robosense[®] Lidar

RS-Helios

术语表

MSOP	主数据流输出协议, Main data Stream Output Protocol,简称: MSOP			
DIFOP	设备信息输出协议, Device Info Output Protocol,简称: DIFOP			
FOV	视场角,Field Of View,简称 FOV			
РТР	精确时间协议, Precision Time Protocol,简称 PTP			
NTP	网络时间协议, Network Time Protocol,简称 NTP			
GPS	全球定位系统, Global Positioning System,简称 GPS			
UTC	世界协调时间, Universal Time Coordinated,简称 UTC			
Wave_mode	回波标识位			
Protocol	协议版本号,00为旧版本协议,01为最新版本协议			
Тетр	设备温度信息			
Resv	数据预留位			
Azimuth	雷达的水平角			
Timestamp	时间戳,记录系统时间			
Header	协议包中的帧头			
Tail	协议包中的帧尾			
Value	代表对应 offset 字节换算后得出的十进制数值,采用大端模式,高位在前,低位在后			

目录

1	安全挑	是示	1
2	设备夕	外形及接口	2
	2.1	设备外形图	2
	2.2	航插接口及定义	2
	2.3	Interface Box 接口说明	3
		2.3.1 电源接口	3
3	设备多	安装	5
	3.1	标准配件	5
	3.2	结构安装	6
	3.3	快速连接	7
4	产品指	苗述	10
	4.1	产品规格	10
		4.1.1 规格参数	10
	4.2	点云呈现	12
		4.2.1 坐标映射	12
	4.3	反射率信息解读	13
	4.4	回波模式	13
		4.4.1 回波模式原理	13
		4.4.2 回波模式标志	14
	4.5	相位锁定	14
	4.6	时间同步方式	15
		4.6.1 GPS 时间同步原理	15
		4.6.2 Time Synchronization 使用	15
5	通信协	办议	18
	5.1	MSOP 与 DIFOP 数据协议	18
	5.2	主数据流输出协议(MSOP)	18
		5.2.1 帧头	19
		5.2.2 数据块区间	19
		5.2.3 帧尾	21
	5.3	设备信息输出协议(DIFOP)	21
6	垂直角	角度定义及精确的点时间计算	23
	6.1	角度分布	23
	6.2	精确的点时间计算	23
7	故障论	》断	25
附	录AV	Veb 使用指南	27
	A.1	设备信息	27
	A.2	设备参数设定	28
	A.3	设备诊断/运行状态	30
	A.4	设备固件升级	31
附	录 B	各寄存器定义详情	33
	B.1	电机转速(MOT_SPD)	33
	B.2	以太网(ETH)	33

B.3 FOV 设置(FOV_SET)	
B.4 电机锁相相位(MOT_PHASE)	
B.5 主板固件版本(TOP_FRM)	
B.6 底板固件版本(BOT_FRM)	
B.7 电机固件版本(MOT_FRM)	
B.8 软件版本(SOF_FRM)	
B.9 垂直角校准(COR_VERT_ANG)	
B.10 水平偏移角校准(COR_HOR_ANG)	
B.11 序列号(SN)	
B.12 上位机驱动兼容性信息(SOFTWARE_VER)	
B.13 时间(UTC_TIME)	
B.15 故障诊断(FALT_DIGS)	
B.16 GPRMC 数据包-ASCII 码数据类型	
附录 C RSView	
C.1 软件功能	
C.2 安装 RSView	
C.3 设置网路	
C.4 可视化数据	
C.5 保存 RS-Helios 数据为 PCAP 格式	
C.6 回放 pcap 数据	
C.7 配置 RSView Data Port	
附录 D RS-Helios ROS&ROS2 Package	
D.1 配置环境	
D.2 下载&编译 RoboSense 雷达驱动包	
D.3 配置电脑 IP	
D.4 实时显示	
D.5 查看离线数据	
附录 E 结构图纸	
附录 F 传感器清洁	
F.1 注意事项	
F.2 需要的材料	
F.3 清洁方法	

1制造商信息

深圳市速腾聚创 (RoboSense) 科技有限公司

中国•广东省深圳市南山区留仙大道 3370 号南山智园崇文园区 3 栋 10-11 层

座 机: 0755-86325830

电 话: 15338772453 (市场合作)

邮 箱: service@robosense.cn (新邮箱)

周一至周五, 09:00-18:00 (GMT/UTC +8)

2法律声明

本手册受版权保护,RoboSense 对本手册享有著作权。由本手册而产生的任何权利均为速腾 所有。

本手册或部分手册内容复制仅限在著作权法的法律认定范围内是允许的, RoboSense 对本手册享有著作权.本手册中所述的商标为其各自所有者的财产, RoboSense 保留所有权利。

3 通过认证

本手册随产品技术升级而更新。如需最新版本,请访问 RoboSense 官网下载或联 RoboSense 技术支持&销售。

1 安全提示

使用本产品前,为避免对您或他人产生意外,同时损坏设备及违反保修条款,请务必仔 细阅读并遵循本说明书中的操作及规范。

● 激光安全等级

本产品激光安全等级符合以下标准:

IEC 60825-1:2014;

● 注意表面过热标识,谨防发生意外。

- 保留说明 请保留所有安全和操作说明,以备将来参考。
- 注意警告 请遵守产品和操作说明中的所有警告, 以免发生意外。
- 产品维修 请勿在缺少官方指导的情况下尝试打开设备进行维修。如需维修,请及时联系速腾聚创科技或其授权服务商。

2 设备外形及接口

2.1 设备外形图

图1 LiDAR 坐标及旋转方向示意图

2.2 航插接口及定义

RS-Helios 航插头在设备底部。航插接口上具体引脚定义如下:

)
Pin	Color	Function	Operating Voltage Range	Working Current	Other
1	Red	PWR	$0^{2}20V$	1 94	
2	Black	PWR	9 321	1. ZA	-
3	Gray	GND	/	1. 2A	
4	Blue	GND	/		,
5	Brown	GPS_PPS	$3^{\sim}15V$		/
6	White	GPS_GPRMC	$-15V^{+}15V$		
7	Purple	SYNC_OUT1		/	
8	Green	SYNC_OUT2	$0^2 2.2 W$	/	
9	Orange	TRD_N	0 3.31		Twisted Dair
10	Yellow	TRD_P			iwisted Pair

图2 航插接口引脚序号

2.3 Interface Box 接口说明

RS-Helios 附件 Interface BOX 具有电源指示灯及各类的接口,可接驳电源输入、RJ45 网口及 GPS 输入线(航插版接口盒线长有 3 米,有其他线长需求请联系 Robosense 技术支持)。

电源盒各接口规格:

表1 Interface Box 接口规格			
序 号	接口名称	规 格	
1	电源输入	标准 DC 5.5-2.1 接口	
2	网络接口	标准 RJ45 接口	
3	GPS 授时	SH1.0-6P 母座	

2.3.1 电源接口

Helios 电源接口使用标准 DC 5.5-2.1 接口。

电源盒正常工作时,红色和绿色电源输出指示灯亮起。当电源指示灯暗灭时,Interface BOX 可能工作不正常。请检查电源输入是否正常,如电源输入正常,即 Interface BOX 可能已经 损坏,请联系我司技术支持&销售。

2.3.2 RJ45 网口

Helios 网络接口使用标接口。

网络接口遵循 EIA/TIA568 标准。

2.3.3 Time Synchronization 接口定义

Helios Time Synchronization 接口定义: GPS REC 为 GPS UART 输入; GPS PULSE 为 GPS PPS 输入。

接口盒 Time Synchronization 的定义及各接口相对应的位置如下图所示:

Pin No.	Function
1	GPS_PPS
2	+5V
3	GND
4	GPS_GPRMC
5	GND
6	SYNC_OUT1

表2 Time Synchronization 接口定义

注意: RS-Helios 的"地"与外部系统连接时,外部系统供电电源负极("地")与 GPS 系统的"地"必须为非隔离共地系统。

3 设备安装

3.1 标准配件

RS-Helios 标配出货配件清单如下,以下清单仅供参考。

序 号	配件名称	规格/数量	
1	激光雷达	PS-Holicov1	
1	LiDAR	KS herros*1	
0	电源盒子	2W1	
2	Interface Box	3M *1	
3	电源适配器	DC12Vx3.34A/40W *1	
	Power Adapter		
4	电 源 线	1.2M *1	
	Power Cable		
5	网 线	1 5M *1	
0	Ethernet Cable	1. 011 41	
6	螺 丝 包	M3Y8 *4 M3Y19 *4	
	Screw Pack	MJAO 74, MJA12 74	

表3 出厂标准配件清单

注: 如特殊要求的请以实际协商为准。

3.2 结构安装

图4 雷达结构安装示意图

▶ 螺丝规格

GB/T70.1, M3x12, 内六角杯头,材质 SCM435,电镀三价铬黑锌,等级 10.9,带耐落 GB/T70.1, M3x8, 内六角杯头,材质 SCM435,电镀三价铬黑锌,等级 10.9,带耐落

> 安装要求

- 1) 安装面平面度应好于 0.05mm;
- 2) 底面用 3xM3 螺钉安装,出安装面 4~5mm,推荐锁紧扭矩 13±1kgf.cm;
- 3) 底面用 2x Φ4 定位销进行安装定位,出安装面 4~5mm;

图5 雷达底部定位销及螺丝示意图

> 支架刚度和强度要求

固定支架需要有较好的刚性用于安装固定雷达并在各种工况下保持雷达处于一个稳定的状态。因此要求: 雷达及其固定支架整体的一阶模态频率至少大于 50Hz, 且需要避开 100~110Hz 及 280-290Hz 的共振频段;

雷达在使用过程中会经受各种随机振动、机械冲击等工况。这些工况下,支架需要承受 较大的负载,因此支架还需要有足够的强度;

安装激光雷达时请避免以下情况出现:

- 1) 用于固定激光雷达的安装底座建议尽可能的平整,不要出现凹凸不平的现象。
- 2) 安装底座上的定位柱应严格遵循激光雷达底部定位柱的深度,定位柱的高度不能高于
 4mm。安装底座的材质建议使用铝合金材质,有助于激光雷达的散热。
- 激光雷达安装的时候,如果激光雷达上下面都有接触式的安装面,请确保安装面之间 的间距大于激光雷达的高度,避免挤压激光雷达。
- 4) 激光雷达安装走线的时候,不要将雷达上面的线拉的太紧绷,需要保持线缆具有一定的松弛。

3.3 快速连接

RS-Helios 网络参数可配置,出厂默认采用固定 IP 和端口号模式,按照如下表格。

表4 出厂默认网络配置表

	IP 地址	MSOP 包端口号	DIFOP 包端口号
RS-Helios	192.168.1.200	((0)	7700
电脑	192.168.1.102	0099	//88

使用设备的时,需要把电脑的 IP 设置为与设备同一网段上,例如 192.168.1.x(x 的 取值范围为 1~254),子网掩码为 255.255.255.0。若不知设备网络配置信息,请连接设备并 使用 wireshark 抓取设备输出包进行分析。

4 产品描述

4.1 产品规格1

4.1.1 规格参数

传感器				
线数	32	水平视场角	360°	
激光波长	905nm	垂直视场角	+ 15°~-55° (共 70°)	
激光发射角(全角)	水平 1.4mrad 垂直 2.6mrad	水平角分辨率	0.2°/0.4°	
激光安全等级	Class 1 人眼安全	垂直角分辨率	+15° ~ +7° & -8° ~ -10° : 2° +7 ~ +4° : 1.5° +4° ~ -8° : 1.33°	
测距能力2	0.2m 至 150m (90m@10% NIST,详细见表 3)	±2cm		
盲 区	0.2m 帧 率 10Hz/20 Hz			
转速	转 速 600/1200 rmp(10/20Hz)			
	输	出		
出点数	576,000pts/s (单回波模式) 1	,152,000pts/s (双回]波模式)	
以太网输出	100M-Base-T1			
输出数据协议	UDP packets over Ethernet			
LiDAR 数据包内容	数据包内容 三维空间坐标、 反射强度、 时间戳等			
机器				
工作电压	9V - 32V	尺 寸	直径 97.5mm * 高 100 mm	
产品功率4	12W(典型值) 20W(峰值)	工作温度5	-30°C ~+60°C	
重量	0.99kg(LiDAR 本体)	存储温度	-40℃ ~+85℃	

¹ 以下数据只针对量产产品,任何样品、试验机等其他非量产版本可能并不适用本规格数据,如有疑问请 联系速腾聚创销售;

² 测距能力以 20% NIST 漫反射板作为目标,测试结果会受到环境影响,包括但不限于环境温度、光照强 度等因素;

³ 测距精度以 50% NIST 漫反射板为目标,测试结果会受到环境影响,包括但不限于环境温度、目标物距 离等因素,且精度值适用于大部分通道,部分通道之间存在差异;

⁴ 设备功耗测试结果会受到外部环境影响,包括但不限于环境温度、目标物的距离、目标物反射率等因素;

⁵ 设备运行温度可能会受到外部环境影响,包括但不限于光照环境、气流变化等因素;

时间同步 GPS+PPS	S、PTP	防护等级	IP67
--------------	-------	------	------

表5 各通道测距能力对应表

Channel No.	Vertical Angle (°)	10% NIST (m)	Range (m)
1	15	90	100
2	13	90	100
3	11	90	100
4	9	90	100
5	7	90	100
6	5.5	90	100
7	4	90	150
8	2.67	90	150
9	1.33	90	150
10	0	90	150
11	-1.33	90	150
12	-2.67	90	100
13	-4	90	100
14	-5.33	90	100
15	-6.67	90	100
16	-8	90	50
17	-10	40	50
18	-16	40	50
19	-13	40	50
20	-19	40	50
21	-22	40	50
22	-28	40	50
23	-25	40	50
24	-31	40	50
25	-34	40	50
26	-37	40	50
27	-40	40	50
28	-43	40	50
29	-46	20	30
30	-49	20	30
31	-52	20	30
32	-55	10	20

4.2 点云呈现

4.2.1 坐标映射

由于雷达封装的数据包仅为水平旋转角度和距离参量,为了呈现三维点云图的效果,将 极坐标下的角度和距离信息转化为了笛卡尔坐标系下的 x,y,z 坐标,他们的转换关系如下式 所示:

 $\begin{cases} x = r \cos(\omega) \sin(\alpha); \\ y = r \cos(\omega) \cos(\alpha); \\ z = r \sin(\omega); \end{cases}$

其中r为实测距离, *⁰⁰* 为激光的垂直角度, ^{*a*} 为激光的水平旋转角度, x、y、z 为极坐标投 影到笛卡尔 X、Y、Z 轴上的坐标。

注1:在 RS-Helios 驱动 SDK 包源码中,默认进行了坐标变换来符合 ROS 的右手坐标系, ROS 下面的 X 轴 定义指向图 1 中的 Y 正方向, ROS 下面的 Y 轴定义指向图 1 中的 X 负方向。

注 2: 雷达的坐标原点定义在雷达结构中心, 高度距离底座 63.5mm。

4.3 反射率信息解读

RS-Helios 数据中包含了被测物体反射率信息,反射率是衡量一个物体对光的反射能力的指标,与物体本身的材质有很大的关系。因此,可利用此信息区分不同材质的物体。

在 RS-Helios 数据中,标定后的反射率范围区间为 0~255,漫反射物体的反射率强度在 0~100 分布,黑色物体反射率低,白色物体反射率高。全反射的物体的反射率强度值定义为 101~255,最理想的全反射物体的反射率接近 255。

漫反射

4.4 回波模式

4.4.1 回波模式原理

RS-Helios 支持多种回波模式,分别为:最强回波(Strongest Return)、最后回波(Last Return)、最近回波(First Return)及双回波(Dual Return)模式,当设置为双回波模式时,此时目标物的细节会增多,数据量是单回波的两倍。

由于光束发散,任何一次激光发射出去都有可能产生多次激光返回。当激光脉冲发射出 去后光斑逐渐变大。假设一个光斑足够大,可以打到多个目标物上,产生多个反射。通常情 况下目标物距离越远,它在接收器上的能量就越弱,明亮或反光的表面情况可能会相反。

RS-Helios 分析接收到的多个返回值,并根据用户选择输出最强、最近、最后或同时输出最强最后、最强最近或最近最后两个回波值。如果设置为最强回波模式则只输出最强的反射回波值。同样,如果设置是最后回波模式,则只有最后时间上的回波输出。

特别说明:

1.只有当两个目标物体之间距离大于1米时才会有两次回波。

2.当雷达光束只投射到一个目标物时,此时只有最强回波。

3.当激光雷达发送的激光脉冲,投射到两个不同距离下的两面墙面或其他物体时,会返回 两个回波,此时有以下两种结果:

(1) 最强回波不是最后回波的时候,返回最强和最后回波;

(2) 最强回波既是最后回波的时候,返回最强回波和次强回波;

4.4.2 回波模式标志

RS-Helios 出厂默认为最强回波(Strongest Return)模式,如您需要更改设置,请参照本用户手册附录 C RSView 中的图 C14。在 DIFOP 中第 300 个 byte 是回波模式的标志位,具体对应如下:

标志位	回波模式
00	双回波
04	最强回波
05	最后回波
06	最近回波

表6 回波模式和标志位对照表

4.5 相位锁定

相位锁定功能可用于设定 RS-Helios 在 PPS 脉冲触发的时刻,传感器旋转到特定的角度 发射激光,当多个 RS-Helios 同时使用的时候保持他们之间相对旋转角度不变。为了保证相 位锁定功能正常,需要 PPS 脉冲触发信号且保持稳定。

图 7 为 RS-Helios 设置不同相位的示意图,红色箭头表明,当 PPS 脉冲触发的时候,传感器分别旋转到 0 度、135 度、270 度发射激光。

图8 RS-Helios 不同相位设定示意图

Web 端 Setting >Phase Lock Setting 中提供了一个"Phase Lock"的参数设定,可以用于设定锁定的相位角度,输入范围是 0~359。

4.6 时间同步方式

RS-Helios 支持 GPS+PPS、PTP 两种同步方式,可在 Web 端进行设置(Web 端操作请查看 附录 A.2)

RS-Helios 可外接 GPS 模块,并且将 GPS 发出的时间同步为设备的系统时间。

4.6.1 GPS 时间同步原理

GPS 模块连续向设备发送 GPRMC 数据和 PPS 同步脉冲信号, PPS 同步脉冲长度为 20ms 至 200ms, GPRMC 数据必须在同步脉冲 500ms 内完成。

4.6.2 Time Synchronization 使用

RS-Helios 雷达 GPS_REC 接口电平协议为 RS232 电平标准;如下表所示;

表7 设备授时引脚定义

同步子子	接收引题	脚定义
间如刀式	GPS REC	GPS PULSE
RS232	接 GPS 模块输出的 R232 电平标	接 GPS 模块输出的正同步脉冲
	准的串口数据	信号, 电平要求 3.0V~15.0V

注 1: RS-Helios 电源盒上面的 GPS_REC 接口规格为 SH1.0-6P 母座, 引脚定义如表 2 所示。

注 2: 查看固件版本请查看附录 C 中的【图 C14】。

外接的 GPS 模块需要设置输出串口的波特率为 9600bps, 8bit 数据位, 无校验位, 停止

位 1。RS-Helios 只读取 GPS 模块发出的 GPRMC 格式的数据,其标准格式如下:

```
$GPRMC,<1>,<2>,<3>,<4>,<5>,<6>,<7>,<8>,<9>,<10>,<11>,<12>*hh
```

- <1>UTC 时间
- <2> 定位状态,A=有效定位,V=无效定位
- <3> 纬度
- <4> 纬度半球 N(北半球)或 S(南半球)
- <5> 经度
- <6> 经度半球 E(东经)或 W(西经)
- <7> 地面速率
- <8> 地面航向
- <9> UTC 日期
- <10> 磁偏角
- <11> 磁偏角方向, E(东)或 W(西)
- <12> 模式指示(A=自主定位, D=差分, E=估算, N=数据无效)

*后 hh 为\$到*所有字符的异或和

特别提醒:

1.1PPS 脉冲的发送时间间隔需要控制在 1s±100us 以内;

2.GPRMC 消息中状态位必须为 A 有效时才允许进行时间同步授时;

3.目前市场的 GPS 模块发出的 GPRMC 消息长度存在不一致情况,可以兼容大部分市场上的 GPS 模块发出 来的 GPRMC 消息格式,如果发现不兼容情况请联系 Robosense 技术支持

4.6.3 PTP 同步原理

PTP(Precision Time Protocol,精确时间协议)是一种时间同步的协议,其本身只是用

于设备之间的高精度时间同步,但也可被借用于设备之间的频率同步。相比现有的各种时间 同步机制, PTP 具备以下优势:

1)相比 NTP(Network Time Protocol,网络时间协议),PTP 能够满足更高精度的时间同步要求,NTP 一般只能达到亚秒级的时间同步精度,而 PTP 则可达到亚微秒级。

2)相比 GPS(Global Positioning System,全球定位系统),PTP 具备更低的建设和维护成本,并且由于可以摆脱对 GPS 的依赖,在国家安全方面也具备特殊的意义。

4.6.4 PTP 接线方式

使用 PTP 同步方式,需要做以下准备,之后按照下图的连接方式进行连接:

1) 在 Web 端中选择 PTP 模式(请查看附录 A.2 网页配置);

2) 准备一台 PTP Master 授时主机(即插即用,无需额外配置);

3) 以太网交换机;

4) 支持 PTP 协议的待授时设备。

图1 PTP 连接示意图

注意:

1.PTP Master 授时设备属于第三方设备,我司出货时不包含此配件,需要用户自行采购;

2.我司设备作为 PTP Slave 设备只获取 PTP Master 发出的时间,不做准确度判断,若解析雷达点云时间与 真实时间出现偏差请检查 PTP Master 提供的时间是否准确;

3.雷达同步之后, PTP Master 断开连接, 点云数据包中的时间则会按照雷达内部时钟进行叠加, 雷达断电重 启后才会被重置。

5 通信协议

RS-Helios 与电脑之间的通信采用以太网介质,使用 UDP 协议,和电脑之间的通信协议 主要分二类,如下表所示:

(协议/包) 名称	简写	功能	类型	包大小		
Main data Stream Output Protocol	MSOP	扫描数据输出	UDP	1248byte		
Device Information Output Protocol	DIFOP	设备信息输出	UDP	1248byte		

表8 设备协议一览表

注:下面章节皆为对协议中的有效载荷(1248byte)部分进行描述和定义。

1) 主数据流输出协议 MSOP, 将激光雷达扫描出来的距离, 角度, 反射率等信息封装成包输出给电脑;

2) 设备信息输出协议 DIFOP,将激光雷达当前状态的各种配置信息输出给电脑;

5.1 MSOP 与 DIFOP 数据协议

RS-Helios 发出的 UDP 协议为 1248byte 有效载荷,主数据流(MSOP)及设备信息(DIFOP) 数据结构如下图所示:

图2 LiDAR 数据结构示意图

5.2 主数据流输出协议(MSOP)

主数据流输出协议: Main data Stream Output Protocol,简称: MSOP

I/O 类型:设备输出,电脑解析

默认端口号为 6699

5.2.1 帧头

帧头 Header 共 42byte,用于识别出数据的开始位置,数据结构如下表所示:

Header (42 bytes)								
今 55	Offerst	长度	수 V Y 미미					
子段	Uliset	(byte)	定义况明					
Header ID	1	4	4 位用于数据包头的检测,4byte 定义为					
			0x55,0xAA,0x05,0x5A,					
协议版本号	5 2 0x00,0x01,							
Resv	7	14	预留处理,为后续的更新升级使用					
Timestamp	21	10	存储时间戳,具体定义请查看附录 B.13					
			用于表示激光雷达的型号					
			0x01:RSLiDAR-16					
			0x02:RS-LiDAR-32					
LiDAR Model	31	1	0x03:RS-Bpearl					
			0x04:RS-Ruby					
			0x05:RS-Ruby Lite					
			0x06:RS-Helios					
Resv	32	11	预留处理,为后续的更新升级使用					

表9 MSOP Header 数据表

注: 定义的时间戳用来记录系统的时间,分辨率为 1us,可以参考<u>附录 B.13</u>中的时间定义。

5.2.2 数据块区间

如下表所示,数据块区间是 MSOP 包中传感器的测量值部分,共 1200byte。它由 12 个 data block 组成,每个 block 长度为 100byte,代表一组完整的测距数据。Data block 中 100byte 的空间包括: 2byte 的标志位,使用 0xffee 表示; 2byte 的 Azimuth,表示水平旋 转角度信息,每个角度信息对应着 32 个的 channel data,包含 1 组完整的 32 通道信息。 (通道序号与垂直角度的关系参见文中第 6 章中的定义)。

Data Block (1200 bytes)								
Data Block 1	Data Block 2	Data Block 3	Data Block n	Data Block 12				
0xff,0xee	0xff,0xee	0xff,0xee	0xff,0xee	0xff,0xee				
Azimuth 1	Azimuth 2	Azimuth 3	Azimuth n	Azimuth 12				
Channel data 1 Channel data 1		Channel data 1	Channel data 1	Channel data 1				
Channel data 2	Channel data 2	Channel data 2	Channel data 2	Channel data 2				
Channel data 31	Channel data 31	Channel data 31	Channel data 31	Channel data 31				
Channel data 32	Channel data 32	Channel data 32	Channel data 32	Channel data 32				

表10 Data Block 数据包定义

注: 双回波模式时, Data Block 的奇数列 32 个通道数据存储最强回波, 偶数列 32 个通道数据存储最后回 波。

5.2.2.1 channel data 定义

Channel data 是 3byte, 高两字节用于表示距离信息, 低一字节用于表示反射率信息, 如下 图所示。

Ch	annel data n	(3 bytes)
2 byte D	istance	1 byte Reflectivity
Distance1 [15:8]	Distance2 [7:0]	Reflectivity(反射率信息)

Distance 是 2byte, 单位为 cm, 分辨率为 0.25cm。

一边用	極不り	1127	s	- KU 1	r1=/	2												
ło.		Ti	me				Sou	rce					D	estina	tion			1.数据包的 channel data 解析,计算方式:
Г		10	.000	0000)		192	2.16	8.1.	. 200)		1	92.1	68.1	.102	2	
		20	.000	0104	1		192	2.16	8.1.	. 200)		1	92.1	58.1	.102	2	1) 粉 据 句 思 的 跖 惑 值 的 十 六 进 制 粉,
		30	.001	1156	9		192	2.16	8.1.	. 200)		1	92.1	58.1	.102	2	IJW II C I II M M M M M / / Z N W.
		4 0	.001	1256	9		192	2.16	8.1.	. 200)		1	92.1	58.1	.102	2	
		50	.002	2308	3		192	2.16	8.1.	. 200)		1	92.1	58.1	.102	2	0x01,0x40。
		6 0	.003	3346	9		192	2.16	8.1.	. 200)		1	92.1	58.1	.102	2	
		70	.003	3443	3		192	2.16	8.1.	. 200	9		1	92.1	58.1	. 102	2	2) 将新招组成 16bit 为 16bit 无符号数刑新招
			_						-						-			2.] 村
✓ Int	erne	et I	Prot	toco	٥١ /	/ers	sio	۱4,	Sro	:: 1	.92.	168	.1.	200,	Dst	:: 19	92.10	
	0100			= V	ers	ion	: 4					·						表示为: 0x0140。
		01	.01	= H	ead	er	Len	gth	: 20	by	tes	(5))		_			
~	Diff	ere	nti	ate	dS	erv	ice	s Fi	ield	: 0	x00	(D9	SCP:	CSe	ι, Ε(CN: I	Not-	2) 昨夜估杜梅山十进制起宫 220
	00	900	00	••••	= D1	1++6	erer	ntia	ted	Ser	۰۷1¢	es .	Cod	epoi	nt:	Deta	ault	3]距离值转换为1 近制数于: 320。
				919 = 	= E) 40	(p1)	1011	t Co	nges	5 T 10	on N	loti	†1C	atio	n: N	IOT E	CN-C	
0000	LOT A	-1	end	10	E /	/h	00	0.	25	00	1.0	22	00	00 4		т	r 1	4)根据距离分别率不同,可计算。
0000	04	fc	60	59	24 40	00	40	0a 11	51	19	-0	22	00 01	68 C	5 <u>00</u> 0 98	2		
0020	01	66	1a	2b	1a	2b	40 04	e8	ba	14	55	aa	05	5a 0	0 01		f +	
0030	00	00	71	74	77	7a	00	03	b0	85	00	00	00	00 0	0 00	. (· atv	5]结果 320*0.25 = 8m 术.
0040	38	6e	0b	ef	00	0d	4f	fe	06	00	00	00	00	00 0	0 00	8	3n	
0050	84	1c	00	00	ff	ee	88	db	01	40	5b	01	33	6c Ø	1 3d	÷ t		2.数据向的角度值计算方式。
0060	57	01	2f	7f	01	38	59	01	2d	7c	01	39	51	01 4	b ff	F M	1-/	
0070	01	38	51	01	4c	ff	01	35	52	01	39	ff	01	35 5	0 01	Ŀ	8Q - I	
0080	48	ff	01	36	54	01	3f	ff	01	3a	66	01	0f	3a 0	1 23	3 F	161	1)数据包里的角度值得十六进制数: 0x88,
0090	24	60	+3	21	60	a/	21	60	88	31	60	91	24	40 7	8 36 - 00	2 ¥	5/-	
0000	47	0e Af	20	11	30	40	34	50 Ac	29	00	27	55 of	00 01	49 Z 10 5	C 00		- n (- c	Ovdb
0000	32	60	01	30	5a	01	26	7d	01	37	5a	01	2d	40 J 7e Ø	1 39		21.27	0xuD _o
00d0	43	01	4b	fe	01	37	45	01	4b	ff	01	35	42	01 3	9 ff	FC	С-К	
00e0	01	35	44	01	48	fe	01	35	49	01	3f	ff	01	3a 5	3 01	Ŀ	5D-F	2)将数据组成16bit,为16bit无符号整型数据。
00f0	10	3e	01	22	24	00	f6	32	00	a7	22	00	88	32 0	0 91	Ŀ	>~"\$	
0100	24	00	78	3b	00	6e	28	00	63	4b	00	5c	29	00 5	6 52	2 \$	5·x;∙	ŧ = ½ 0 00 ll
0110	00	49	2c	00	47	51	00	44	3e	00	40	50	ff	ee 8	9 06	5.	·I, ·(衣示为: UX88dD。
0120	01	40	5d	01	32	6b	01	30	57	01	2e	90	01	37 5	f 01		·@] ·2	
0130	20	/†	20	38 11	30	201	4a	11 01	47	37	39	20	40 20	11 U 01 D	1 35 1 22) - 	8;	3)转换为十进制数字: 35035。
0140		201					22	21	47	20	01	22	22				~~	
					夂	З	мс	ΛÞ	句-	군 루	至区	1						除以100。
					E	0	1410	01	2/	112	213	4						
																		1) 仕里,250.25 座
																		7) 冲水, 330.33 汉。
_																		
说明	:																	
红色	框。	н	еа	dei		١.												蓝色框:Channel data 1 的 Azimuth 值;

黄色框: Data Block 标志位;

绿色框: Channel data 1 测距值。

5.2.2.2 角度值定义

在每个 Block 中, RS-Helios 输出的水平角度值是该 Block 中第一个通道激光测距时的角度值。角度值来源于角度编码器,角度编码器的零位即角度的零点,水平旋转角度值的分辨率为 0.01 度。

5.2.3 帧尾

帧尾(Tail)长度 6byte, 4byte 位预留信息, 2byte 的 0x00, 0xFF。

5.3 设备信息输出协议(DIFOP)

设备信息输出协议, Device Info Output Protocol, 简称: DIFOP

I/O 类型:设备输出,电脑读取;默认端口号为7788

DIFOP 是为了将设备序列号(S/N)、固件版本信息、上位机驱动兼容性信息、网络配置信息、校准信息、电机运行配置、运行状态、故障诊断信息定期发送给用户的"仅输出"协议,用户可以通过读取 DIFOP 解读当前使用设备的各种参数的具体信息。

一个完整的 DIFOP Packet 的数据格式结构为同步帧头,数据区,帧尾。每个数据包共 1248byte: 包括 8byte 同步帧头 Header,1238byte 的数据区,以及 2byte 帧尾 Tail。

数据包的基本结构如下表所示。

段落划分	序号	信息	Offset	长度 (byte)		
Header	0	DIFOP 识别头	0	8		
	1	电机转速	8	2		
	2	以太网	10	22		
	3	FOV 设置	32	4		
	4	预留	36	2		
	5	电机锁相相位	38	2		
	6	主板固件版本号	40	5		
	7	底板固件版本号	45	5		
	8	底板软件版本号	50	5		
	9	电机固件版本号	55	5		
	10	整机硬件版本号	60	3		
	11	网页 cgi 版本号	63	4		
	12	主板备份 CRC	67	4		
	13	底板备份 CRC	71	4		
	14	软件 app 备份 CRC	75	4		
	15	网页 cgi 备份 CRC	79	4		
Data	16	以太网网关	83	4		
	17	子网掩码	87	4		
	18	预留	91	201		
	19	序列号	292	6		
	20	零度角标定值	298	2		
	21	回波模式	300	1		
	22	时间同步方式	301	1		
	23	同步状态	302	1		
	24	时间	303	10		
	25	运行状态	313	12		
	26	预留	325	17		
	27	故障诊断	342	18		
	28	码盘是否被校准	360	1		
	29	GPS的 PPS 脉冲触发方	361	1		
	30	预留	362	20		
	31	GPRMC	382	86		
	32	垂直角校准	468	96		

表12 DIFOP Packet 的数据格式结构

	33	水平角校准	564	96
	34	预留	660	586
Tail	35	帧尾	1246	2

注: 表格中 Header (DIFOP 识别头)为 0xA5,0xFF,0x00,0x5A,0x11,0x11,0x55,0x55, 可作为包的检查序列。

Tail 帧尾内容为 0x0F,0xF0。

每一项信息的寄存器的定义以及使用参见用户手册附录 B 中的详细描述。

6 垂直角度定义及精确的点时间计算

6.1 角度分布

RS-Helios 在垂直方向的角度范围是-55°~+15°,角度间隔最小 1.33°非均匀分布。将 32 个激光器定义为 32 路通道,与真实的垂直角度对应关系如下图所示。

6.2 精确的点时间计算

32 通道顺序完成一轮发射所需的时间为 55.56us。

在每个 MSOP Packet 中,有 12 个 Block,每个 Block 有 1 组完整的 32 线激光数据,因此 一个 Packet 中有 12 组完整的激光数据。32 通道激光完成一轮发射和充能需要 55.56us。 RS-Helios 加入抗干扰,因此发射时序并无规律,单回波及双回波点的时间计算请查下表

Channel	Vertical	Data Block											
ID	Angle	1	2	3	4	5	6	7	8	9	10	11	12
1	15°	0	55.56	111.11	166.67	222.22	277.78	333.33	388.89	444.44	500	555.56	611.11
2	13°	1.57	57.13	112.69	168.24	223.8	279.35	334.91	390.46	446.02	501.57	557.13	612.69
3	11°	3.15	58.7	114.26	169.82	225.37	280.93	336.48	392.04	447.59	503.15	558.7	614.26
4	9°	4.72	60.28	115.84	171.39	226.95	282.5	338.06	393.61	449.17	504.72	560.28	615.84
5	7°	6.3	61.85	117.41	172.97	228.52	284.08	339.63	395.19	450.74	506.3	561.85	617.41
6	5.5°	7.87	63.43	118.98	174.54	230.1	285.65	341.21	396.76	452.32	507.87	563.43	618.98
7	4°	9.45	65	120.56	176.11	231.67	287.23	342.78	398.34	453.89	509.45	565	620.56
8	2.67°	11.36	66.91	122.47	178.02	233.58	289.13	344.69	400.24	455.8	511.36	566.91	622.47
9	1.33°	13.26	68.82	124.38	179.93	235.49	291.04	346.6	402.15	457.71	513.26	568.82	624.38
10	0°	15.17	70.73	126.28	181.84	237.39	292.95	348.51	404.06	459.62	515.17	570.73	626.28
11	-1.33°	17.08	72.64	128.19	183.75	239.3	294.86	350.41	405.97	461.52	517.08	572.64	628.19
12	-2.67°	18.99	74.54	130.1	185.65	241.21	296.77	352.32	407.88	463.43	518.99	574.54	630.1
13	-4°	20.56	76.12	131.67	187.23	242.78	298.34	353.9	409.45	465.01	520.56	576.12	631.67
14	-5.33°	22.14	77.69	133.25	188.8	244.36	299.92	355.47	411.03	466.58	522.14	577.69	633.25
15	-6.67°	23.71	79.27	134.82	190.38	245.93	301.49	357.05	412.6	468.16	523.71	579.27	634.82
16	-8°	25.29	80.84	136.4	191.95	247.51	303.06	358.62	414.18	469.73	525.29	580.84	636.4
17	-10°	26.53	82.08	137.64	193.19	248.75	304.31	359.86	415.42	470.97	526.53	582.08	637.64
18	-16°	29.01	84.57	140.12	195.68	251.23	306.79	362.34	417.9	473.46	529.01	584.57	640.12
19	-13°	27.77	83.32	138.88	194.44	249.99	305.55	361.1	416.66	472.21	527.77	583.32	638.88
20	-19°	30.25	85.81	141.36	196.92	252.47	308.03	363.59	419.14	474.7	530.25	585.81	641.36
21	-22°	31.49	87.05	142.6	198.16	253.72	309.27	364.83	420.38	475.94	531.49	587.05	642.6
22	-28°	33.98	89.53	145.09	200.64	256.2	311.75	367.31	422.86	478.42	533.98	589.53	645.09
23	-25°	32.73	88.29	143.85	199.4	254.96	310.51	366.07	421.62	477.18	532.73	588.29	643.85
24	-31°	35.22	90.77	146.33	201.88	257.44	313	368.55	424.11	479.66	535.22	590.77	646.33
25	-34°	36.46	92.01	147.57	203.13	258.68	314.24	369.79	425.35	480.9	536.46	592.01	647.57
26	-37°	37.7	93.26	148.81	204.37	259.92	315.48	371.03	426.59	482.14	537.7	593.26	648.81
27	-40°	38.94	94.5	150.05	205.61	261.16	316.72	372.27	427.83	483.39	538.94	594.5	650.05
28	-43°	40.18	95.74	151.29	206.85	262.4	317.96	373.52	429.07	484.63	540.18	595.74	651.29
29	-46°	41.42	96.98	152.54	208.09	263.65	319.2	374.76	430.31	485.87	541.42	596.98	652.54
30	-49°	42.67	98.22	153.78	209.33	264.89	320.44	376	431.55	487.11	542.67	598.22	653.78
31	-52°	43.91	99.46	155.02	210.57	266.13	321.68	377.24	432.8	488.35	543.91	599.46	655.02
32	-55°	45 15	100 7	156.26	211.81	267 37	322.93	378 48	434.04	489 59	545 15	600.7	656.26

表13 MSOP Packet 中单回波每个激光点的时间偏移量

表14 MSOP Packet 中双回波每个激光点的时间偏移量

Channel ID	Vertical	Data Block											
Channel ID	Angle	1	2	3	4	5	6	7	8	9	10	11	12
1	15°	0	0	55.56	55.56	111.11	111.11	166.67	166.67	222.22	222.22	277.78	277.78
2	13°	1.57	1.57	57.13	57.13	112.69	112.69	168.24	168.24	223.8	223.8	279.35	279.35
3	11°	3.15	3.15	58.7	58.7	114.26	114.26	169.82	169.82	225.37	225.37	280.93	280.93
4	9°	4.72	4.72	60.28	60.28	115.84	115.84	171.39	171.39	226.95	226.95	282.5	282.5
5	7°	6.3	6.3	61.85	61.85	117.41	117.41	172.97	172.97	228.52	228.52	284.08	284.08
6	5.5°	7.87	7.87	63.43	63.43	118.98	118.98	174.54	174.54	230.1	230.1	285.65	285.65
7	4°	9.45	9.45	65	65	120.56	120.56	176.11	176.11	231.67	231.67	287.23	287.23
8	2.67°	11.36	11.36	66.91	66.91	122.47	122.47	178.02	178.02	233.58	233.58	289.13	289.13
9	1.33°	13.26	13.26	68.82	68.82	124.38	124.38	179.93	179.93	235.49	235.49	291.04	291.04
10	0°	15.17	15.17	70.73	70.73	126.28	126.28	181.84	181.84	237.39	237.39	292.95	292.95
11	-1.33°	17.08	17.08	72.64	72.64	128.19	128.19	183.75	183.75	239.3	239.3	294.86	294.86
12	-2.67°	18.99	18.99	74.54	74.54	130.1	130.1	185.65	185.65	241.21	241.21	296.77	296.77
13	-4°	20.56	20.56	76.12	76.12	131.67	131.67	187.23	187.23	242.78	242.78	298.34	298.34
14	-5.33°	22.14	22.14	77.69	77.69	133.25	133.25	188.8	188.8	244.36	244.36	299.92	299.92
15	-6.67°	23.71	23.71	79.27	79.27	134.82	134.82	190.38	190.38	245.93	245.93	301.49	301.49
16	-8°	25.29	25.29	80.84	80.84	136.4	136.4	191.95	191.95	247.51	247.51	303.06	303.06
17	-10°	26.53	26.53	82.08	82.08	137.64	137.64	193.19	193.19	248.75	248.75	304.31	304.31
18	-16°	29.01	29.01	84.57	84.57	140.12	140.12	195.68	195.68	251.23	251.23	306.79	306.79
19	-13°	27.77	27.77	83.32	83.32	138.88	138.88	194.44	194.44	249.99	249.99	305.55	305.55
20	-19°	30.25	30.25	85.81	85.81	141.36	141.36	196.92	196.92	252.47	252.47	308.03	308.03
21	-22°	31.49	31.49	87.05	87.05	142.6	142.6	198.16	198.16	253.72	253.72	309.27	309.27
22	-28°	33.98	33.98	89.53	89.53	145.09	145.09	200.64	200.64	256.2	256.2	311.75	311.75
23	-25°	32.73	32.73	88.29	88.29	143.85	143.85	199.4	199.4	254.96	254.96	310.51	310.51
24	-31°	35.22	35.22	90.77	90.77	146.33	146.33	201.88	201.88	257.44	257.44	313	313
25	-34°	36.46	36.46	92.01	92.01	147.57	147.57	203.13	203.13	258.68	258.68	314.24	314.24
26	-37°	37.7	37.7	93.26	93.26	148.81	148.81	204.37	204.37	259.92	259.92	315.48	315.48
27	-40°	38.94	38.94	94.5	94.5	150.05	150.05	205.61	205.61	261.16	261.16	316.72	316.72
28	-43°	40.18	40.18	95.74	95.74	151.29	151.29	206.85	206.85	262.4	262.4	317.96	317.96
29	-46°	41.42	41.42	96.98	96.98	152.54	152.54	208.09	208.09	263.65	263.65	319.2	319.2
30	-49°	42.67	42.67	98.22	98.22	153.78	153.78	209.33	209.33	264.89	264.89	320.44	320.44
31	-52°	43.91	43.91	99.46	99.46	155.02	155.02	210.57	210.57	266.13	266.13	321.68	321.68
32	-55°	45.15	45.15	100.7	100.7	156.26	156.26	211.81	211.81	267.37	267.37	322.93	322.93

7 故障诊断

在使用设备的过程中,我们会遇到一些常见的使用方面的问题,本章列举了部分常见的问题 以及对应的问题排查方法。

故障现象	解决方法
Interface Box 上面红/绿色指示	● 检查 Interface Box 与电源端的连接线是否松动
灯不亮/闪烁	
设久由机不旋柱	● 检查 Interface Box 上面指示灯是否正常
交面 电初时 10 使行	● 检查 Interface Box 与电源/设备端的连接线是否松动
	● 检查输入电源连接和极性是否正常
设久在自动时不断重白	● 检查输入电源的电压和电流是否满足要求(12V电压输入条件下,
以 田仁川 幼时 小时 至 川	输入电流≥2A)
	● 检查设备安装平面是否水平或雷达底部固定螺丝是否拧的太紧
	● 检查网络连接是否正常
	● 确认电脑端网络配置是否正确
设久内部旋转。但是没有数据	● 使用另外的软件(例如 wireshark)检查数据是否有被接收
以田竹即 飛行, 巨足仅有数酒	● 关闭防火墙和其他可能阻止网络的安全软件
	● 检查电源供电正常
	● 尝试重启设备
	● 关闭电脑防火墙,并且运行 RSVIEW 通过防火墙
Wirosbark 可以收到粉捉但是	● 确认电脑的 IP 配置和设备设置的目的地址一致
WITCHIALK 可以收到数据但定	● 确认 RSVIEW 上面的 Data Port 设置正确
K3VIEW 小亚小点厶	● 确认 RSVIEW 安装目录或配置文件存放目录不包含任何中文字符
	● 确认 wireshark 中收到的数据包是 MSOP 类型的包
	● 确认网络中是否有大量的其他网络数据包或网路冲突
	● 确认网络中是否存在其他网络设备以广播模式发送大量数据造成
设备存在频发的数据丢失	传感器数据阻塞
	● 确认电脑的性能和接口性能是否满足要求
	● 移除其他所有网络设备,直连电脑确认是否存在丢包现象
	● 确认己在网页端将同步模式切换到正确模式下
	● 确认 GPS 模块波特率为 9600bps, 8bit 数据位,无校验位,停止位
	1
	● 确认 GPS 模块输出为 3.3V TTL 还是 RS232 电平
	● 确认 1PPS 脉冲连续且连线正确
无法同步 GPS/PTP 时间	● 确认 GPRMC 的 NMEA 消息格式正确
	● 确认 GPS 模块和 Interface Box 共地
	● 确认 GPS 模块收到了有效的解
	● 确认 GPS 模块处于室外
	● 确认 PTP Master 同步协议是否符合当前 PTP 协议
	● 确认 PTP Master 是否正常工作
设久通过取由哭后于粉据输出	● 关闭路由器的 DHCP 功能或在路由器内部设置传感器的 IP 为正确
以 田西之时田留山九致昭相田	的 IP

ROS 驱动显示点云时有固定的	•	此现象正常,是因为 ROS 驱动按照固定包数进行分帧显示,空白部
空白区域不断旋转		分的数据会在下一帧进行显示
RSVIEW 软件输出点云成一条射	•	如果是 windows 10 系统请设置 RSVIEW 使用成 windows 7 兼容模
线		式运行

附录 A Web 使用指南

RS-Helios 仅支持通过网页端对设备进行参数设定、运行信息/状态查看及固件升级等操作。 RS-Helios Web 地址跟随 Device IP 变化而变化,出厂默认 Device IP 为 192.168.1.200,若用 户更改过 Device IP 则 Web 地址变更为新设定的 IP 地址。

设备按照要求连接及正确配置完成后,使用连接雷达的电脑浏览器访问设备 IP 地址(默认 Device IP "192.168.1.200")进入雷达 Web 首页,首页默认为"Device"栏

A.1 设备信息

雷达 Web 端默认为设备信息页,如下图所示:

S Robosense Lidar Info	× +
← → C û ▲ 不安全	192.168.1.200/cgi-bin/device_info.
Device Setting Diagnostic Sys	stem
Top Board Firmware Version:	01050007
Bottom Board Firmware Version:	01030731
Software Version:	21102201
Motor Firmware Version:	21101521
Hardware Version:	V3.0.0
S/N:	2410BAC9C542
Mac Address:	40:2C:76:8D:57:6F
Model:	RS-Helios

1. Top Board 为主板固件版本;
2. Bottom Board 为底板固件版本;
3. Software Version 为软件版本;
4. Motor Firmware Version 为电机版本;
5. Hardware Version 为硬件版本;
6. S/N 为设备序列号;
7. Model 为产品型号。

图 A-1 Web 端首页信息

A.2 设备参数设定

网页端 "Setting" 栏为雷达参数设定页,在此处可更改 Device IP、端口号、回波模式、转速 及角度触发等功能设定。示意及功能描述如下图所示:

S Parameter Setting ×	+			
← → C: 介 ▲ 不安全 192	168 1 200/cc	ii-bin/para	am setting	cai
	100.1.200, eg	ir biri, para		
(III) robosense				
Device Setting Diagnostic System				
General Setting				Angle Pulse Setting
Scheral Setting				, ingle i ube betting
			-	
Device IP Address:	192.168.1.20	00		
Device IP Mask:	255.255.255	.0		
Device IP Gateway:	192.168.1.1			
Destination IP Address:	192.168.1.10)2]	
MSOP Port Number(1025~65535):	6699]	
DIFOP Port Number(1025~65535):	7788		Ĩ	
Return Mode:	Strongest 🗸		_	
FOV Setting(0~360):	0 to	360	DEG	
Phase Lock Setting(0~360):	0		DEG	
Rotation Speed(0/300/600/1200/1500):	600		RPM	
Time Synchronization Source:	PTP-GPTP •	•	_	
Operation Mode:	High Perforn	nance 🗸		
Noise Filter:	ON			
	Save			

1. 支持单播(默认)/广播模式,将 Destination IP 设置为 255. 255. 255. 255 则为广播模式,默认出厂为 192. 168. 1. 102;

2. 可更改 MSOP 和 DIFOP 的数据端口, 值范围 1025~65535;

3. Return Mode 下拉可选最强(默认)/最后/最前/双回波四种回波模式;

4. 可设置 FOV,角度范围 0°~360°,当设定后则只输出设定区域点云数据;

5. 用户可设置设定转速, 仅支持 600rpm(默认), 1200rpm;

6. 用户可下拉"Time Synchronization Source"选择 GPS、PTP-P2P、PTP-E2E 和 PTP-gPTP 确定同步方式;

7. 用户可下拉 "Operation Mode"选择工作模式,分别为 Standby/High Performance (默认) 二种工作模式,当选择 Standby 模式时, 雷达电机和发射器停止工作。

S Parameter S	Setting × +						
\leftrightarrow \rightarrow G	▲ 不安全 192.16	8.1.200/cgi-bin/	/para	m_setting.cgi			
rol	oosense						
Device Setting	Diagnostic System						
General Setting Angle Pulse Setting							
Trigger Mode	e: ☑ Mode1(+25%) □ N	Iode2					
Group Switcl	h: 🗆 All On 🛛 🗹 A	ll Off					
Group	Pulse Trigger Switch	Pulse Start A	ngle	Pulse Widt	h	Pulse Step	
First Group:	ON	0.0	DEG	1000000	ns	360.00 D	EG
Second Group:	ON	0.0	DEG	1000000	ns	360.00 D	EG

1.Angle Pulse Setting: 在此栏下进行角度触发功能设置,角度触发功能默认关闭。

Save

2.Trigger Mode: 起始角模式有两种,模式1为起始脉宽增加25%(默认),模式2为起始脉宽不增加;

3.Group Switch: 开启/关闭 "Pulse Trigger Switch",当勾选 "All On"时,全部开启所有 SYNC 触发设置,默认为 "All Off";

4.Group: 此栏为对应 SYNC OUT 组, RS-Helios 内含 SYNC OUT1 & SYNC OUT2, 但电源盒子 只引出 SYNC OTU1, 具体定义请查看"表 2 Time Synchronization 接口定义",因此只有 【First Group】可用, Second Group 不可设置;

5.Pulse Trigger Switch: 开启/关闭触发功能,当 Pulse Trigger Switch 勾选"ON"开启 后选项为可编辑状态,关闭时为灰色不可编辑状态。

6.Pulse Start Angle: 可设置对应的起始角,默认值为0度,输入值需为0.1°的整数倍;

7.Pulse Width:可设置对应的脉宽,默认值为 10ms,输入值需为 20ns 的整数倍,占空比 最高为 50%;

8.Pulse Step: 可设置对应的步距,默认值为 360 度,输入值需为 0.05°的整数倍。

图 A-2 Web 端参数设定

注意:

1.Device IP 和 Destination IP 需在同一网段,否则可能会导致无法正常连接;

2.MSOP 和 DIFOP 值的范围为 1025~65535, 且 MSOP 端口和 DIFOP 端口不可设置为同一端口;

3.每次更改都需要点击"Save",提示成功则表示设定生效。

A.3 设备诊断/运行状态

此页可实时查看雷达运行状态,包括电压、电流、实时转速、运行时长及温度等信息,示意 及功能描述如下图所示:

S Diagnostic info × +					
← → C ☆ ▲ 不安全 192.168.1.200/cgi-bin/diagnostic_info.cgi					
Device Setting Diagnostic System					
Operation mode: High Performance					
Voltage Monitor:					
Vol_A5V0: 5.0 V Vol_Bot_12V: 12.4 V Vol_Bot_5V: 5.1	V				
Temperature:					
Top_Temp_Near_FPGA: 52.7 °C Top_Temp_On_Chip: 59.6 °C 1 Sensor Current: 1.03 A RPM: 590 Laser Status: ON GPS Status: ON GPS Status: Absent PPS Status: Absent PTP Master Offset: Phase O O Start-up Times: 202	Bot_Temp_On_Chip: 58.8 ℃				
Elapsed time: Total T0: 80h, 13min <40°C T1: 0h, 0min	-40°C~-20°C T2: 0h, 0min	-20°C~0°C T3:	Oh, Omin	0°C~20°C T4:	0h, 0min
20°C~40°C T5: 6h, 52min 40°C~60°C T6: 33h, 2min	60°C~80°C T7: 40h, 17min	80°C~100°C T8:	0h, 2min	>100°C T9:	0h, 0min

图 A-3 Web 端运行状态/故障诊断

说明:

1.Voltage Monitor 为设备电压监控,当设备选择 Standby 模式时,此处会变为红框;

2.用户可查看当前设备运行温度;

3.可查看 RPM 获取设备当前实时转速信息;

4.Laser Status 有"On"(默认)和"Off"两种状态,用户设置 Standby 模式时为"Off";

5.用户可查看 Star-up Times 获取当前设备总启动次数,每断电重启会累加一次;

```
6.用户可查看 Elapsed time Total TO 获取设备总运行时间和设备在各温度下累计工作时间。
```

注意**:**

1.本页刷新频率为1秒;

2.若设备电压/电流框变红时,请检查设备当前是否为 Standby 模式,若不是则检查设备是否正常工作; 3.设备启动次数为重新上电 1min 后刷新,设备工作时长为 1min 记录一次。

A.4 设备固件升级

点击网页"System",此页可对设备的主板、底板、软件、Web 及电机固件进行升级,操作 如下:

1.准备好待升级的固件,选择"浏览文件"

S Firmware Update	× +								
← → C û ▲ 不安全	192.168.1	1.200/cgi-bin/firmware_upd	ate.cgi						
Tap Board Eirphysics Undetai	stem >++도구가//+	+>++\$/1/(()寸/)+	Lindate						
Pottere Board Finnware Opdate.	201年又1十	大选择任何文件							
Bottom Board Firmware Opdate:	125年又1十	不远挥吐吗又件	Opuale						
Software Update:	选择又件	未选择任何文件	Update						
Web App Update:	选择文件	未选择任何文件	Update						
Motor Firmware Update:	选择文件	未选择任何文件	Update						
Config File Update:	选择文件	未选择任何文件	Update						
图 A-4 占击打开文件									

« MyFileAudit > louie.liu > 2021-10 > () 搜索*2021-10* ٥)II -挟 . ? * ^ 名称 修改日期 类型 大小 helios_bot_01030731.bin 2021/10/20 20:14 BIN 文件 2,494 at F ~ < BIN 文件 (*.bin) 文件名(N): helios_bot_01030731.bin 打开(<u>Q</u>) 取消 图 A-5 选择待升级固件

3.待升级固件文件名变为选中的固件名称后

表示加载成功,此时点击"Update"

× +

S Firmware Update

Bottom Board Firmware Update: 选择文件 helios

Device Setting Diagnostic

Top Board Firmware Update:

Software Update:

Web App Update:

Config File Update:

Motor Firmware Update:

(-)

4.网页端提示成功、设备进行自动重启,重启 完成后重新登录网页首页查看固件版本是否 升级成功。

→ C △ ▲ 不安全	192.168.1	.200/cgi-bin/firmware_upo	late.cgi	川级城场。
	stem			Firmware Update × + ← → × ☆ ▲ 不完全 192,168.1,200/cgi-bin/firmware_update.cgi Init for upgrade, please wait Init Init
Board Firmware Update: m Board Firmware Update: vare Update: App Update: r Firmware Update: ig File Update:	选择文件 选择文件 选择文件 选择文件 选择文件 选择文件	未遗择任何文件 helios_bot_01030731.bin 未选择任何文件 未选择任何文件 未选择任何文件 点击升级	Update Update Update Update Update Update	Bottom Board Firmware is Upgrading Erasing 19% Erasing 39% Erasing 59% Erasing 79% Erasing 79% Bot bin Erase Complete! Begin to Write Writing 19% Writing 19% Writing 50% Writing 60% Writing 60%
				Successful! Update the new firmware of bottom board! Lidar is rebooting!

图 A-7 升级成功

注意:升级包名称需符合如下要求方可正常升级,否则会报错:

• 主板升级文件 顺序逻辑必要前缀 "helios top " 顺序逻辑必要后缀 ".bin"

• 底板升级文件 顺序逻辑必要前缀 "helios bot " 顺序逻辑必要后缀 ".bin"

- •软件升级文件 顺序逻辑必要前缀 "helios_app_" 顺序逻辑必要后缀 ".elf"
- •Web App 升级文件 顺序逻辑必要前缀 "helios_cgi_" 顺序逻辑必要后缀 ".tar.gz"
- 电机马达升级文件 顺序逻辑必要前缀 "helios_mot_" 顺序逻辑必要后缀 ".hex"

附录 B 各寄存器定义详情

此处内容补充5章节中协议里定义各个信息的定义,便于用户对设备的使用和开发。

B.1 电机转速(MOT_SPD)

电机转速寄存器(共 2bytes)									
序号	byte1	byte2							
功能	MOT	_SPD							

寄存器说明:

(1)本寄存器用以配置电机转向和电机转速;

(2) 数据存储采用大端模式;

(3) 配置转速列表如下:

(byte1==0x04) && (byte2==0xB0): 转速 1200rpm, 顺时针旋转;

(byte1==0x02) && (byte2==0x58):转速 600rpm,顺时针旋转;

配置其他数据,电机转速皆为0。

B.2 以太网(ETH)

以太网寄存器(共 22bytes)										
序号	byte1	byte2	byte3	byte4	byte5	byte6	byte7	byte8		
功能		LIDA	R_IP			DEST_	PC_IP			
序号	byte9	byte10	byte11	byte12	byte13	byte14	byte15	byte16		
功能		MAC_ADDR						rt1		
序号	byte17	byte18	byte19	byte20	byte21	byte22				
功能	po	rt2	port3		Port4					

寄存器说明:

(1) LIDAR_IP 为 LiDAR 的源 IP 地址,占据 4byte

(2) DEST_PC_IP 为目的 PC 的 IP 地址,占据 4byte

(3) MAC_ADDR 为 LiDAR 的 MAC 地址

(4) port1~port4 为端口号信息, port1 为 MSOP 包 LiDAR 输出的端口号, port2 为 MSOP 包目的 PC 接收端口号, port3 为 DIFOP 包 LiDAR 输出的本地端口, port4 为 DIFOP 包目的 PC 接收端口号。默认情况建议 port1 和 port2 设置相同, port3 和 port4 设置相同。

B.3 FOV 设置(FOV_SET)

FOV 设置(共 4bytes)									
序号	byte1	byte2	byte3	byte4					
功能	FOV_S	START	FOV_	END					

寄存器说明:

设置设备输出有效数据的水平角度范围, FOV_START 和 FOV_END 调整范围 0~36000,

对应角度 0~360°,存储方式为大端模式。比如: byte1=0x5d, byte2=0xc0, byte3=0x1f,

byte4=0x40, 则:

FOV_START = 93*256+192=24000

FOV_END = 31*256+64=8000

表明有效的数据输出的水平角度范围为 240.00°~80.00°。

注:以上 byte 已由十六进制转化为十进制后进行计算。

B.4 电机锁相相位(MOT_PHASE)

电机锁相寄存器(共 2bytes)									
序号	byte1	byte2							
功能	MOT_PHASE								

寄存器说明:

调整电机在整数秒的旋转相位,配合 GPS 的 PPS 脉冲使用,调整值范围 0~360,对应 角度 0~360°,存储方式为大端模式,比如:byte1=0x01、byte2=0x0e,则电机转动相位值 为 1*256 + 14=270;

注:以上 byte 已由十六进制转化为十进制后进行计算。

B.5 主板固件版本(TOP_FRM)

主板固件版本(共 5bytes)											
序号	byte1	byte2	byte3	byte4	byte5						
功能			TOP_FRM		TOP_FRM						

寄存器说明:

该版本号与主板固件文件版本号对应,对应关系如下:

协议输出版本号: 01 02 05 00 00

即协议输出版本号为: 0x0102050000

B.6 底板固件版本(BOT_FRM)

底板固件版本(共 5bytes)									
序号	byte1	byte2	byte3	byte4	byte5				
功能									

寄存器说明:

该版本号与固件文件版本号对应,对应关系如下:

协议输出版本号: 01 01 01 07 00

即协议输出版本号为: 0x0101010700

B.7 电机固件版本(MOT_FRM)

软件版本(共 5bytes)									
序号	byte1	byte1 byte2 byte3 byte4 byte5							
功能			MOT_FRM						

寄存器说明:

该版本号与固件文件版本号对应,对应关系如下:

协议输出版本号: 20 11 26 01 00

即协议输出版本号为: 0x2011260100

B.8 软件版本(SOF_FRM)

软件版本(共 5bytes)									
序号	byte1	byte1 byte2 byte3 byte4 byte5							
功能			SOF_FRM						

寄存器说明:

该版本号与固件文件版本号对应,对应关系如下:

协议输出版本号: 20 12 15 21 00

即协议输出版本号为: 0x2012152100

B.9 垂直角校准(COR_VERT_ANG)

垂直角校准寄存器(共 96bytes)

序号	byte1	byte2	byte3	byte4	byte5	byte6	byte7	byte8	byte9	
功能	1	通道垂直角	度	2 ±	通道垂直角	度	3 j	3 通道垂直角度		
序号	byte10	byte11	byte12	byte13	byte14	byte15	byte16	byte17	byte18	
功能	4 通道垂直角度		5 t	通道垂直角	度	6 Ì	通道垂直角	度		
序号	byte19	byte20	byte21	byte22	byte23	byte24	byte25	byte26	byte27	
功能	7	通道垂直角	度	8 ±	通道垂直角	度	9 j	通道垂直角	度	
序号	byte28	byte29	byte30	byte31	byte32	byte33	byte34	byte35	byte36	
功能	10 通道垂直角度		11	通道垂直角	自度	12	通道垂直角	自度		
序号	byte37	byte38	byte39	byte40	byte41	byte42	byte43	byte44	byte45	
功能	13 通道垂直角度		14	14 通道垂直角度			通道垂直角	度		
序号	byte46	byte47	byte48	byte49	byte50	byte51	byte52	byte53	byte54	
功能	16	通道垂直角	度	17	17 通道垂直角度			通道垂直角	度	
序号	byte55	byte56	byte57	byte58	byte59	byte60	byte61	byte62	byte63	
功能	19	通道垂直角	度	20	20 通道垂直角度			21 通道垂直角度		
序号	byte64	byte65	byte66	byte67	byte68	byte69	byte70	byte71	byte72	
功能	22	通道垂直角	度	23	通道垂直角	度	24	通道垂直角	度	
序号	byte73	byte74	byte75	byte76	byte77	byte78	byte79	byte80	byte81	
功能	25	通道垂直角	度	26	通道垂直角	度	27	通道垂直角	度	
序号	byte82	byte83	byte84	byte85	byte86	byte87	byte88	byte89	byte90	
功能	28	通道垂直角	度	29	通道垂直角	度	30	通道垂直角	自度	
序号	byte91	byte92	byte93	byte94	byte95	byte96				
功能	31	通道垂直角	度	32	通道垂直角	自度				

寄存器说明:

(1)角度值为区分为正负,每个通道的垂直角度由 3 个 byte 组成,其中第 1 个 byte 表示 正负,第 2 和第 3 个 byte 组成角度的值,存储采用大端模式。

(2) 表示正负的第1个 byte 属性为 0x00 则通道垂直角度为正,属性为 0x01 则通道垂直角度为负;

(3) 存储的角度值的 LBS=0.01;

(4)例如通道1寄存器的值为byte1=0x00,byte2=0x05转换成十进制5,byte3=0xd6转
换成十进制214,则通道1的垂直角度值为: (5*256+214)*0.01=14.95°

36

			垂直角	較准寄存器	器(共 96b y	ytes)				
序号	byte1	byte2	byte3	byte4	byte5	byte6	byte7	byte8	byte9	
功能	1通	道水平偏移	角度	2 通道水平偏移角度			3 通道水平偏移角度			
序号	byte10	byte11	byte12	byte13	byte14	byte15	byte16	byte17	byte18	
功能	4 通道水平偏移角度		5 通	道水平偏移	角度	6 通过	道水平偏移	角度		
序号	byte19	byte20	byte21	byte22	byte23	byte24	byte25	byte26	byte27	
功能	7 通	道水平偏移	角度	8 通	道水平偏移	角度	9 通过	道水平偏移	角度	
序号	byte28	byte29	byte30	byte31	byte32	byte33	byte34	byte35	byte36	
功能	10 通道水平偏移角度			11 通	道水平偏利	多角度	12 通	道水平偏移	多角度	
序号	byte37	byte38	byte39	byte40	byte41	byte42	byte43	byte44	byte45	
功能	13 通	道水平偏利	多角度	14 通	14 通道水平偏移角度			道水平偏移	多角度	
序号	byte46	byte47	byte48	byte49	byte50	byte51	byte52	byte53	byte54	
功能	16 通	道水平偏利	多角度	17 通道水平偏移角度			18 通	道水平偏移	多角度	
序号	byte55	byte56	byte57	byte58	byte59	byte60	byte61	byte62	byte63	
功能	19 通	道水平偏移	多角度	20 通	20 通道水平偏移角度			21 通道水平偏移角度		
序号	byte64	byte65	byte66	byte67	byte68	byte69	byte70	byte71	byte72	
功能	22 通	道水平偏移	多角度	23 通	道水平偏移	多角度	24 通	道水平偏移	多角度	
序号	byte73	byte74	byte75	byte76	byte77	byte78	byte79	byte80	byte81	
功能	25 通	道水平偏移	多角度	26 通	26 通道水平偏移角度		27 通	道水平偏移	多角度	
序号	byte82	byte83	byte84	byte85	byte86	byte87	byte88	byte89	byte90	
功能	28 通	道水平偏移	多角度	29 通	29 通道水平偏移角度			30 通道水平偏移角度		
序号	byte91	byte92	byte93	byte94	byte95	byte96				
功能	31 通	i道水平偏利	多角度	32 通	道水平偏利	多角度				

B.10 水平偏移角校准(COR_HOR_ANG)

寄存器说明:

(1)角度值为区分为正负,每个通道的水平偏移角度由 3 个 byte 组成,其中第 1 个 byte 表示正负,第 2 和第 3 个 byte 组成角度的值,存储采用大端模式。

(2) 表示正负的第1个 byte 属性为 0x00 则通道水平偏移角度为正,属性为 0x01 则通道 水平偏移角度为负;

(3) 存储的角度值的 LBS=0.01;

(4)例如通道1寄存器的值为byte1=0x01,byte2=0x01转换成十进制1,byte3=0x96转换成十进制150,则通道1的水平偏移角度值为:-(1*256+150)*0.01=-4.06°

B.11 序列号(SN)

序列号寄存器(共 6bytes)										
序号	1byte	1byte2byte3byte4byte5byte6byte								
功能	SN									

类似 mac 地址, 以 16 进制共 6bytes 数值指示设备序列号。

B.12 上位机驱动兼容性信息(SOFTWARE_VER)

上位机驱动兼容寄存器(共 2bytes)									
序号	byte1	byte2							
功能	SOFTWARE_VER								

提供上位机版本兼容信息说明。

B.13 时间(UTC_TIME)

	时间寄存器(共 10bytes)											
序号	byte1	byte2	byte3	byte4	byte5	byte6	byte7	byte8				
功能		u	S									
序号	byte9	byte10										
功能	u	S										

注: us 值范围: 0~999999;

B.14 运行状态(STATUS)

	运行状态寄存器共 18bytes												
序号	byte1	byte2	byte3	byte4	byte5	byte6	byte7	byte8					
功能	Idat1_reg Vdat			lat	Vdat_1	2V_reg	Vdat_5V_reg						
序号	byte9	byte10	byte11	byte12	byte13	byte14	byte15	byte16					
功能	Vdat_2	Vdat_2V5_reg Vdat_APD			内部调试使用								
序号	17byte	18byte	19byte	20byte	21byte	22byte	23byte	24byte					
功能				内部调	试使用								
序号	25byte	26byte	27byte	28byte	29byte								
功能		ļ	内部调试使用										

注: 【Value】代表对应 offset 字节换算后得出的十进制数值,采用大端模式,高位在前,低位在后。

寄存器说明:

(1) Idat 是设备供电电流。电流值大小由 2byte 组成。电流计算公式:

Idat=Value_temp/4096 *5A

比如,当 byte1 = 0xc8, byte2 = 0x02 时,实际电流值:

Idat =Value_temp/4096 *5A= 0x02c8/4096 *5A =0.87A

(2) Vdat,包括5路电压值,每路电压值大小由2byte组成,各路电压计算公式如下:

Vdat = value/4096 V Vdat_12V_reg = value /4096 * 24.5V Vdat_5V_reg = value / 4096x11 V Vdat_2V5_reg = value / 4096x10 V

```
Vdat_APD = 516.65*(value)/4096-465.8 V (值为负值)
```

以上电压计算公式的单位是伏特(V)。

			故障诊断寄	存器(共 40	bytes)						
序号	byte1	byte2	byte3	byte4	byte5	byte6	byte7	byte8			
功能	tempe	erature1	temper	ature2	temper	ature3	temp	erature4			
序号	byte9	byte10	byte11	byte12	byte13	byte14	byte15	byte16			
功能	tempe	rature 5	r_rpm		lane_up	lane_up_cnt		Top_Status			
序号	byte17	byte18	byte19	byte20	byte21	byte22	byte23	byte24			
功能	Top_Status	GPS_Status			内部调试	式使用					
序号	byte25	byte26	byte27	byte28	byte29	byte30	byte31	byte32			
功能											
序号	byte33	byte34	byte35	byte36	byte37	byte38	byte39	byte40			
功能											

B.15 故障诊断(FALT_DIGS)

注: 【Value】代表对应 offset 字节转换后得出的十进制数值,采用大端模式,高位在前低位在后。

寄存器说明:

(1) temperature2, temperature3, temperature4 是其他板卡温度。温度计算公式:

temperature2&3&4=200* (value) /4096-50

temperature1,Temperature5 分别为底板/主板 FPGA 芯片温度。温度值大小由 2byte 组成, 公式为:

Temperature1&5=503.975*(value)/4096-273.15

(2) byte18 是 GPS 信号输入状态寄存器 gps_st,该寄存器使用 3 个比特位,用于指示 当前接入的 PPS 信号和 GPRMC 信号是否有效,同时指示当前系统运行的时间是设备本地计 数时间还是同步到 UTC。bit 位定义如下:

		GPS 信	号输入状态寄存器 GPS_ST
比特号	功能	状态值	状态说明
h:+0	PPS 标志:	0	PPS 信号无效
DILU	PPS_LOCK	1	PPS 信号有效
h;+1	GPRMC 标志: 0 GPRMC 信号无效		GPRMC 信号无效
bit1	GPRMC_LOCK	1	GPRMC 信号有效
	UTC 锁定标	0	LiDAR 内部时间没有和 UTC 时间进行同步
bit2	志:	1	LiDAP 内部时间正在和 UTC 时间进行同步
	UTC_LOCK		LIDAR P1 即时间正在和 01C 时间近时间少
D:+2	DDC 龄)出大	0	有输入
Bit3	PPS 捆八扒芯	1	无输入
bit5~bit7	预留	х	N/A

(3) 电机的实时转速,由 byte32 和 byte33 两个字节组成,计算公式如下:

电机实时转速 = value

比如,当 byte32 = 0x58, byte33 = 0x02 时,r_rpm=0x0258=600rpm.

(4) 其他寄存器是内部调试使用寄存器

B.16 GPRMC 数据包-ASCII 码数据类型

GPRMC 数据包位预留了 86 个字节,根据外接的 GPS 模块输出的 GPRMC 消息长度自适应完整的存储所接收到的 GPRMC 消息,可以 ASCII 码进行解析查看。

附录 C RSView

在本附录中将展示如何使用 RSView 获取、可视化、保存和回放 RS-Helios 数据。 对于从 RS-Helios 得到的原始数据,可以使用一些免费工具去检测,例如 Wireshark 和 tcpdump。但对于可视化这些数据,使用 RSView 是更为便捷和容易实现的方式,本次使用的 版本为 RSView3.1.7。

C.1 软件功能

RSView 提供将 RS-Helios 数据进行实时可视化的功能。RSView 也能回放保存为 pcap 文件格式的数据,但是还不能支持.pcapng 格式的文件。

RSView 将 RS-Helios 得到距离测量值显示为一个点。它能够支持多种自定义颜色来显示数据,例如反射率、时间、距离、水平角度和激光线束序号。所显示的数据能够导出保存为 CSV 格式,RSView3.1.3 以后的版本支持导出 LAS 格式的数据;之前的版本不支持导出 LAS、XYZ 或者 PLY 格式文件。

RSView 所包含的功能:

- 通过以太网实时显示数据
- 将实时数据记录保存为 PCAP 文件
- 从记录的 PCAP 文件中回放
- 不同类型可视化模式,例如距离、时间、水平角度等等
- 用表格显示点的数据
- 将点云数据导出为 CSV 格式文件
- 测量距离工具
- 将回放数据的连续多帧同时显示
- 显示或者隐藏 RS-Helios 中个别线束
- 裁剪显示

C.2 安装 RSView

RSView 的安装文件支持 Windows 的 64 位操作系统,安装前不需要安装其他依赖软件。 可以从 Robosense 的官网 (<u>http://www.robosense.cn/resources</u>)上面下载最新版本 RSView 安装包。点击执行并根据安装提示操作即可,安装完后会在桌面生成快捷方式。安 装路径不可以有中文字符。

C.3 设置网路

在第2章中有提到雷达出厂时设定的发送电脑的 IP 地址,因此默认情况下需要设定计算机的静态 IP 的地址为 192.168.1.102,子网掩码为 255.255.255.0。此外还需要确保 RSView 没有被防火墙或第三方安全软件给禁止。

C.4 可视化数据

- 1. RS-Helios 接通电源,并用网线和电脑连接。
- 2. 右键使用管理员权限运行打开 RSView 软件。
- 3. 点击 File > Open 并且选择 Sensor Stream (图 C-1)

图 C-1 打开 RSView 实时数据显示

4. 在弹出的 Sensor Configuration 窗口中,选择 RSHelios"Type of Lidar"勾选 RSHelios,

"Intensity"选择 Mode3,之后点击"OK"即可,如下图 C-2 所示:

Sensor Configuration	?	×
Sensor Calibration		
RSlidar16 RSlidar32 RSBpearl		
Add Remove Clear		
Sensor Position Type of Lid	ar Inter	nsity
X 0.00 + Pitch 0.00 + ORS16	3 💿 ма	ode3
Y 0.00 ♣ Roll 0.00 ♣	О Ма	ode2
Z 0.00 + Yaw 0.00 + 2 RSHelios) O Ma	ode1
4	Ca	ncel

图 C-2 选择 RS-Helios 参数配置文件

5. RSView 开始显示实时采集到数据(图 C-3)。可以通过点击 Play 按钮暂停,再点击一次可以继续显示。

图 C-3 雷达点云数据

C.5 保存 RS-Helios 数据为 PCAP 格式

1. 在实时显示数据时点击 Record 按钮(图 C-4)。

图 C-4 RSView 保存按钮

2. 在弹出的 Choose Output File 对话框中,选择需要保存的路径和保存的文件名后,点击 "保存(S)"按钮(图 C-5)。RSView 将开始将数据包文件写入目标 pcap 文件中。(注意: RS-Helios 将会产生大量的数据,随着记录时间变长,目标 pcap 文件将会变大。因此最好将 记录文件保存到 HDD 或者 SSD 中,而不是保存到较慢的 USB 设备或者用网络保存)。

Choose Output File				23
🕒 🔍 🗢 📥 🕨 भेई	耞	▶ win7 (C:) ▶	▼ 4 / 搜索 win7 (C:)	Q
组织 ▼ 新建文件	夹		8==	• • • •
🛃 视频	*	名称	类型	大小
🔤 图片		퉬 PerfLogs	文件夹	
📄 文档		퉬 Program Files	文件夹	
📄 迅雷下载		퉬 Program Files (x86)	文件夹	
👌 音乐		퉬 Python27	文件夹	1
	Ξ	퉬 Qt	文件夹	:
🜉 计算机		퉬 temp	文件夹	
🏭 win7 (C:)		퉬 TsdTemp	文件夹	
👝 本地磁盘 (E:)		🎍 window	文件夹	
	Ŧ	•		P.
文件名(N):	2017-	07-29-11-43-02-RS-16-Data.pc	ар	•
保存类型(T):	ocap	(*.pcap)		•
🔺 隐藏文件夹			保存(S) 取	消

图 C-5 RSView 保存对话框

3. 再次点击 Record 按钮停止保存 pcap 数据。

C.6 回放 pcap 数据

可以使用 RSView 对 RS-Helios 保存的数据 pcap 文件进行回放或者测试。您可以使用 Play 按钮去播放或者选择数据中个别帧。也可以用鼠标选择 3D 点云数据中的一部分,然后 打开表格进行分析。pcap 文件的保存路径不可以有中文。

1. 点击 File > Open 并且选择 Capture File。

🙆 R	SView			
<u>F</u> il	e Tools Help	_		
	<u>O</u> pen		<u>C</u> apture File	Ctrl+0
	<u>R</u> ecent Files	۷	Sensor <u>S</u> tream	
	Save <u>A</u> s	0	Choose <u>C</u> alibration File	
9	Export To <u>K</u> iwiViewer Save <u>S</u> creenshot			
	<u>C</u> lose Data			
	E <u>x</u> it			

图 C-6 打开 pcap 记录文件

2. 弹出 Open File 对话框,选择一个记录的 pcap 文件并且点击"打开(O)"按钮。

🐵 Open File	11 A.C.	11.11.11						x
🕞 🕞 🗖 🗔 🕨 计算	机 🕨 本地	磁盘 (E:)			- 4 ₇	搜索 本地磁盘 (E:)		٩
组织 ▼ 新建文件部	夹							(?)
📗 2345下载	^ 名称	R	修改日期	类型	大小			
▶ 下载 ■ 桌面		back_lidaer	2018/6/12 星期	Wireshark captu	14,486 KB)		
📃 最近访问的位置								
△ WPS云文档								
<mark>)</mark> 库 ■ 视频	E							
■ 图片 ■ 文档								
♪ 音乐								
🖳 计算机								
^	-							
Ż	文件名(<u>N</u>):	back_lidaer			-	Supported Files (*.in	p *.txt	•
						打开(0)	取消	

图 C-7 打开 pcap 记录文件

3. 弹出 Sensor Configuration 对话框, 添加并选择正确的 RS-Helios 的配置文件并点击 OK 按钮。

4. 点击 Play 按钮可以播放或者暂停数据。使用 Scrub 滑动工具前后滑动可以选择数据中不同位置的帧,此工具和 Record 按钮在同一个工具栏内(图 C-8)

$\Box \Box$	Δ	\square	¢	Ô	
	Play				

图 C-8 RSView Play 按钮和 Scrub 滑动工具

5. 为了得到更为具体的分析,选择一帧您感兴趣的数据并且点击 Spreadsheet 按钮(图 C-9)。

一个侧边栏数据表将会显示在软件中右边,在表中包含了这一帧所有的数据。

RSView	· Installation (A. C.
<u>F</u> ile Tools	Help
030404 0310300 011100	🏵 🗹 💽 🔚 🛄 🦆 💶 🛤
	Spreadsheet

图 C-9 RSView 表格工具

6. 可以调整表格每列的宽度,或者排序得到更直观的显示。

Sho	owing Data		Attribute: P	Attribute: Point Data 🔻 Precision: 👥 3 🕀 F 📖 🖽 😂					
	Point ID	Points	adjustedtime	azimuth	distance_m	intensity	laser_id	timestamp	
0	739	1.776***	998301570.000	993	10.380	5	11	998301570	
1	752	1.814***	998301620.000	1011	10. 415	6	11	998301620	
2	753	1.820***	998301623.000	1012	10.390	25	12	998301623	
3	754	1.829***	998301626.000	1013	10.390	13	13	998301626	
4	766	1.846***	998301670.000	1029	10. 415	6	11	998301670	
5	767	1.861***	998301673.000	1030	10. 440	25	12	998301673	
6	768	1.861***	998301676.000	1031	10.390	13	13	998301676	
7	769	1.871***	998301679.000	1032	10. 410	33	14	998301679	
8	780	1.877***	998301720.000	1047	10. 410	6	11	998301720	
9	781	1.893***	998301723.000	1048	10. 440	25	12	998301723	
10	782	1.896***	998301726.000	1049	10. 405	13	13	998301726	
11	783	1.906***	998301729.000	1050	10. 425	40	14	998301729	

图 C-10 RSView 表格显示

7. 点击 Spreadsheet 中的 Show only selected elements,可以得到所选择点对应的数据(图

C-11)。

Sho	owing Data		Attribute: P	oint Data 🔻 P	recision:	9 🖶 🖪 🔣 🖽		
	Point ID	Points	adjustedtime	azimuth	distance_m	intensi Show	only selected ele	ements. estamp
0	739	1.776***	998301570.000	993	10.380	5	11	998301570
1	752	1.814***	998301620.000	1011	10. 415	6	11	998301620

图 C-11 RSView show only elements 工具

8. 点击 Select All Points 工具,这使得您的鼠标变成一个数据点选择工具(图 C-12)。

图 C-12 RSView Select All Points 工具

9. 在 3D 数据显示空间中,使用鼠标画一个长方形框住一些数据点,这些点的数据将会在 Spreadsheet 被选择,并且在图中会变成粉红色(图 C-13)。

图 C-13 RSView List Selected Points 工具

10. 任何被选中的点都可以通过 Spreadsheet>Show only selected elements>Output CSV data 保存。

C.7 配置 RSView Data Port

RS-Helios 默认的 MSOP 端口号是 6699, 默认的 DIFOP 端口号是 7788, 如果在 C.7 节中修改了这 2 个参数或用其他方式修改了 RS-Helios 的端口号,我们则需要重新设定 RSView 获取数据的 Data Port 为修改后的端口号,否则将不会有数据显示。如果不知道 RS-Helios 的 MSOP 端口和 DIFOP 端口,可以连接设备到电脑后,使用 Wireshark 软件抓包查看 LiDAR 数 据包的 Dst Port。

点击 Tools > Data Port, 输入修改后的 RS-Helios MSOP Port 和 DIFOP Port, 然后点击 Set Data Port。

Data Port Setting			8 23
Current MSOP Port:	6699	Current DIFOP Port:	7788
New MSOP Port:	9966	New DIFOP Port:	8877
	Set D:	ata Port	

图 C-14 设置端口号

附录 D RS-Helios ROS&ROS2 Package

本附录将说明如何使用 Ubuntu+ROS 或 Ubuntu+ROS2 来获取和可视化 RS-Helios 的数据。

D.1 配置环境

1. 下载并安装 Ubuntu 16.04 或 Ubuntu18.04 操作系统 (ROS2 用户只能使用 Ubuntu18.04)。

ROS 用户: 根据链接(http://wiki.ros.org/kinetic/Installation)安装并测试 ROS Kinetic
 基本功能。 (Ubuntu18.04 的用户请安装 ROS-melodic)

ROS2 用户: 根据链接(https://index.ros.org/doc/ros2/Installation/Eloquent/)安装并测试 ROS2 Eloquent 基本功能。

3. 下载并安装 libpcap-dev

D.2 下载&编译 RoboSense 雷达驱动包

您可以从 https://github.com/RoboSense-LiDAR/rslidar_sdk 获取最新的雷达驱动包,或联 系我司技术支持获取。. 下载完成后,**请务必仔细阅读驱动包内的 README 文档**,其中详 细介绍了如何编译及使用雷达驱动包。

rslidar_sdk 为我司最新的雷达驱动包, 目前已经集成 RS-16, RS-32, RS-BP, RS-Ruby RS-Helios 五款机械式的雷达驱动。 支持三种编译模式:

1. 直接编译

用户进入 rslidar_sdk 驱动包主目录, 创建 build 文件夹即可编译运行。

mkdir build

cd build

cmake .. && make

./rslidar_sdk_node

2. ROS 环境编译

创建 ros 工作目录:

cd ~

mkdir -p catkin_ws/src

拷贝 rslidar_sdk 驱动包到 ROS 工作目录~/catkin_ws/src 下。 打开 rslidar_sdk 驱动包内的 CMakeLists.txt 文件,将文件顶部的 set(COMPILE_METHOD ORIGINAL) 改为

set(COMPILE_METHOD CATKIN)。 同时将驱动包内的 package_ros1.xml 文件重命名为

package.xml.

在终端中运行如下命令进行编译:

cd ~/catkin_ws

catkin_make

3. ROS2 环境编译

创建 ros2 工作目录:

cd ~

mkdir -p catkin_ws/src

拷贝 rslidar_sdk 驱动包到 ROS2 工作目录~/catkin_ws/src 下。 打开 rslidar_sdk 驱动包内 的 CMakeLists.txt 文件, 将文件顶部的 set(COMPILE_METHOD ORIGINAL)改为 set(COMPILE_METHOD COLCON)。 同时将驱动包内的 package_ros2.xml 文件重命名为 package.xml.

在终端中运行如下命令进行编译:

cd ~/catkin_ws		
colcon build		

D.3 配置电脑 IP

默认 RS-Helios 固件情况下,配置电脑系统的静态 IP 地址为"192.168.1.102",子网掩码为 "255.255.255.0",网关不需要配置。

配置完成后,可以通过 ifconfig 命令查看静态 IP 是否生效。

D.4 实时显示

在 rslidar_sdk 的工程内有详细的文档指导如何在 ROS 或 ROS2 环境下实时显示点云。这里将简略介绍,以 ROS 环境为例。

1. 将 RS-Helios 连接网线到电脑,并且上电,运行,等待电脑识别到 LiDAR 设备。

2. 使用 rslidar_sdk 驱动包里面提供的 launch 文件运行来启动实时显示数据的节点程序,该 launch 文件位于 rslidar_sdk/launch/start.launch。打开一个终端运行:

cd ~/catkin_ws

source devel/setup.bash

roslaunch rslidar_sdk start.launch

图 D-1 rviz 显示 RS-Helios 点云数据

D.5 查看离线数据

关于如何离线解析数据(rosbag 或 pcap),在 rslidar_sdk 驱动包内的文档里也有详细的介绍,这里只简略介绍一下,以 pcap 为例。可以利用 rslidar_sdk 来将保存的离线 pcap 文件解析成点云数据进行显示。

1.修改 rslidar_sdk/config/config.yaml 中的参数

msg_source: 改为3

pcap_directory: 配置为 pcap 文件的绝对路径 (e.g. /home/robosense/RSHelios.pcap)

2.打开终端,运行节点程序:

cd ~/catkin_ws

source devel/setup.bash

roslaunch rslidar_sdk start.launch

附录 E 结构图纸

附录 F 传感器清洁

为了能够准确地感知周围环境,RS-LiDAR 需要保持洁净,特别是环形的防护罩。

F.1 注意事项

请在清理 RS-LiDAR 前仔细并完整的阅读本附录 F 的内容, 否则不当的操作可能会损坏 设备。

雷达在环境比较恶劣的情况下使用,需要及时清理表面的脏污保持雷达清洁,否则会 影响雷达的正常使用。

F.2 需要的材料

- 1. 洁净的纤维布
- 2. 装有中性的温洗皂液的喷雾
- 3. 装有洁净的水的喷雾
- 4. 异丙醇溶剂
- 5. 干净的手套

F.3 清洁方法

如果雷达的表面只是粘附了一些灰尘/粉尘,可直接用洁净的纤维布粘少量的异丙醇溶液,然后轻轻地对雷达表面拭擦清洁,再用一块干燥洁净的纤维布将其擦干。

如果雷达表面沾上了泥浆等块状异物,首先应使用洁净水喷洒在雷达脏污部位表面让 泥浆等异物脱离(注意:不能直接用纤维布将泥浆擦掉,这样做可能会划伤表面特别是防护 罩表面)。其次用温的肥皂水喷洒在脏污部位,因肥皂水的润滑作用可加速异物的脱离。再 次用纤维布轻轻试擦雷达表面,但注意不要擦伤表面。最后用洁净的水清洗雷达表面肥皂的 残留(如果表面仍有残留,可用异丙醇溶液对其再次清洁),同时用一块干燥的微纤微布擦 干。

52

www.robosense.ai

深圳市速腾聚创科技有限公司 service@robosense.cn / 0755-86325830 / 深圳市南山区留仙大道3370号南山智园崇文园区3栋10-11层

