m∙K	2.79	1.89	1.63	2.42	1.37
Conductivity	Btu/ft•h•°F	19.4	13.1	11.3	16.8	9.5
Thermal Shock	Мах К	500	500	600	550	500
Resistance	Max °F	900	900	1080	990	900
Softening	°C	1500	1320	1400	1580	1380
Temperature	٥F	2732	2408	2552	2876	2516
Maximum	°C	1400	1200	1300	1480	1280
Service Temperature	٥F	2550	2228	2372	2698	2336
Average Heat	kW∙h/m³•K	0.266	0.228	0.219	0.231	0.222
Capacity	Btu/ft ³ • °F	14.3	12.0	11.8	12.4	11.9
Water Absorption	º/o	≤20	≤5	15-20	15-20	≤5
Acid Resistance	º/o	0.2	5.0	16.7	2.5	0.3

Specifications

- Overall Dimensions
- Number of Cells
- Cell Width
- Wall Thickness
- Specific Surface Area
- Void Fraction

- 150 x 150 x 300mm / 5.9 x 5.9 x 11.81 in
- 40 x 40 = 1600
- 3.0 mm / 0.119 in
- 0.7 mm / 0.028 in
- 825 m²/m³ / 251.4 ft²/ft³
- 64%

150x150x300x(50x50) Cellular Honeycomb Ceramics

Physical Performance

Material Item		Alumina Porcelain	Dense Cordierite	Cordierite	Mullite	Stoneware
Depaitu	g/cm³	2.68	2.42	2.16	2.31	2.47
Density	lb/ft ³	167.3	151.1	134.9	144.2	154.2
Bulk	kg/m³	991.6	895.4	799.2	854.7	913.9
Density	lb/ft ³	61.9	55.9	49.9	53.4	57.1
Thermal	10 ⁻⁶ /K	6.2	3.5	3.4	6.2	4.8
Expansion Coefficient	10 ⁻⁶ /°F	3.4	1.94	1.89	3.4	2.7
Specific	J/kg∙K	992	942	1016	998	897
Heat Capacity	Btu/lb∙°F	0.237	0.221	0.243	0.238	0.214
Thermal	W/m∙K	2.79	1.89	1.63	2.42	1.37
Conductivity	Btu/ft∙h•°F	19.4	13.1	11.3	16.8	9.5
Thermal	Мах К	500	500	600	550	500
Shock Resistance	Max °F	900	900	1080	990	900
Softening	°C	1500	1320	1400	1580	1380
Temperature	٥F	2732	2408	2552	2876	2516
Maximum	°C	1400	1200	1300	1480	1280
Service Temperature	٥F	2550	2228	2372	2696	2336
Average Heat	kW∙h/m³∙K	0.273	0.234	0.226	0.237	0.228
Capacity	Btu/ft³∙ °F	14.7	12.4	12.4	12.7	12.2
Water Absorption	º/o	≤20	≤5	15-20	15-20	≤5
Acid Resistance	º/ ₀	0.2	5.0	16.7	2.5	0.3

Specifications

Overall Dimensions
Number of Cells
Coll Width

- Cell Width
- Wall Thickness

2

Specific Surface Area
Void Fraction

- 2.27 mm / 0.089 in - 0.7 mm / 0.028 in - 1009 m²/m³ / 307.5 ft²/ft³ - 57%

- 50 x 50 = 2500

- 150 x 150 x 300mm / 5.9 x 5.9 x 11.81 in

Material Dense Cordierite Cordierite Item g/cm³ 2.42 2.16 Density lb/ft³ 151.1 134.9 kg/m³ 786.5 700.1 Bulk Density lb/ft³ 49.1 43.7 Thermal 10⁻⁶/K 3.5 3.4 Expansion 10⁻⁶/°F 1.94 1.89 Coefficient Specific J/kg∙K 942 1016 Heat Btu/lb∙°F 0.221 0.243 Capacity 1.63 W/m•K 1.89 Thermal Conductivity 11.3 Btu/ft∙h•°F 13.1 Мах К 500 600 Thermal

Physical Performance

150x150x300x(60x60) Cellular Honeycomb Ceramics

	MAXK	500	600
Shock Resistance	Max °F	900	1080
Softening	°C	1320	1400
Temperature	٥F	2408	2552
Maximum	°C	1200	1300
Service Temperature	٥F	2278	2372
Average Heat	kW∙h/m³∙K	0.206	0.198
Capacity	Btu/ft³∙ °F	10.9	10.6
Water Absorption	º/o	≤5	15-20

5.0

Specifications

Overall Dimensions	– 150 x 150 x 300mm /
	5.9 x 5.9 x 11.81 in
Number of Cells	- 60 x 60 = 3600
Cell Width	– 2.0 mm / 0.079 in
Wall Thickness	– 0.45 mm / 0.018 in
Specific Surface Area	- 1310 m²/m³ / 399.3 ft²/ft³
Void Fraction	- 64%

Chemical Composition

⁰/₀

Acid

Resistance

Material Composition	Alumina Porcelain	Mullite	Dense Cordierite	Cordierite	Stoneware
SiO ₂ (%)	30-35	25-30	45-50	45-50	63-68
Al ₂ O ₃ (%)	60-65	65-70	40-45	40-45	25-30
MgO (%)	≤3.5	≤0.5	5-9	5-9	≤0.5
K ₂ 0+Na ₂ 0+Ca0 (%)	≤3	<1.5	<2	<1.5	≤5

15.0

Please note: Preceding chemical composition is standard to all cellular honeycomb ceramics

150x150x300x(13x13) Cellular Honeycomb Ceramics

Specification

Overall Dimension	150 x 150 x 300 mm / 5.9 x 5.9 x 11.81 in
Number of Cells	13 x 13 = 169
Cell Width	9.0 mm / 0.354 in
Wall Thickness	2.0 mm / 0.079 in
Specific Surface Area	289 m²/m³ / 88.1 ft²/ft³
Void Fraction	60°/₀
Weight Per Block	Depends on Content

150x150x300x(25x25) Cellular Honeycomb Ceramics

Specification

Overall Dimension	150 x 150 x 300 mm / 5.9 x 5.9 x 11.81 in
Number of Cells	25 x 25 = 625
Cell Width	4.9 mm / 0.193 in
Wall Thickness	0.9 mm / 0.035 in
Specific Surface Area	573 m²/m³ / 174.7 ft²/ft³
Void Fraction	67°/o
Weight Per Block	Depends on Content

150x150x300x(32x32) Cellular Honeycomb Ceramics

Specification

4

Overall Dimension	150 x 150 x 300 mm / 5.9 x 5.9 x 11.81 in
Number of Cells	32 x 32 = 1024
Cell Width	3.8 mm / 0.150 in
Wall Thickness	0.8 mm / 0.031 in
Specific Surface Area	721 m ² /m ³ / 219.8 ft ² /ft ³
Void Fraction	66%
Weight Per Block	Depends on Content

150x150x300x(37x37) Cellular Honeycomb Ceramics

Specification

Overall Dimension	150 x 150 x 300 mm / 5.9 x 5.9 x 11.81 in
Number of Cells	37 x 37 = 1369
Cell Width	3.4 mm / 0.134 in
Wall Thickness	0.6 mm / 0.035 in
Specific Surface Area	856 m²/m³ / 260.9 ft²/ft³
Void Fraction	70°/₀
Weight Per Block	Depends on Content

150x150x300x(43x43) Cellular Honeycomb Ceramics

Specification	
Overall Dimension	150 x 150 x 300 mm / 5.9 x 5.9 x 11.81 in
Number of Cells	43 x 43 = 1849
Cell Width	2.9 mm / 0.114 in
Wall Thickness	0.5 mm / 0.020 in
Specific Surface Area	980 m²/m³ / 298.7 ft²/ft³
Void Fraction	69%
Weight Per Block	Depends on Content

150x150x300x(46x46) Cellular Honeycomb Ceramics

Specification

Overall Dimension	150 x 150 x 300 mm / 5.9 x 5.9 x 11.81 in
Number of Cells	46 x 46 = 2116
Cell Width	2.7 mm / 0.106 in
Wall Thickness	0.5 mm / 0.020 in
Specific Surface Area	1044 m²/m³ / 318.2 ft²/ft³
Void Fraction	68%
Weight Per Block	Depends on Content

Ceramic Honeycomb Monolith

The HTAC technology (High Temperature Air Combustion) is a huge energy-saving and environmental efficacy of new combustion technology and it is also considered as a reliable, industry proven combustion method allowing emissions reduction, combustion process improvement, thermal field flattening and heat transfer increase in high temperature energy intensive applications.

Honeycomb ceramic heat recovery media is a key component of regenerative burner, which is widely used in iron and steel, machinery, building materials, petrochemicals, nonferrous metal smelting and other industries, furnace, hot air furnace, heat treatment furnace, cracking furnace, baking, melting furnace, both in the hot furnace, oil and gas boilers, and furnaces. The technique is to make two ceramic media beds alternating endothermic exothermic by reversing device. Most common applications include: Regenerative Thermal Oxidizer (RTO), Regenerative Catalytic Oxidizer (RCO), metal casting combustor, metal melting industrial furnace, etc.

Compared with other ceramic media, such as saddles or ceramic balls, which have conventionally been used in RTOs. The advantages of honeycomb monolith include a greater thermal efficiency and a lower pressure drop across the heat exchanger bed. The increase in thermal efficiency and lower pressure drop

6

generally results in smaller equipment design, lower capital cost and lower operating cost. Honeycomb ceramic monolith serves as a more efficient alternative for the following reasons: cutting fan load for significant energy saving (low pressure drop owing to straight channels), less volume, thin wall thickness, faster in thermal exchange. Lighter weight, so less structural support is required. Above all, High specific surface area means high conversion efficiency in converters occupying small volumes. All these benefit, especially larger specific surface area make honeycomb ceramic the better performance media across industries.

Ceramic Honeycomb Materials

Alumina Ceramics

Alumina Ceramics is the most widely used advanced ceramic material. Owing to its highly strong ionic inter-atomic bonding, alumina offers good performance in terms of chemical and thermal stability, relatively good strength, thermal and electrical insulation characteristics at a reasonable price. With a range of purities and also the relatively low cost in raw material production it is possible to utilize alumina for wide ranging applications across a variety of different industries.

Mullite Ceramics

8

Mullite occurs very rarely in nature because it only forms at high temperature, low pressure conditions, so as an industrial mineral, mullite has to be supplied by synthetic alternatives. Mullite is a strong candidate material for advanced ceramics in industrial process for its favourable thermal and mechanica properties: low thermal expansion, low thermal conductivity, excellent creep resistance, suitable high temperature strength and outstanding stability under harsh chemical environments.

Silicon Carbide Ceramics

Silicon carbide is notable for its hardness, high melting-point and high thermal conductivity. It can retains its strength at temperature as high as 1400 °C and offers excellent wear resistance and thermal shock resistance. It has well-established and wide-spread industrial applications as catalyst supports and hot-gas or molten metal filters because of its low thermal-expansion coefficient and good thermal-shock resistance as well as excellent mechanical and chemical stability at elevated temperature environments.

Cordierite Ceramics

Cordierite has a superior thermal shock resistance due to their intrinsic low coefficient of thermal expansion (CET), coupled with relatively high refractoriness and high chemical stability. Therefore, it is often used as high temperature industrial applications, such as: heat exchangers for gas turbine engines; honeycomb-shaped catalyst carriers in automobile exhaust system.

Zirconia Oxide Ceramics

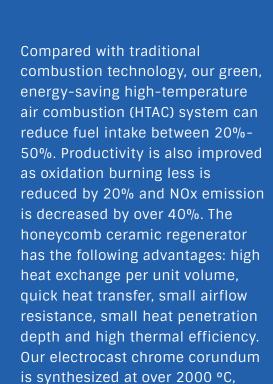
Ceramics Zirconia can be an ideal material of high-strength and high-toughness when proper compositions, such as: magnesium oxide (MgO), yttrium oxide, (Y2O3), or calcium oxide (CaO), are added to control an otherwise destructive phase transformation.The micro structural features of zirconia ceramics also make it an engineering material choice of wear and corrosion resistance, damage and degradation tolerance in a wide range of applications.

Corundum Ceramic

- 1, high purity: Al₂O₃> 99%, good chemical resistance
- 2, temperature resistance, long-term use at 1600 °C, 1800 °C short-term
- 3, thermal shock resistance and good resistance to crack
- 4, slip casting, high density, high purity alumina

Featured Sizes

L x W x H (mm)	Number of Cells	Cell Width (mm)	Wall Thickness (mm)	Boundary Wall Thickness (mm)	Specific Surface Area (m²/m³)	Void Fraction (%)	Shape of Terminal Face
200×100×100	20x9	Circular cell	2.3	2.5	280	51	
150×100×100	36x24	Square cell 3x3	1.1	1.2	734	52	
150×100×100	35x20	Hexagon cell Φ4	1.0	1.2	687	65	
150×100×100	10x6	Hexagon cell Φ12	4.0	4.0	210	50	
150×100×100	35x20	Hexagon cell Ф3.5	1.5	1.5	570	50	
150×100×100	17x13	Circular cell Ф7.5	1.2	1.3	366	57	EL.
150×100×100	33x19	Circular cell Φ4	1.0	1.3	568	53	Flat Surface
150×100×100	15x9	Circular cell	2.3	2.5	280	51	Slant Single Slot
150×100×100	38x22	Hexagon cell Ф3.6	0.9	1.2	696	63	Dual
150×100×100	42x28	Square cell 2.6×2.6	1.0	1.1	815	53	Slots
100×100×100	7x6	Hexagon cell Φ12	4.0	4.0	224	52	
100×100×100	31x31	Square cell 2.65×2.65	0.55	0.7	1065	67	
100×100×100	24x24	Square cell 3×3	1.1	1.2	741	52	
100×100×100	23x20	Hexagon cell Φ4	1.0	1.2	608	64	
100×100×100	10x9	Circular cell	2.3	2.5	280	51	


Physical Performance

Material Item	Cordierite	Compound of Cordierite and Mullite	Corundum Mullite I	Corundum Mullite II	Chrome Corundum Mullite	Zirconia Corundum Mullite
Bulk Density (g/cm³)	0.6-0.8	0.6-0.9	0.7-1.0	0.8-1.1	0.9-1.15	0.9-1.15
Thermal Expansion Coefficient (20- 1000°C) (10 ⁻⁶ /K)	1.8-2.3	4-5	5-6	5-6.5	5-6.5	5-6
Specific Heat Capacity (J/g·K)	≥0.85	≥0.90	≥1.0	≥1.10	≥1.15	≥1.15
Thermal Conductivity (W/m•K)	≥1.0	≥1.10	≥1.20	≥1.20	≥1.30	≥1.30
Maximum Service Temperature (°C)	1250	1350	1450	1550	1550	1550
Compressive Strength Axis A/B (MPa)	≥3	≥3	≥4	≥4	≥4	≥4
Compressive Strength Axis C (MPa)	≥20	≥20	≥20	≥20	≥20	≥20

Chemical Composition

Material Composition	Cordierite	Compound of Cordierite and Mullite	Corundum Mullite I	Corundum Mullite II	Chrome Corundum Mullite	Zirconia Corundum Mullite
SiO ₂ (%)	48-52	45-50	35-38	25-30	23-28	23-28
A1 ₂ O ₃ (%)	33-36	40-50	58-62	65-70	65-70	65-70
MgO (%)	12-15	6-9	≤0.5	≤0.5	≤0.5	≤0.5
Fe ₂ O ₃ (%)	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0
$K_{2}^{}$ 0+Na_{2}^{}0+CaO (%)	<1.2	<1.2	<1.2	<1.2	<1.2	<1.2

10

HONEYCOMB CERAMIC MONOLITH, SUBSTRATE, BAFFLE BRICKS, HEAT STORAGE BALLS, AND CERAMIC SADDLES

A

D

producing high quality honeycomb ceramic regenerators, baffle bricks and heat storage balls. This allows the advantages of high refractoriness under load, slag and shock resistance and quick heat transfer to take place. These products also have the ability for good anti-scouring, heavy volume weight and large heat capacity. Our technology also addresses common problems such as blocking, melting, slagging, cracking or stripping which translates into a longer service life. In addition, our catalytic combustion occurs between the added catalyst and the CO and HC compounds at 600C which further improves the recovery of waste heat and reduces the emission of polluted gas.

We customize all products and materials to individual customer needs and specifications. A. Honeycomb Ceramic Monolith B. Heat storage balls C. Circle and sector series D. Catalyst Carrier

- E. Silicone-carbide series F. Ceramic Saddles
 - Ceramic Sadules

Chemical Gas & Liquid Treatment

Application: Petrochemical, Pharmacy Industrial & Wast incineration

Ceramic honeycomb catalyst carrier use the properties of honeycomb ceramic: large specific surface area, small airway resistance, neat and strong, and are coated with active rare earth metals, transition metals, precious metals on the surface, after reduction firing to obtain a range of practical performance, are widely used in petrochemical, waste incineration, paint and paint charter waste gas treatment, industrial waste gas and waste water treatment.

We customize all products and materials to individual customer needs and specifications.

50 - 600 Cells Catalytic Converter Substrate

Specification

Number of Cells (CPSI)	Wall Thickness	Cell Width	Cell Area	Void Fraction	Specific Surface area	Density
50	0.69 mm	2.95 mm	8.70 mm ²	65%	650 m²/m³	565 kg/m³
50	0.027 in	0.116 in	0.013 in ²	03%	198.12 ft²/ft³	35.27 lb/ft ³
50	0.67 mm	2.97 mm	8.82 mm ²	0.00/	659 m²/m³	565 kg/m³
50	0.026 in	0.117 in	0.014 in ²	66%	200.86 ft²/ft³	35.27 lb/ft3
50	0.64 mm	3.00 mm	9.00 mm ²	0.70/	672 m²/m³	565 kg/m³
50	0.025 in	0.118 in	0.014 in ²	67%	204.83 ft²/ft³	35.27 lb/ft ³
100	0.40 mm	2.13 mm	4.55 mm ²	710/	1323 m²/m³	465 kg/m³
100	0.016 in	0.084 in	0.007 in ²	71%	403.25 ft²/ft3	29.03 lb/ft3
100	0.38 mm	2.15 mm	4.64 mm ²	700/	1334 m²/m³	465 kg/m³
100	0.015 in	0.085 in	0.007 in ²	72%	406.61 ft²/ft³	29.03 lb/ft3
100	0.35 mm	2.18 mm	4.78 mm ²	740/	1354 m²/m³	465 kg/m³
100	0.014 in	0.086 in	0.007 in ²	74%	412.70 ft²/ft3	29.03 lb/ft3
200	0.26 mm	1.53 mm	2.34 mm ²	72%	1859 m²/m³	435 kg/m³
	0.010 in	0.060 in	0.004 in ²	/∠°/0	566.63 ft²/ft³	27.16 lb/ft ³
200	0.24 mm	1.55 mm	2.40 mm ²	74%	1920 m²/m³	435 kg/m³
200	0.009 in	0.061 in	0.004 in ²	74-70	585.22 ft²/ft3	27.16 lb/ft ³
200	0.21 mm	1.58 mm	2.49 mm ²	77%	1957 m²/m³	435 kg/m³
200	0.008 in	0.062 in	0.004 in ²	//-/0	596.50 ft²/ft³	27.16 lb/ft ³
300	0.25 mm	1.22 mm	1.48 mm ²	67%	2200 m²/m³	500 kg/m³
300	0.010 in	0.048 in	0.002 in ²	07 %	670.56 ft²/ft³	31.21 lb/ft3
300	0.22 mm	1.25 mm	1.55 mm²	70%	2260 m²/m³	500 kg/m³
300	0.009 in	0.049 in	0.002 in ²	70%	688.85 ft²/ft³	31.21 lb/ft3
300	0.19 mm	1.28 mm	1.63 mm²	74%	2310 m²/m³	500 kg/m ³
300	0.007 in	0.050 in	0.003 in ²	/4-/0	704.09 ft²/ft3	31.21 lb/ft3

Specifications

- Number of Cells
- Cell Width
- Wall Thickness
- Specific Surface Area
- Void Fraction

- 50 CPSI to 600 CPSI - 0.81 mm - 2.95 mm / 0.032 in - 0.116 in
- 0.17 mm 0.69 mm / 0.007 in 0.027 in
- 650 m²/m³ 3225 m²/m³
- 65% 77%

 \frown

50 - 600 Cells Catalytic Converter Substrate

Specification						
Number of Cells (CPSI)	Wall Thickness	Cell Width	Cell Area	Void Fraction	Specific Surface area	Density
400	0.23 mm	1.04 mm	1.08 mm ²	070/	2579 m²/m³	480 kg/m³
400	0.009 in	0.041 in	0.043 in ²	67%	786.09 ft²/ft3	29.97 lb/ft ³
400	0.20 mm	1.07 mm	1.75 mm²	710/	2654 m²/m³	480 kg/m³
400	0.008 in	0.042 in	0.069 in ²	71%	808.95 ft²/ft³	29.97 lb/ft ³
400	0.17 mm	1.10 mm	1.21 mm²	750/	2728 m²/m³	480 kg/m³
400	0.007 in	0.043 in	0.048 in ²	75%	831.50 ft²/ft³	29.97 lb/ft ³
	0.23 mm	0.81 mm	0.65 mm²		3002 m²/m³	580 kg/m³
600	0.009 in	0.032 in	0.026 in ²	61%	915.02 ft²/ft³	36.21 lb/ft ³
000	0.20 mm	0.84 mm	0.70 mm ²	0.5%	3114 m²/m³	580 kg/m³
600	0.008 in	0.033 in	0.028 in ²	65%	949.15 ft²/ft³	36.21 lb/ft ³
	0.17 mm	0.87 mm	0.75 mm ²	700/	3225 m²/m³	580 kg/m³
600	0.007 in	0.034 in	0.030 in ²	70%	982.99 ft²/ft³	36.21 lb/ft ³

Chemical Composition

16

Material Composition	Stoneware	Cordierite	Mullite Cordierite	Mullite
SiO ₂ (%)	69-71	46-48	45-50	27-28
Al ₂ O ₃ (%)	18-30	34-37	45-50	70-71
MgO (%)	0.15-0.20	12.00-14.00	6.00-9.00	
K ₂ 0+Na ₂ 0+Ca0 (%)	3.00-3.30	2.50-2.90	0.70-0.90	0.80-1.20
Fe ₂ O ₃	0.70-0.90	0.70-0.90	0.50-0.70	0.50-0.70
TiO ₂ +BaO	0.20-0.25	0.30-0.40		

Please note: Preceding chemical composition is standard to all cellular honeycomb ceramics

Physical Performance Bulk Density 200 400 • 100 CPSI Material CPSI CPSI Item • 200 CPSI • 300 CPSI A Axis 15.0 15.0 Compressive • 400 CPSI Strength B Axis 1.5 1.5 (MPa) C Axis 0.2 0.2 17.8 Minimum 18.6 Water 23.4 20.7 Absorption Maximum (⁰/₀) 19.6 Average 22.1 Pore Volume cm³/g 0.18-0.24 0.18-0.24 Thermal 20-1000°C 1.5 Expansion 1.8 (10⁻⁶/K) Coefficient

1.5-1.6

0.80

0.95

2.00

1380

0.5

2.0

5.0

1.5-1.6

0.80

0.95

2.00

1380

0.1

2.5

5.0

25-600°C

(W/m•K) 100 °C

200 °C

300 °C

1200 °C

1450 °C

20-1000

٥C

٥C

Thermal

Capacity (J/g•K)

Softening

Ratio (%)

(°C/min)

After 100h Heating Rate

Temperature Shrinkage

Conductivity

Specific Heat

50 - 600 Cells Catalytic Converter Substrate

– 0.46 g/cm³ ±15% – 0.43 g/cm³ ±15%

- 0.43 g/cm³ ±15% - 0.50 g/cm³ ±15% - 0.48 g/cm³ ±15%

50 CPSI to 600 CPSI
0.81 mm - 2.95 mm / 0.032 in - 0.116 in
0.17 mm - 0.69 mm / 0.007 in - 0.027 in
650 m²/m³ - 3225 m²/m³
65% - 77%

We customize all products and materials to individual customer needs and specifications.

CERAMIC SADDLES & SUPPER SADDLES

Air Purification

Application: Ceramic Random Packing Media

For years, we have been fulfilling the honeycomb ceramic needs of European, American and Chinese customers. These products specifically apply to gas purification in the regenerative thermal oxidizer (RTO) and the regenerative catalytic oxidizer (RCO). This types of ceramic meda is commonly used in RTO, RCO or scrubber to provide heat retention by acting as a heat exchanger for preheating the incoming waste gas stream.

We customize all products and materials to individual customer needs and specifications.

Ceramic Saddles & Supper Saddles

Specification of Ceramic Saddles

Si	ze	Unit	Deck Diamter (mm)	Outside Diameter (mm)	Height (mm)	Wall Thickness (mm)	Width (mm)
1/2"	12mm	mm	12	20	10	2.0	10
1/2	1211111	inch	0.472	0.787	0.394	0.079	0.394
F (0"	10	mm	16	24	12	2.0	12
5/8"	16mm	inch	0.630	0.945	0.472	0.079	0.472
0.14"	10	mm	19	28	14	2.5	14
3/4"	19mm	inch	0.748	1.102	0.551	0.098	0.551
1"	0.5 mm	mm	25	38	19	3.0	20
T	25mm	inch	0.984	1.496	0.748	0.118	0.787
1 5 "	0.0	mm	38	60	30	4.0	30
1.5"	38mm	inch	1.496	2.362	1.181	0.157	1.181
2"	E O mm	mm	50	80	40	5.0	40
Ζ	50mm	inch	1.969	3.150	1.575	0.197	1.575
3"	70	mm	76	114	57	9.0	57
3	76mm	inch	2.992	4.488	2.244	0.354	2.244

Specification of Ceramic Supper Saddles

Si	ze	Unit	Deck Diamter (mm)	Outside Diameter (mm)	Height (mm)	Wall Thickness (mm)	Width (mm)
1"	25mm	mm	25	38	19	3.0	20
T	2011111	inch	0.984	1.496	0.748	0.118	0.787
1.5"	38mm	mm	38	60	30	4.0	30
1.5	3811111	inch	1.496	2.362	1.181	0.157	1.181
2"	FOmm	mm	50	80	40	5.0	40
Ζ	50mm	inch	1.969	3.150	1.575	0.197	1.575
3"	70mm	mm	76	114	57	9.0	57
3	76mm	inch	2.992	4.488	2.244	0.354	2.244

Ceramic Saddles Random Packing Media

Ceramic Supper Saddles Random Packing Media

Size Item	1/2" 12mm	5/8" 16mm	3/4" 19mm	1" 25mm	1.5" 38mm	2" 50mm	3" 76mm
Number per m³	610,000	269,000	146,000	59,000	19,680	8,243	2,400
Bulk Density (kg/m³)	780	700	670	630	580	550	530
Free Space (%)	68	71	75	77	80	79	75
Specific Surface Area m²/m³	647	535	350	254	180	120	91
Density (g/m³)				2.3	1		
Water Absorption (%)				<0.3			
Acid Resistance (%)				>99.6			
Maximum Service Temperature				1100 °C			
Porosity (%)				<1			
Moh's Hardness	>6.5						
Specific Heat Capacity (J/g•K)		850-900					
Thermal Conductivity (W/m•K)				0.9-1.0			

Physical Performance of Ceramic Saddles

Chemical Composition

	SiO ₂ (%)	>73	MgO (%)	<0.5
	Al ₂ O ₃ (%)	17-23	K ₂ 0+Na ₂ 0 (%)	2-4
-	Fe ₂ O ₃ (%)	<1.0	Other (%)	<0.1
	CaO (%)	<0.5		

Size Item	e 1" 25mm	1.5" 38mm	2" 50mm	3" 76mm		
Number per m³	39,200	21,500	8,500	3,000		
Bulk Density (kg/m³)	645	600	570	580		
Free Space (%)	77	78	79	80		
Specific Surface Area m²/m³	260	210	140	105		
Density (g/m³)			2.3			
Water Absorption			<0.2 %			
Acid Resistance			>99.98 %			
Maximum Service Temperature			1320 °C			
Porosity (%)			<1			
Moh's Hardness			7-8			
Specific Heat Capacity (J/g•K)		840-900				
Softening Point		>1400 °C				
Thermal Expansion		4.7 x (10 ⁻⁶ / °C)				
Compressive strength (MPa)		390-420				

Chemical Composition

SiO ₂ (%)	>69	MgO (%)	<0.2	
Al ₂ O ₃ (%)	15-23	K ₂ O+Na ₂ O (%)	2-4	
SiO ₂ + Al ₂ O ₃ (%)	>92	Fe ₂ O ₃ (%)	<1	
CaO (%)	<0.25	Other (%)	<1	

21

HEAT STORAGE BALLS

We design and manufacture heat storage balls (diameter: 11mm to 22mm) made of materials such as high alumina, corundum mullite, chrome corundum mullite and zirconia corundum mullite. This brings the advantages of high slag resistance, quick heat transfer, heavy volume weight and large storage capacity. Chrome corundum mullite storage balls overcome common problems such as slagging and pulverization. This is a popular product as our storage balls save energy and have a long service life.

Note: It is recommended to keep the termperature 100°C to 200°C below the maximum service temperature if the three above-mentioned products need to be used for a long period of time.

We customize all products and materials to individual customer needs and specifications.

Physiochemical Performance Indicators

Material Item	High Alumina Q65/70	Corundum Mullite QM70	Chrome Corundum Mullite QCr-70	Zirconia Corundum Mullite QZr-70	
Content of $A1_2O_3$ (%)	≥65/70	≥70	≥70	≥70	
Bulk Density (g/cm³)	≥2.4	≥2.5	≥2.6	≥2.6	
Density (kg/m³)	1500-1700	1450-1650	1550-1800	1550-1800	
Specific Surface Area (m²/m³)	Φ11-13mm: 120-160 Φ14-16mm: 105-120 Φ17-19mm: 95-105 Φ20-22mm: 80-95				
Thermal Expansion Coefficient (20- 1000°C) (10 ⁻⁶ /K)	≤6.5	≤5.5	≤6.5	≤6.5	
Specific Thermal Capacity (J/g•K)	≥1.05	≥1.0	≥1.05	≥1.05	
Thermal Conductivity (W/m•K)	≥1.5	≥1.6	≥1.7	≥1.7	
1100 °C-20 °C Water Cooling Times (Times)	≥25	≥30	≥30	≥35	
Maximum Service Temperature (°C)	1500/1550	1600	1600	1600	

BAFFLE BRICKS

Common materials to produce baffle bricks include mullite, corundum mullite and electrocast corundum. Our company also manufactures baffle bricks made of chrome corundum and zirconia corundum mullite. These can specifically be used in bad conditions while boasting high slag resistance and good anti-scouring.

Note: Physiochemical performance indicators of baffle bricks made of chrome and zirconia mullite are basically the same as preceding indicators, Specifications comply with customers requests.

We customize all products and materials to individual customer needs and specifications.

Physiochemical Performance Indicators

Material Item	Corundum Mullite DBZ-60	Corundum Mullite DBZ-70	Corundum Mullite DBZ-75	Electrocast Corundum DBZ-80	Electrocast Corundum DBZ-85
Content of A1 ₂ O ₃ (%)	≥60	≥70	≥75	≥80	≥85
Bulk Density (g/cm³) 1500°C x 3h	≥2.5	≥2.5	≥2.55	≥2.6	≥2.65
Compressive Strength (MPa) 1500°C x 3h	≥70	≥80	≥90	≥100	≥110
Flexural Strength (MPa) 1500°C x 3h	≥8.0	≥8.5	≥9.5	≥11	≥12
Linear Change (%) 1500°C x 3h	≤±0.6	≤±0.5	≤±0.4	≤±0.3	≤±0.2
Maximum Service Temperature (°C)	1450	1550	1550	1600	1650

25

Recurring problems with straight through filter plates has lead our company into the production of honeycomb ceramic filter plates. Our plates improve heat shock resistance, increased high temperature strength, raises the porosity and offers an increased surface area. Meeting the highest international standards, our products filter and absorb fine impurities in molten metal while preventing bubbles from entering the metal itself. This reduces turbulence and enables molten metal to be homogenized. In addition, the filter plates can be coated with various catalysts. While impurities are being filtered, corresponding chemical reactions can be conducted to improve the quality of the castings.

Note: The overall dimension is provided by customers or designed by the company.

We customize all products and materials to individual customer needs and specifications.

Physiochemical Performance Indicators

Material Item	Cordierite	Compound of Cordierite and Mullite	Mullite	Corundum Mullite	Zirconia Mullite
Content of A1 ₂ O ₃ (%)	35-37	40-50	50-60	68-73	68-73
Cell Shape	Round/ Square	Round/ Square	Round/ Square	Round/ Square	Round/ Square
Number of Cells/ inch ²	60-400	60-400	60-400	60-400	60-400
Micro Cell (µm)	2-3	2-3	2-3	2-3	2-3
Thermal Expansion Coefficient (10 ⁻⁶ /K)	≤1.8	≤3	≤5.0	≤5.5	≤5
Softening Temperature (°C)	1380	1500	1550	1700	1700
Comprehensive Strength at Nor- mal Temperatures (MPa)	≥12	≥15	≥15	≥15	≥15
Application	casting alumina alloy	Casting nodular iron and gray iron			casting stainless steel

We customize all products and materials to individual customer needs and specifications.

SPECIAL STATEMENT

The preceeding technical indicators are collected from tested samples and are only used for reference. We specialize in designing and manufacturing products according to the working environment and customer specifications. Our company is constantly striving to improve our products and maintaining the high standard our customers have come to expect from Kexing Special Ceramics.