实验研究。

可见光照对培养的人视网膜色素上皮 细胞凋亡的影响

严密 周咏东 张军军

【摘要】 目的 研究可见光照对培养的人视网膜色素上皮 (retinal pigment epithelium, RPE)细胞凋 以白色荧光灯为光源,用 500_{1x} (2 000 ± 500) 1_{x} 及 (3 400 ± 200) 1_{x} 不同光照强度,按 不同的光照时间(无光照 6 12 24 h)照射培养的人 RPE细胞 利用终末脱氧核糖核苷酸转移酶介导的原 位缺口末端标记(terminal deoxynucleotidyl transferase mediated dUTP nick end labelling, TUNEL) 荧光 素标记的连接素 V碘化丙锭(Annexin V-fluorescein isothiocyanate/Propidium jodium, Annexin V-FITC/PI)双染色流式细胞测定、相差倒置显微镜等手段观察 RPE细胞凋亡 (分为光照后 6 12 24 36 h 结果 可观察到 RPE细胞出现两种死亡形式,凋亡与坏死。(1)低于一定阈值(500 lx)的光照对细 胞损伤较轻,细胞凋亡及坏死随光照强度的增加而增加。(2)在较短的光照时间(6h和12h)内,细胞死亡 的增加以凋亡为主:随着光照时间的延长,细胞坏死逐渐明显 (3)随着光照后培养时间的延长,细胞凋亡 明显增加(P<0.05)光照后 6 12 24 h的损伤改变以凋亡为主,但随时间的延长,凋亡继发性坏死的增加 显著。光照后 36 h.细胞的坏死数显著增高 (P < 0.01)结论 可见光超过一定照度 (500 lx)可导致培养 的人 RPE细胞凋亡及坏死的显著增加,其损伤程度为光照强度及时间依赖性。 较低光照强度及较短光照 时间主要诱导细胞凋亡,反之则导致细胞坏死。

【关键词】 创伤和损伤; 光刺激; 色素上皮,眼;

中图分类号: R329.4-332

The effect of visible light on apoptosis of cultured human retinal pigment epithelium cells ZHOU Yongdong, YAN Mi, ZHANG Junjun. Department of Ophthalmology, West China Hospital of Sichuan University, Cheng du 610041, China

[Abstract Objective To observe the effect of visible light on apoptosis of cultured human retinal pigment epithelium (RPE) cells. **Methods** Being the light source, 500 lx, (2 000± 500) lx and (3 400± 200) lx cold white light were used. The duration of exposure was 0, 6, 12 and 24 hours respectively. Apoptosis was detected by terminal deoxynucleotidyl transferase mediated dUTP nick end labelling, Amexin V-flunorescein isothiocyanate/Propidium iodium labelling and flow cytometry. Results Apoptosis and necrosis were found in cultured human RPE cells which were exposed to visible light. (1) A significant increase in apoptotic and necrotic percentages was consistent with a higher light intensity. (2) Apoptosis was the main response to shorter (6 h and 12 h) exposure duration, while necrosis was more pronounced correlated to the prolongation of post-exposure culture (P < 0.05), and the longer the post-exposure period was, the more apoptotic necrosis were seen. Thirty-six hours after exposure the necrotic percentages were more pronounced (P < 0.01). Conclusions Visible light (> 500 lx) increases the proportion of apoptosis and necrosis of human RPE cells in vitro. The extent is related to exposure intensity and duration. It demonstrates that the lower intensity and the shorter duration of exposure to light are, the more pronounced apoptotic percentages are observed, otherwise necrosis.

Key words Wounds and injures; Photic stimulation; Pigment epithelium, eye;

视网膜色素上皮 (RPE)细胞在维护视网膜正常生 理功能方面,具有非常重要的作用。 它的损伤 变性可 以影响光感受器细胞的代谢和功能,导致视网膜功能 异常而致视力丧失。视网膜细胞和 RPE细胞可被过量 光照损伤[1-3]。在以往用可见光照射培养的人 RPE细

胞的光损伤模型中,主要观察的是 RPE细胞的坏 死 [1] 并未对其凋亡情况进行描述 本实验应用不同光 照强度和时间,建立培养的人 RPE细胞的可见光损伤 模型,主要观察凋亡的发生,以进一步揭示可见光损伤 培养的人 RPE细胞的分子机制

1 材料和方法

基金项目: 国家自然科学基金资助 (39770788)

作者单位: 610041成都,四川大学华西医院眼科,周咏东(现在南通医学

三附属医院眼科)] 994-2018 China Academic Journal Electronic Publishing House. All rights reserved. http://www.cnki.net

培养的人 RPE细胞:来源于 6个不同人的 RPE细胞系。

主要仪器和试剂: 光照采用 Philips 公司的 8 W 白色荧光灯, 光照度计为上海光电研究所生产的 ST-HI型,流式细胞仪为美国 Coulter公司的 EPICS ELTTE ESP型。 Dulbecco 改良 Eagle 培养基 (Dulbecco's modified Eagle's medium, DMEM) (高糖) 及胎牛血清 (fetal bovine serum, FBS)均为美国 Gibco公司生产,鼠抗人角蛋白抗体为丹麦 DAKO公司产品,SP试剂盒为美国 Zymed公司产品,并选用了德国 Boeringer Mannheim公司的 In Situ Cell Death Detection Kit,以及法国 Immunotech公司的 Annexin V-FITC Kit。

1.2 方法

人 RPE细胞的培养及传代、鉴定: 12个供体眼球来自意外死亡的 6名健康成年人,于死亡后 12 h内在无菌条件下进行 RPE的分离培养,参照文献 [1]报道的方法。 2~5代细胞用于实验

培养的人 RPE细胞光照处理: 将 RPE细胞培养于 6孔板 12孔板中,或直接培养于 2 cm $\stackrel{?}{\sim}$ 2 cm 预处理过的玻片上。当细胞近铺满时,以白色荧光灯作光源,分别作如下光照模型: (1)分别用 500 lx 及 (2 000± 500) (3 400± 200) lx 不同光照强度照射RPE细胞 6 h,光照结束后 24 h 终止培养。 (2) (2 000± 500) lx 光照,光照时间分为 6 12 24 h,均于光照结束后 24 h终止培养。(3)(2 000± 500) lx 光照 6 h,细胞培养终止时间分为: 光照结束后 6 12 24 36 la

以上每一实验平行组,为同一细胞系的同一代。阴性对照均为无光照组,在其它组光照时,用黑色不透光布遮盖培养板,仍在同一孵箱内培养。 光照时,培养细胞水平面的温度变化在 36.5° 37.5° 之间。在光照处理过程中,用相差倒置显微镜观察细胞情况。

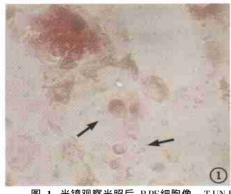
终末脱氧核糖核苷酸转移酶介导的原位缺口末端标记(TUNEL)染色: 按上述光照处理准备 RPE细胞爬片 (2 cm× 2 cm); 在室温下浸泡于 0. 1% Triton X-100(0. 1% 枸橼酸钠稀释)的渗透溶液中 5 min; 滴加 TUNEL反应混合液每片 50 μ1, 3 元, 湿盒孵育 60 min; 滴加 Converter-AP(碱性磷酸酶转化剂)每片 50 μ1, 3 元, 30 min; [以上每步骤之间用磷酸盐平衡液(phosphate balanced solution, PBS)洗 3 min, 3次 滴加 NBT/BCIP(四氮唑蓝/5-溴-4氯-3吲哚酚磷酸-4-甲苯胺盐)(1:50,用底物缓冲液稀释),室温下放置约10 min;流水洗自然干燥封片,或流水洗核红复染-干燥封片,几工UNEL染色阳性对照片为,DNaselati

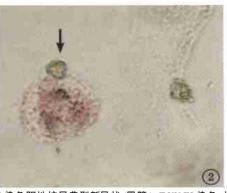
1 mg/m作用 10 min; 阴性对照为反应液中不加末端 脱氧核苷酰转移酶 (terminal deoxynucleotidyl transferase).

流式细胞仪检测: 荧光素标记的连接素 V 磺化丙碇(Annexin V-FITC/PI)染色按试剂盒说明书进行。用蒸馏水将结合缓冲液稀释 10倍;将 250μ g PI溶于 1 ml稀释的结合缓冲液中。消化收集 RPE细胞,4C 500 r/min,离心 5 min后,用冰冷的 PBS(pH7. 4)洗 2 次。 弃掉上清液,重悬细胞于冰冷的结合缓冲液(调整细胞浓度为 \mathbb{K} 10^6 \mathbb{K} 10^6 /ml) 操作均于冰上进行。加 5μ 1稀释了的 Annexin V-FIT(和 5μ 1溶解了的 PI 于 490μ 1细胞悬液中,轻柔混匀。避光于冰上孵育 10 min 用流式细胞仪进行检测分析,打印结果。

统计学处理: 应用 SPSS统计软件 (10.0 版)处理 采用单因素方差分析 (F 检验) ,为双侧检验 ,检验水准 α = 0.05

2 结果


2.1 TUNEL结果


光镜下, TUNEL染色阳性细胞的细胞核被染成紫色; 核固红复染后略呈紫红色, 阴性细胞核复染后呈粉红色。可见细胞膜完整, 细胞核浓缩边聚成新月体或帽状体(图 1). 将 TUNEL染色阳性细胞放于倒置显微镜下观察, 见这些细胞表现为体积缩小变圆, 折光性改变, 细胞周围出现透亮圈, 细胞核碎裂成数个, 细胞膜出泡(图 2). 光照加强和光照时间延长, TUNEL染色阳性细胞增多, 光照后 12 h 或更久, 凋亡细胞明显增加

2.2 Annex in V-FITC/PI双染流式细胞检测结果

流式细胞仪检测将每组测试细胞区分为坏死 凋亡继发性坏死 凋亡及正常活细胞四个细胞亚群,见图 3 根据对这四个细胞亚群的数据分析,分别得出以下结果:

- (1) 光照强度与 RPE细胞损伤的关系: 根据检测到的荧光得出 4种 RPE细胞亚群,分别比较不同光照强度组之间各细胞亚群的差异。 500 lx 光照组的细胞凋亡及坏死程度与无光照组之间差异无显著性的意义 (P > 0.05),但存活细胞数差异有显著性的意义 (P < 0.05) (2000年 500) lx 光照组和 (3400 ± 200) lx 光照组细胞坏死及凋亡的程度与无光照和 500 lx 光照组之间差异均有显著性的意义 (P < 0.01)。并且(2000 ± 500) lx 光照组和(3400 ± 200) lx 光照组之间差异亦有显著性的意义 (P < 0.01),并且(2000 ± 500) lx 光照组和(3400 ± 200) lx 光照组之间差异亦有显著性的意义 (P < 0.01),见表 1
- (2)光照时间与 RPE细胞损伤的关系:分别比较不同光照时间组之间各 RPE细胞亚群的差异 (2,000±

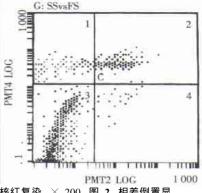


图 1 光镜观察光照后 RPE细胞像。 TUNEL染色阳性核呈典型新月状 (黑箭) TUNEL染色 ,核红复染 × 200 图 2 相差倒置显微镜观察光照后的 RPE细胞像。 TUNEL阳性细胞胞膜完整 ,胞核分裂为 3块 ,出泡 (黑箭) TUNEL染色 ,未复染 × 400 图 3 Annexin V -FITC /PI双染流式细胞检测打印结果。横坐标和纵坐标分别为检测到的 Annexin V 和 PI荧光强度的 log值 并依此将所测细胞分为 4个象限 ,即亚群、分别为象限 1(Q1): 代表坏死或机械性损伤的细胞 (Annexin-/PI-);象限 2(Q2): 代表凋亡继发性坏死细胞 (Annexin-/PI-);象限 3(Q3): 代表正常活细胞 (Annexin-/PI-);象限 4(Q4): 代表凋亡细胞 (Annexin+ PI-) Fig 1 The RPE cells which exposed to light were observed by light microscope. The TUNEL positive nuclei (black arrow) TUNEL, Fast × 200 Fig 2 The cells which exposed to light were observed by phase-contrast microscope. TUNEL positive cell, showed three broken parts of the nucleus and membrane blebbing (black arrow) TUNEL × 400 Fig 3 Presentation of the flow cy tometric result of analyzing cells with Annexin V -FITC and PLX and Y axis are log value of intensity of Annexin V and PL Fluorescence respectively. Four phenotypes Quadmant 1(Q1) indicates necrotic and mechanical damaged cells (Annexin-/PI-); Quadrant 4(Q4) indicates the secondary necrotic cells (Annexim-/PI-); Quadrant 4(Q4) indicates the apoptotic cells (Annexim-/PI-); Quadrant 4(Q4) indicates the apoptotic cells (Annexim-/PI-);

500) lx 的光照 ,无论是 6 12 h还是 24 h照射 ,均对细胞构成明显损伤 6 h 光照组与无光照组比较 ,细胞凋亡差异有显著性的意义 (P < 0.01),而细胞坏死的差异无显著性的意义 (P > 0.05)。 12 h和 24 h光照组无论是细胞凋亡还是坏死均与对照组差异有显著性的意义 (P < 0.05)。 12 h光照组比较 ,只有细

胞凋亡差异有显著性的意义 (P < 0.05),而细胞的坏死差异无显著性的意义 (P > 0.05) 24 h光照组与 6h光照组相比,细胞凋亡及坏死差异均有显著性的意义 (P < 0.05)。12 h光照组与 24 h光照组之间凋亡差异无显著性的意义 (P > 0.05),但细胞坏死却表现出明显差异 (P < 0.05),见表 2

表 1 光照强度与 RPE细胞损伤的关系 $(\bar{x}\pm s)$

光照强度	RPE细胞					 F值	
(lx)	Q1	Q2	Q3	Q4	Q2+ Q4	r ie	P值
无光照	0.60± 0.360	3. 17± 0. 68	95. 93± 0. 86 ^{1, 2}	0.27± 0.12	3. 47± 0. 61	38. 22	< 0. 01
500	$1.57\pm\ 0.512$	6. 13± 0. 93 ²	91. 67± 1. 53 ²	0.63± 0.15	6. 43± 0. 51	30. 36	< 0.01
2 000± 500	4. 27± 1. 102	11. 00± 2. 18 ^{1,2}	82. 73± 2. 41 ²	2.00± 0.50	13. 00± 2. 65 ^{1,2}	105.97	< 0.01
3 400± 200	7. $00\pm 1.00^{1.2}$	16. 20± 2. 62 ^{1,2}	75. 00 ± 1.00^2	1.80± 1.56	$18.00\pm 2.00^{1.2}$	3. 13	> 0.05

注: Q1: 坏死或机械性损伤的细胞; Q2 凋亡继发性坏死细胞; Q3 正常活细胞; Q4 凋亡细胞; Q4 一Q4 的值作为凋亡细胞的总数。表中数据为上述各类细胞占每次所检测细胞总数的百分数值。上标" I"标示组与无光照组比较,差异有显著性的意义 (P < 0.01) 上标" I2 标示的这几组之间比较,差异均有显著性的意义 (P < 0.05) 各组间 Q_{2+} Q_4 值比较 F = 44.07, P < 0.01

表 2 光照时间与 RPE细胞损伤的关系 $(\bar{x}\pm s)$

光照时间	RPE细胞					 F值	 P 值
(h)	Q1	Q2	Q3	Q4	Q2+ Q4	广阻	尸恒
无光照	0. 33± 0. 15 ³	2. 37± 0. 75	96. 90± 0. 46³	0. 40± 0. 26	2. 77± 0. 50	16. 23	< 0. 01
6	6. 5 ¹ ± 3. 99⁴	9. 17± 2. 47 ^{1,4}	82. 43 ± 2.55^3	1.83± 0.763	11. 00± 2. 65 ^{1,2}	24.00	< 0.01
12	9.33 ± 4.51^3	12. 27± 2. 05¹	76. 00± 3. 61 ³	2.40± 0.53	14. 67± 1. 53 ^{1,2}	53.90	< 0.01
24	19. 67± 3. 21 ^{3, 4}	13. 33± 1. 15 ^{1,4}	62. 67± 5. 03	$4.33\pm2.08^{1.3}$	17. 67± 2. 08 ^{1,2}	6.05	< 0.05

注: Q1 Q2 Q3 Q4 Q2+ Q4及数值的含义与表 1相同。上标" Γ " 表示 6. 12 24 h组与无光照组比较,差异均有显著性的意义 (P < 0.05)。上标" T" 表示 6. 12 24 h组与 6 h组比较,差异均有显著性的意义 (P < 0.05)。上标" T" 表示 24 h组与 6 h组比较,差异均有显著性的意义 (P < 0.05)。上标" T" 表示 24 h组与 6 h组比较,差异有显著性的意义 (P < 0.01)。各组间 Q_{2+} Q_{4} 值比较 P = 0.01

表 3 (2000 \pm 500) lx 光照后不同时间 RPE细胞的损伤 ($x \pm s$)

光照后	RPF细胞					 F值	 P值
时间(h)	Q1	Q2	Q3	Q4	Q2+ Q4	F IE	PIE
6	2. 13± 1. 62 ²	4. 70± 0. 95	92. 67± 2. 52	0.50± 0.30	5. 20± 1. 22¹	10. 50	< 0. 01
12	$5.33\pm\ 2.08^{2}$	7. 30± 0. 76 ^{1,3}	85. 67± 2. 08 ^{1, 3}	1.70± 0.261	9. 00± 1. 00¹	72. 93	< 0.01
24	5.73 ± 3.70^2	10. 17± 0. 85 ^{1,3}	80. $63\pm 2.35^{1,3}$	3.47± 0.71 ^{1,3}	13. 63± 1. 56¹	53.87	< 0.01
36	$12.33\pm\ 0.58$	15. 00± 1. 00 ^{1,3}	67. $33\pm 3.06^{1,3}$	5. 33± 1. 53 ^{1, 3}	20. 33± 2. 52 ¹	17.82	< 0.01

注: Q1 Q2 Q3 Q4 Q2+ Q4及数值的含义与表 1相同。上标"1"所标示的这些组之间差异均有显著性意义 (P < 0.05)。上标"2" 标示组与光照后 36 h组之间差异有显著性的意义 (P < 0.01)。上标"3" 标示组与 6h组之间差异有显著性的意义 (P < 0.05)。各组间 Q2+ Q4值比较 F = 45.33, P < 0.01

(3) $(2\ 000\pm\ 500)\ lx$ 光照后不同时间段 RPE细胞的损伤: 分别比较光照后不同时间组之间各 RPE细胞亚群的差异。随着光照后时间的延长,细胞凋亡程度发生明显的改变 (P<0.05) 光照后 36 h,细胞的坏死数显著增高 (P<0.01) 而 6 12 24 h 组的损伤改变以凋亡为主,细胞坏死增加不明显 (P>0.05),但随着时间的延长,凋亡继发性坏死的增加显著,见表 3

3 讨论

本实验结果表明,在 500 lx的较低光照强度下,培养的人 RPE细胞已开始出现轻度的损伤,随着光照强度的增加,RPE细胞凋亡和坏死亦显著增加,细胞发生凋亡的总数明显超过细胞坏死 在同等强度的光照下,RPE细胞的损伤表现为光照时间依赖性 在较短时间内(6 12 h),主要以凋亡的增加而加重损伤;更长时间(24 h)的照射,使细胞损伤加重,以坏死为主要增加形式 光照后早期(6 12 24 h)通过凋亡增加,而损伤的细胞比例大,36 h后则细胞坏死增加明显 另一方面,光照强度和时间增加,则细胞发生坏死以及凋亡后继发性坏死的比例增加明显。说明细胞可由凋亡发生继发性细胞坏死(secondary necrosis)或称细胞凋亡性坏死(apoptotic necrosis)^[4],二者的分界线在某些情况下仍不十分明显,细胞凋亡在一定情况下可转化为细胞坏死,总的来说,本实验模型的结果使我们可

以推测,在日常环境,光的中低强度辐射下,接受光照的相对强弱和时间,是决定人眼的视网膜及 RPE细胞是否受到损伤的重要因素 强光照及明显延长的辐射时间,带来的视网膜灼伤中细胞坏死为其主要机制,而如老年性黄斑变性等与可见光长期照射有关的慢性眼疾^[5-7],其眼底细胞的损伤可能主要通过凋亡的死亡形式,或由凋亡走向坏死。当然包括一些未知的个体差异等因素,决定了个体发病的风险。

志谢: 四川大学华西医院内科实验室 强欧、黄颂敏、任敏及肿瘤生物治疗中心的雷松等老师给予了大力的帮助。

4 参考文献

- 1 王雨生,严密.可见光对原代培养人视网膜色素上皮细胞的光化学损伤.中华眼底病杂志,1996,12 174-176.
- 2 Ang J, Seko Y, Tokoro T, et al. Observation of ultrastructural changes in cultured retinal pigment epithelium following exposure to blue light. Graefe's Arch Clin Exp Ophthalmol, 1998, 236 696-701
- 3 Gorg els TGMF, Van Norren D. Ultraviolet and green light cause different types of damage in rat retina. Invest Ophthalmol Vis Sci, 1995, 36 851-863.
- 4 彭黎明,王曾礼,主编. 细胞凋亡的基础与临床.北京: 人民卫生出版社,2000.125-126.
- 5 West SK, Rosenthal FS, Bressler NM, et al Exposure to sunlight and other risk factors for age-related macular degeneration. Arch Opthalmol, 1989, 107 875-879.
- 6 Taylor HR, Muno z B. The long-term effects of visible light on the eye. Arch Ophthalmol, 1992, 110-99-100.
- 7 吴乐正. 老年黄斑变性的研究. 眼科学报, 1989, 5 67-68.

(收稿日期: 2002-04-12) (本文编辑: 韦纯义)

。消息[。]

2002玻璃体视网膜国际研讨会暨玻璃体视网膜手术 国家级继续医学教育学习班通知

复旦大学附属眼耳鼻喉科医院玻璃体视网膜疾病中心将于 2002年 11月 3~ 4日在上海举办 2002玻璃体视网膜国际研讨会,届时有 5位来自美国、日本的著名玻璃体视网膜专家,以及国内的多位权威教授研讨该领域的最新进展议题: CNV 的多种治疗方式 (PDT, TTT,黄斑转位手术等) 视网膜感染性疾病。高速玻璃体切割机、人工角膜 (TKP)、人工视网膜等。 研讨会后将举办第 13届全国玻璃体视网膜手术临床继续医学教育学习班。学习班由王文吉教授、陈钦元教授等全国知名的眼科专家授课,主要内容有PDR,外伤性玻璃体视网膜病变,黄斑病变,病毒性眼底病变等的玻璃体手术治疗技巧及最新进展,并有机会亲临现场观摩专家手术或协助手术。学习班将组织疑难病例讨论,欢迎学员自带病例资料。学习班结束后统一颁发国家级继续医学教育学分证明及证书,欢迎全国眼科医师报名参加。凡学习班学员均可免费参加此次国际研讨会。学费 600元 (包括讲义),学习班可协助安排食宿(亦可自理)。 报名时请用正楷书写报名者的姓名、性别、年龄、职称、工作单位、邮政编码及详细通信地址、联系电话,于 2002年 9月 31日前寄至: 上海市汾阳路 83号,复旦大学附属眼耳鼻喉科医院眼科 邵秋珍收,邮编 200031 联系电话: 陆萍,(021) 643177134—706;赵培泉,1360795361 传真: 021-64377151,陆萍收 E-mail dekang 26@ yahoo.com

复旦大学附属眼耳鼻喉科医院玻璃体视网膜疾病中心